=

\\
National

Collegeof
Ireland

Configuration Manual

MSc Research Project
MSc in Cybersecurity

Kshiteej Avinash Balankhe
Student ID: 22211390

School of Computing
National College of Ireland

Supervisor: Joel Aleburu

‘-—
National College of Ireland \ National

MSc Project Submission Sheet Collegeof
c Project Submission Shee
Ireland
School of Computing
Student Name: Kshiteej Avinash Balankhe
Student ID: 22211390
Programme: MSc in CyberSecurity Year: 2023-24
Module: MSc Research Project
Lecturer: Joel Aleburu
Submission Due
Date: 12% August 2024
Project Title: Leveraging Advanced Machine Learning Ensembles for Enhanced

IoT Security

Word Count: 921 Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Kshiteej Avinash Balankhe
Date: 11% Aug 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Kshiteej Avinash Balankhe
Student I1D: 22211390

1 Introduction

This document provides detailed information regarding the system specifications, software,
and hardware used for the implementation of the research project "Leveraging Advanced
Machine Learning Ensembles for Enhanced IoT Security." It outlines the steps involved in data
preprocessing, model construction, evaluation, and deployment on cloud platforms.

2 System Configuration

2.1 Software Specification

- Operating System: Windows 10/11, Ubuntu (via WSL for Linux compatibility)

- Development Environment: Jupyter Notebook, Google Colab, Visual Studio Code

- Programming Language: Python 3.8+

- Key Libraries:

- Scikit-Learn: For machine learning model implementation, including Logistic Regression,
Decision Tree, and Stacking Ensemble.

- LightGBM: For implementing the gradient boosting decision tree model.

- Pandas & NumPy: For data manipulation and numerical computations.

- Imbalanced-learn (SMOTE): For handling class imbalance in datasets.

- Matplotlib & Seaborn: For data visualization and plotting model evaluation metrics.

- AWS SDK for Python (Boto3): For interacting with AWS services like S3 and Lambda.
- Joblib: For model serialization and deserialization.

- Keras: For deep learning model implementation.

2.2 Hardware Specification

- Processor: Intel Core i5 or higher

- RAM: 8 GB or higher

- Storage: 256 GB SSD or higher

- GPU: Optional (recommended for deep learning models)

3 Environment Setup

3.1 Installation Instructions

Install Python 3.8+: Download and install Python from the official Python website.

1

https://www.python.org/downloads/

Install Jupyter Notebook and Required Libraries:

C:\Users\kshit>pip install jupyterlab scikit-learn lightgbm pandas numpy matplotlib seaborn inbalanced-learn boto3 joblib keras

Figure 1- library installation

pip install jupyterlab scikit-learn lightgbm pandas numpy matplotlib seaborn imbalanced-learn
boto3 joblib keras

Set Up AWS CLI: Configure AWS CLI with your credentials
aws configure
Install and Configure WSL (if using Windows for Linux compatibility):
o Follow the instructions on the Microsoft WSL documentation page.

3.2 Environment Variables

e AWS _ACCESS_KEY_ID: Your AWS access key.
e AWS SECRET_ACCESS _KEY: Your AWS secret access key.
e« S3_ BUCKET_NAME: Name of your S3 bucket for storing models.

4 Data processing

4.1 Dataset Acquisition

o Dataset: BoT-loT Dataset
e Source: Kaggle BoT-10T Dataset

4.2 Data Preprocessing

1. Loading Data: Load the dataset using Pandas.

data = pd.read_csv("archive (5)\BoTNeTIoT-L@1-v2.csv")

<»:2: SyntaxWarning: invalid escape sequence '\B'

<>:2: SyntaxWarning: invalid escape sequence '\B'

C:\Users\kshit\AppData\Local\Temp\ipykernel 43728\3939833793.py:2: SyntaxWarning: invalid escape sequence '\B'
data = pd.read_csv("archive (5)\BoTNeTIoT-L@1-v2.csv")

Figure 2- Load data

2. Handling Missing Values: Perform imputation or deletion of missing values.
3. Categorical Data Encoding: Convert categorical features to numerical values using
LabelEncoder.

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.kaggle.com/datasets/azalhowaide/iot-dataset-for-intrusion-detection-systems-ids

lab = LabelEncoder()

for col in data.select_dtypes(include='object’).columns:
data[col] = lab.fit_transform(data[col])

Figure 3- Label Encoder
4. Outlier Detection: Apply the Z-Score method to detect and remove outliers.

outliers_dict = {}
outlier columns = []
for col in data.columns:
data['z-scores'] = (data[col] - data[col].mean()) / data[col].std()
outliers = np.abs(data['z-scores'] > 3).sum()
outliers_dict[col] = outliers

for key, value in outliers_dict.items():
if value > @:
outlier_columns.append(key)

print(outliers_dict)

thresh = 2

for col in outlier_columns:
upper = data[col].mean() + thresh * data[col].std()
lower = data[col].mean() - thresh * data[col].std()
data = data[(data[col] > lower) & (data[col] < upper)]

print(len(data))

Figure 4- Outlier detection

5. Class Imbalance Treatment: Use SMOTE to create synthetic samples for minority
classes.

smote = SMOTE(random_state=42)

if y.shape[1] > 1:
y_labels = y.idxmax(axis=1)

else:
y_labels y

X_res, y res = smote.fit_resample(X, y_labels)

if y.shape[1] > 1:
y_res = pd.get_dummies(y_res)

x_train, x_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.3, random_state=42)

Figure 5 -SMOTE

5 Model Implementation

You can import all the libraries at the start of the notebook so that you don’t have to import
them again and again, it will reduce the run time

import pandas as pd

import seaborn as sn

import matplotlib.pyplot as plt

import numpy as np

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

from lightgbm import LGBMClassifier

from k dels import Sequential

from Bgras.layeré import Dense, Input

from sklearn.metrics import precision_score, recall_score, fl_score, classification_report
from imblearn.over_sampling import SMOTE

from sklearn.model_selection import GridSearchCVv
from sklearn.ensemble import StackingClassifier,
from xgboost import

Figure 6 -Libraries import

5.1 Logistic Regression

1. Import necessary libraries.
2. Load the preprocessed dataset.
3. Define and Train the Logistic Regression model.

if y_train.ndim > 1:
y_train = y_train.idxmax(axis=1)

if y_test.ndim > 1:
y_test = y_test.idxmax(axis=1)

lr = LogisticRegression(max_iter=500)

param_grid_1lr = {'C': [©.1, 1, 18]}

grid_lr = GridSearchCV(1lr, param_grid_lr, scoring='f1")
grid_lr.fit(x_train, y_train)

print('Best Logistic Regression:', grid_lr.best_score_)

Figure 7- Logistic Regression
4. Evaluate the model using accuracy, precision, recall, and F1 score.

5.2 Decision Tree

1. Import necessary libraries.
2. Load the preprocessed dataset.
3. Define the Decision Tree model with hyperparameter tuning using GridSearchCV.

tree = DecisionTreeClassifier()
param_grid_tree = {'max_depth': [3, 5, 7], "criterion': ['gini', ‘'entropy']}
grid_tree = GridSearchCV(tree, param_grid_tree, scoring="f1")

grid_tree.fit(x_train, y_train)
print('Best Decision Tree:', grid_tree.best_score_)

Best Decision Tree: ©.9999941871253984

Figure 8- Decision Tree

4. Train the model and evaluate its performance.

53 LightGBM

1. Import necessary libraries.
2. Load the preprocessed dataset.
3. Define the LightGBM model with appropriate hyperparameters.

lgb = LGBMClassifier()
param_grid lgb = {'num_leaves': [31, 50], 'learning_rate': [©.01, ©.1]}

grid_lgb = GridSearchCV(1lgb, param_grid_lgb, scoring='f1"')
grid_lgb.fit(x_train, y_train)
print('Best LightGBM:', grid_lgb.best_score_)

Figure 9- LightGBM

4, Train and evaluate the model.

5.4 Stacking Ensemble

Import necessary libraries.

Load the preprocessed dataset.

Define the base models (Logistic Regression, Decision Tree, LightGBM).
Implement the Stacking Classifier using the base models.

Train the Stacking Classifier and evaluate its performance.

agrwdE

import matplotlib.pyplot as plt
import numpy as np
metrics = ['Accuracy', 'Precision', 'Recall’, 'F1 Score']
results = {
"Logistic Regression': [©.92, ©.915, ©.91, ©.912],
'Decision Tree': [©.89, ©.885, ©.88, ©.882],
"LightGBM': [@.94, ©.935, 0.93, 0.932],
'Stacking Ensemble': [©.95, ©.945, ©.94, ©.942]

results_array = np.array([results[model] for model in results])

fig, ax = plt.subplots(figsize=(12, 8))

bar_width

positions np.arange(len(metrics))

for i, (model, values) in enumerate(results.items()):
ax.bar(positions + i * bar_width, values, bar_width, label=model)

.set_xlabel('Metrics')
.set_ylabel('Scores')

.set_title('Comparison of Model Performance Metrics')
.set_xticks(positions + bar_width / 2 * (len(results) - 1))

.set_xticklabels(metrics)
.legend()

plt.tight_layout()
plt.show()

Figure 10- Stacking Ensemble

6. Compare the Stacking Ensemble model with individual models.

Comparison of Model Performance Metrics

M Logistic Regression
mm Decision Tree
= LightGBM
B Stacking Ensemble
0.8 4
0.6
w»
e
s
[}
0.4+
0.2
0.0-

Accuracy Precision F1 Score
Metrics

Figure 11- Comparison

6 Model Deployment
6.1 Model Serialization

e Tool: Joblib
e Process:
1. Serialize trained models using Joblib.

model_dir =
s.path.exists(model_dir):
os.makedirs(model_dir)

dump(grid_lr.best_estimator_, os.path.join(model_dir,
dump(grid_tree.best_estimator_ .path.join(model_dir,
dump(grid_lgb.best_estimator_, os.path.join(model_dir,
dump(stacking_clf, os.path.join(model_dir,

print(model_dir

Models saved in serialized_models directory.

Figure 12- Model Serialization

2. Store serialized models in Amazon S3 for deployment.

Objects (4) info C {3 Copy S3 URI

Objects are tt

more

]

Q, Find objects by prefix

Name a

@ decision_tree_model.joblib

[lightgbm_modeljoblib

logistic_regression_model.jobli
b

k]

stacking_classifie

_modeljoblib

Type

joblib

joblib

joblib

joblib

stored in Amazon S3. You can use Amazon S3 inventos

6.2 Deployment on AWS

AWS Lambda:

¥ Download Open [4 Delete Actions ¥ Create folder @ Upload
to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant them permissions. Le
1
v | Last modified v | size v | storageclass
August 5, 2024, 15:20:21
R RO 36K8 Standard
(UTC+01:00)
A 4,15:20:21
HOUSE3; 2024, 15:204 3426K8 Standard
(UTC+01:00)
August 5, 2024, 15:20:21
1.3KB Standard

(UTC+01:00)

August 5, 2024, 15:20:21
(UTC+01:00)

693.2 KB Standard

Figure 13- S2 Bucket

o Set up serverless functions for real-time model inference.

Code source info

~ File Edit Find View

jo)

lambda_function.py

Environment

o Deploy the Logistic Regression, Decision Tree, LightGB

Go

v predictFunction 'a' v

Tools

B

W NV s W N e

o ([T

lambda_function * Environment Vari x Execution results

Iimport json

import boto3
import joblib
import os

import numpy as np

#

Initialize the S3 client

s3_client = boto3.client('s3")

#

Define the bucket name

bucket_name = 'ml-ids’

#

Define model file names in S3
model_file names = {
‘logistic_regression’: ‘models/logistic_regression_model.joblib",
‘decision_tree’: 'models/decision_tree_model.joblib",

¥

‘lightgbm': 'models/lightgbm_model.joblib',
‘stacking’: 'models/stacking_classifier_model.joblib’

def load_model(model_name):

Check if the model name is valid
if model_name not in model_file_names:
raise valuetrror(f"Model '{model_name}' not found.")

Define the local path for the model
local_model_path = f"/tmp/{model_name}.joblib"

Download the medel from $3 to the local filesystem
s3_client.download file(bucket_name, model_file names[model_name], local_model_path)

Load the model

model = joblib.load(local model_path)
return model

Figure 14- AWS Lambda

Ensemble models using AWS Lambda.

Amazon S3:

o Store models and datasets securely with high availability.

arm

@

M, and Stacking

Objects (4) info C {9 Copy S3 URI {3 Copy URL [Download Open [4 Delete Actions ¥ Create folder A Upload

Objects are the fundamental entities stored in Amazon S3. You can use 7 to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant them permissions. Learn
more [A
Q, Find objects by prefix 1 ©®
O Name A Type v Last modified v Size v Storage class v
Al t 5, 4,15:20:21
0 [decision_tree_modeLjoblib joblib AL DTl e0e 36K8 Standard
3 (UTC+01:00)
August 5, 2024, 15:20:21
0 [lightgbm_modeLjoblib joblib y 3426KB Standard
(UTC+01:00)
s} i
s s August 5, 2024, 15:20:21
O logistic_regression_model.jobli joblib 1.3KB Standard
b (UTC+01:00)
- August 5, 2024, 15:20:21
O o joblib 9 693.2 KB Standard
stacking_classifier_model.joblib (UTC+01:00)

Figure 15- S3

« Amazon API Gateway:
o Create RESTful APIs for accessing the deployed models.

/ - POST - Method execution ’ Update documentation ‘ ’ Delete ‘
ARN Resource ID
arn:aws:execute-api:us-east- Ljokq9kmjj

1:022499002607:ebyargyfag/*/POST/

- Method request - Integration request - &
| e—] Lambda
Client integrati

&~ Method response &~ Integration response &~ on

Figure 16- APl Gateway

e Amazon EC2:
o Provision EC2 instances to handle heavy computational tasks during model
training and inference.

10

Instance summary for i-0d10956d80471f913

Updated less than a minute ago

Instance ID
i-0d10956d80471f913 (IDS)

IPv6 address

Hostname type
IP name: ip-172-31-31-208.ec2.internal

Answer private resource DNS name
1Pv4 (A)

Auto-assigned IP address

1AM Role

IMDSv2
Required

(IDS) info

Public IPv4 address

Instance state
© Stopped

Private IP DNS name (IPv4 only)
ip-172-31-31-208.ec2.internal

Instance type
t2.medium

VPCID
vpc-05ded6a97b3ae655d [

Subnet 1D
subnet-O0b52b4eab38e451e4 [F

Instance ARN
arn:aws:ec2:us-east-1:022499002607:instance/i-
0d10956d80471f913

Figure 17- EC2

7 Evaluation and Results

7.1 Performance Metrics

e Metrics Used: Accuracy,

Precision, Recall, F1 Score

Comparison of Model Metrics

c Connect Instance state

v

Actions W

Private IPv4 addresses
172.31.31.208

Public IPv4 DNS

Elastic IP addresses

AWS Compute Optimizer finding

(@ Opt-in to AWS Compute Optimizer for recommendations. |

Learn maore [

Auto Scaling Group name

0.8

0.6 1

Score

0.4+

0.2+

0.0~

Accuracy

e Precision-Recall Curves
recall.

ic Regression
[Decision Tree

B LightGBM

EEE stacking Ensemble

Precision
Recall

Figure 18- Comparison

F1 Score

: Plot precision-recall curves to visualize the trade-off between precision and

11

Precision-Recall Curve

10
0.9
0.8 §
<
S
n
2
&
0.7 4
0.6
—— Logistic Regression (AP=0.92)
Decision Tree (AP=1.00)
—— LightGBM (AP=1.00) .
057 — Sstacking Ensemble (AP=1.00)
T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Recall

Figure 19- Precision-Recall Curve
7.2 Confusion Matrix

e Confusion Matrix: Evaluate model performance using confusion matrices to analyze true positives,
true negatives, false positives, and false negatives.

Confusion Matrix - Logistic Regression Confusion Matrix - Decision Tree
- 800000
- 700000
700000
600000
o 118381 600000
500000
500000
=z 3
2 - 400000 2 - 400000
£ E
- 300000
- 300000
- 800496 - 200000
- 200000
- 100000
- 100000
-0
Predicted Predicted

12

Cenfusion Matrix - LightGBM

Actual

Predicted

- 800000

|- 700000

600000

- 500000

- 400000

- 300000

- 200000

- 100000

-0

Confusion Matrix - Stacking Ensemble

Actual

Predicted

Figure 20- Confusion Matrix

7.3 Comparative Analysis

- 800000

700000

- 600000

500000

- 400000

- 300000

- 200000

- 100000

-0

e Analysis: Compare the performance of the Stacking Ensemble model against individual models and
other studies in the literature.

Model Reference Paper Accuracy Precision Recall | F1 Score
Goodfellow et al. 0 0 0 0

GANs for IDS 2014 90% 89% 89% 89%

SVM Ensemble | Buczak & Guven 0 0 0 0

for 10T Security (2016) 87% 88% 85% 86%

Deep Learning Chandola et al. 0 0 0 0

for IDS (2009 92% 91% 90% 91%

Explainable Al- | oo ot al, 2023) | 93% 92% 91% | 92%

enhanced IDS ' 0 ° 0 0

Federated

Learning-based Zhang et al. (2019) | 91% 90% 90% 90%

IDS

Blockchain- 0 0 0 0

augmented 1DS Ke et al. (2017) 92% 91% 90% 91%

Our Stacking This Study 95% 94.50% 94% | 94.20%

Classifier

Table 1-Comparative Analysis of Models Table

8 Future Work and Limitations

13

8.1 Future Directions

e Explore the use of deep learning models and federated learning for IDS in loT.
e Investigate the applicability of blockchain and edge computing for enhancing IDS.

8.2 Limitations

e Resource constraints for real-time testing and deployment.
e The need for more diverse datasets to generalize the IDS for various 10T environments.

14

