===y

\‘
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Cyber Security

Ahmed Alazawy
Student ID: x23158352

School of Computing
National College of Ireland

Supervisor: Eugene McLaughlin

Student
Name:

Student ID:

Programme:

Module:

Lecturer:
Submission
Due Date:

Project Title:

Word Count:

National College of Ireland

MSc Project Submission Sheet

Ahmed Alazawy

X23158352

School of Computing

MSc Cybersecurity

Practicum Part 2

Mr. Eugene McLaughlin

12% of August

Year:

‘——
\ National

2023/2024

College
Ireland

Effectiveness of Supervised and Unsupervised algorithms in detecting
RAP’ in Wireless Networks

507

Page Count: 11

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Ahmed

A

Date: 11th of
August

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. Itis

not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ahmed Alazawy
Student ID: x23158352

1 Introduction

This paper discusses how to setup and develop an environment which uses machine learning
techniques to identify and detect rogue access points on a publicly used dataset.

2 System Details

The system that was used to facilitate various experiments and development of machine
learning classifiers to detect rogue access points in wireless networks was made in:

ASUS Vivobook Pro 16X 4K laptop
Intel Core i7-11370H

NVIDIA GeForce RTX 3050

16GB RAM

1TB SSD

Windows 11

The software that was used as well is:
e Jupyter Notebook version 6.5.4
e Python version 3.11.5
e Visual Studio Code version 1.91

3 Software Setup
This section describes the process in setting up any needed software tools.

1. Prerequisite is having installed python in order to install Jupyter notebook to develop
the code and a good way to do this is by installing Anaconda to install python and
jupyter. You can do this by going to the following page:
https://www.anaconda.com/download/success.

2. Go through the installation with Anaconda and choose just me for installation type as
seen in the figure below:

https://www.anaconda.com/download/success

D Anaconda3 2024.06-1 (64-bif) Setup - X

Select Installation Type

_) ANACO‘NDA Flease select the type of installation you would like to perform for
Anacondas 2024.06-1 (64-bit).

Install for:

© Just Me (recommended)

() All Users {requires admin privileges)

< Back Cancel

Fig 1 — Anaconda Installation Part 1
Then choose to register Anaconda3 as the main default python version so that it can
be used alongside VSCode smoothly.
D Anaconda2 2024.06-1 (64-bit) Setup

. Advanced Installation Options
J ANACONDA Customize how Anaconda3 integrates with Windows

[T Create shortcuts (supported packages only).
() Add Anaconda3 ta my PATH environment variable

MNOT recommended. This can lead to conflicts with other applications. Instead, use
the Commmand Prompt and Powershell menus added to the Windows Start Menu.

8 Register Anaconda3 as my default Python 3,12

Recommended. Allows other programs, such as VSCode, PyCharm, etc. to
automatically detect Anaconda3 as the primary Python 3.12 on the system.

[Clear the package cache upon completion
Recommended. Recovers some disk space without harming functionality.

< Back Install Cancel

Fig 2 — Anaconda Installation Part 2
Once Anaconda has been installed alongside python, anaconda navigator will become
available so we can easily open VSCode and mainly Jupyter notebook from there and
start working on it.
) ANACONDA NAVIGATOR [, Qe

A Home

Allanglicat “| on [ease ooy v channeis

W Environments

p ~
| Lewnch |
\ J
W Leamning
k] &
*
i COMMUNItY
Jupyter
‘\/
CMD.exe Prompt Matebook

e ot

tile to Install.

Figure 3 — Anaconda Navigator

The rest of the work will be done in Jupyter notebook to keep the development
process simple yet efficient.

4

Dataset Setup

The dataset that was used was found from the open source software platform known as
Github and the dataset that was used was the Aegean AWID Dataset and using pandas library
and loaded in as shown in the figure below:

5

Load dataset
file_path = r'C:\Users\aalaz\MastersProjectSource\AWID.csv"'
df = pd.read_csv(file_path)

Figure 4 — Loading in AWID Dataset from the MastersProjectSource Folder.

Implementation

import pandas as pd

from
from

sklearn.preprocessing import LabelEncoder, StandardScaler
sklearn.feature_selection import SelectKBest, f_classif

import matplotlib.pyplot as plt
import numpy as np

from
from
from
from
from

sklearn.ensemble import IsolationForest

sklearn.ensemble import RandomForestClassifier

sklearn.svm import OneClassSVM, SVC

sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, fl1_score
sklearn.model_selection import train_test_split, GridSearchCV

import seaborn as sns

from

Fe
Ch
if '’

sklearn.preprocessing import MinMaxScaler

Figure 5 — Importing all libraries needed

Check for missing values
print("\nMissing Values:\n", df.isnull().sum())

Figure 6 — checking to see if there are any missing values in dataset

In [6]: # Separate features and target
target = 'class’
features = df.columns.drop([target])

X = df[features]
y = df[target]

Figure 7 — separating the features and the classes

Convert non-numeric columns to numeric using Label Encoding
label encoders = {}
for column in non_numeric_columns:
le = LabelEncoder()
X[column] = le.fit_transform(X[column].astype(str))
label_encoders[column] = le
print(f"Encoded column: {column}")

Figure 8 — using label encoding to change the columns from categorical to numeric

ature Engineering specific to rogue access points

eck if 'ssid’' and 'bssid’' columns exist

ssid' in X.columns and 'bssid' in X.columns:

X['is_rogue_ssid'] = X['ssid'].apply(lambda x: 1 if 'rogue' in str(x).lower() else @)
X['is_rogue_bssid'] = X['bssid'].apply(lambda x: 1 if 'rogue’ in str(x).lower() else ©)

else:

print(“Columns 'ssid' and/or 'bssid' not found in the dataset. Skipping related feature engineering.")

Figure 9 — RAP specific feature engineering

Add other domain-specific features for rogue access points
Ensure columns exist before using them
if 'signal_strength' in X.columns and ‘num_packets' in X.columns and ‘duration’' in X.columns:
X['signal_strength_diff'] = X['signal_strength'].diff().fillna(e)
X['packet_rate’'] = X['num_packets'] / (X['duration'] + 1)
else:
print("Columns ‘'signal_strength’, 'num_packets', and/or ‘'duration’ not found in the dataset. Skipping related featur¢

Figure 10 — More RAP specific feature engineering

Get selected features
selected_features = [features[i] for i in selector.get_support(indices=True)]
print(“Selected Features:", selected_features)

Selected Features: ['radiotap.datarate’, ‘radiotap.channel.type.cck', 'radiotap.channel.type.ofdm', 'wlan.fc.type', ‘'wlan.fc.su
btype', 'wlan.fc.ds', 'wlan.fc.pwrmgt', ‘'wlan.fc.protected', 'wlan.duration', ‘"wlan.ta']

DataFrame for selected features
X_selected = pd.DataFrame(X_new, columns=selected_features)

Display head of the selected features DataFrame
print("\nSelected Features DataFrame Head:\n", X_selected.head())

Figure 11 — Acquiring the selected features

Plotting the selected features with their scores
feature_scores = selector.scores_[selector.get_support()]
sorted_indices = np.argsort(feature_scores)

sorted_scores = feature_scores[sorted_indices]

sorted features = np.array(selected features)[sorted indices]

plt.figure(figsize=(12, 6))

plt.barh(sorted_features, sorted_scores, color='skyblue')
plt.xlabel('ANOVA F-Value')

plt.ylabel('Features')

plt.title(' Top 10 Features Selected using ANOVA F-test')
plt.grid(True)

plt.show()

Figure 12 — Plotting the features that we selected and choosing the top 10 best features based
on ANOVA F-test

Function to evaluate the model
def evaluate_model(y_true, y_pred, model_name):
print(f"\n--- {model_name} ---")
print("Classification Report:")
print(classification_report(y_true, y_pred))
print("Confusion Matrix:")
cm = confusion_matrix(y_true, y_pred)
print(cm)
print(f"Accuracy: {accuracy_score(y_true, y_pred) * 100:.2f}%")
print(f"Precision: {precision_score(y_true, y_pred, average='weighted') * 100:.2f}%")
print(f"Recall: {recall score(y_true, y_pred, average='weighted') * 1@@:.2f}%")
print(f"F1 Score: {fl_score(y_true, y_pred, average='weighted') * 1@0:.2f}%")

Plot confusion matrix

plt.figure(figsize=(10, 7))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.title(f'Confusion Matrix for {model_name}')
plt.xlabel('Predicted")

plt.ylabel('Actual’)

plt.show()

Figure 13 — evaluating the models based on classification metrics and confusion matrix

Implementing Isolation Forest

isolation_forest = IsolationForest(contamination=8.1, n_estimators=106, random_state=42)
isolation_forest.fit(X_train)

y_pred_if test = isolation_forest.predict(X_test)

y_pred_if_test = np.where(y_pred_if_test == 1, @, 1)

evaluate_model(y_test, y_pred_if_test, 'Isolation Forest')

--- Isolation Forest ---
Classification Report:

precision recall fi1-score support

e 0.18 8.87 .29 7778

1 @.e0 0.00 9.00 7687

2 @.00 0.00 0.00 9435

3 @.e0 0.00 0.00 17338

accuracy 0.16 42238
macro avg @.e4 9.22 9.87 42238
weighted avg 8.e3 0.16 0.e5 42238

Confusion Matrix:

[[6783 995 o 8]
[7684 3 o o]
[9423 12 o a]
[14336 3002 o e]]

Accuracy: 16.07%
Precision: 3.28%
Recall: 16.07%
F1 Score: 5.44%

Figure 14 — Isolation Forest Implementation

Random Forest Model

random_forest = RandomForestClassifier(n_estimators=100, random_state=42)
random_forest.fit(X_train, y_train)

y_pred_rf = random_forest.predict(X_test)

evaluate_model(y_test, y_pred_rf, 'Random Forest')

--- Random Forest ---
Classification Report:

precision recall fi1-score support

0 1.00 0.94 0.97 7778

1 0.89 0.99 0.94 7687

2 1.00 1.00 1.00 9435

3 0.97 0.95 0.96 17338

accuracy 0.97 42238

macro avg 0.96 0.97 0.97 42238

weighted avg 0.97 0.97 0.97 42238

Confusion Matrix:

[[7346 2 o 432]
[@ 7576 o 111]
[2] 0 9435 0]
[7 924 1 16406]]

Accuracy: 96.51%
Precision: 96.69%
Recall: 96.51%

F1 Score: 96.54%

Figure 15 — Random Forest Implementation

One-Class SVM Model Integration

one_class_svm = OneClassSVM(kernel='rbf', nu=8.e1, gamma='scale')
one_class_svm.fit(X_train)

y_pred_ocsvm = one_class_svm.predict(X_test)

y_pred_ocsvm = np.where(y_pred_ocsvm == 1, @, 1) # Adjusting Labels for evaluation

Evaluate the model
evaluate_model(y_test, y_pred_ocsvm, 'One-Class SVM')

--- One-Class SVM ---
Classification Report:

precision recall fl-score support

] .21 8.99 8.35 7778

1 0.87 0.68 0.76 7687

2 .00 .08 .00 9435

3 9.00 0.00 .00 17338

accuracy 2.31 42238
macro avg .27 0.42 .28 42238
weighted avg .20 9.31 2.20 42238

Confusion Matrix:

[[7689 89 8 a]
[2456 5231 8 a]
[9423 12 8 a]
[16634 704 8 el]

Accuracy: 30.59%
Precision: 19.68%
Recall: 30.59%

F1 Score: 208.31%

Figure 16 — One-Class SVM model Implementation

#Supervised SVM Model Integration

svm_model = SVC(kernel='rbf', C=1.8, gamma='scale', random_state=42)
svm_model.fit(X_train, y_train)

y_pred_svm = svm_model.predict(X_test)

evaluate_model(y_test, y_pred_svm, 'Supervised SVM')

--- Supervised SVM ---
Classification Report:

precision recall fl-score support

2] 0.94 0.89 0.91 7778

1 0.93 0.92 0.93 7687

2 1.00 1.00 1.00 9435

3 0.92 0.95 0.94 17338

accuracy 0.94 42238

macro avg 0.95 0.94 0.94 42238

weighted avg 0.94 0.94 0.94 42238

Confusion Matrix:

[[6893 2] o 885]
[109 7110 0 468]
[2 0 9435 0]
[367 506 1 16464]]

Accuracy: 94.47%
Precision: 94.48%
Recall: 94.47%

F1 Score: 94.46%

Figure 17 — Supervised SVM model implementation

#Bar Graph te display accuracy scores for all 4 models
accuracy_scores = {

'Isolation Forest': 16,

‘Random Forest': 97,

‘One-Class SVM': 31,

"Supervised SVM': 94
}

models = list{accuracy_scores.keys())
accuracies = list(accuracy_scores.values())

plt.figure(figsize=(1@, 6))
bars = plt.bar(models, accuracies, color=['blue’,

‘red’, ‘green’, 'purple’])
for bar in bars:

yval = bar.get_height()

plt.text(bar.get_x() + bar.get_width()/2, yval - 3, f'{yval}®', ha="center', va='bottom', color='white', weight='bold")
plt.show()

100

Isolation Forest Random Forest One-Class SVM Supervised SVM

Figure 18 — Bar Graph for accuracy scores

Dot Graph to display precision scares for all 4 models
precision_scores = {
‘Isolation Forest': 3,
*Random Forest': 97,
*One-Class SVM': 28,
*Supervised SVM': 94

}
wodels = list(precision_scores.keys())
precisions = list(precision_scores.values())

for i, (model, precision) in enumerate(zip(models, precisiens)):

plt.scatter(model, precision, color='purple’)

plt.text(model, precision + 1, f'{precision}%’, horizontalalignment='center’, color='black’, fontsize=1e)
plt.plot{models, precisions, colors'gray’, linestyles'--*

plt.xlabel('Machine Leal
plt.ylabel(Precision (%)')
plt.title('Conpariscn of Model Precisions')

g Models')

plt.show()

Comparison of Model Precisions

100

Precision (%)
@
3

]

o
Isolation Forest Random Forest ‘One-Class SVM Supervised SVM
Machine Learning Models

Figure 19 — Dot Graph for precision scores

#heatmap to display the recall scores of the 4 models

data = {
"Model': ['Isolation Forest', 'Random Forest', 'One-Class SVM', 'Supervised SVM'],
'Recall’: [16, 97, 31, 94]

}

df = pd.DataFrame(data)

df.set_index('Model’, inplace=True)

plt.figure(figsize=(8, 3))

sns.heatmap(df, annot=True, cmap='coolwarm', fmt="g', cbar_kws={'label’': 'Recall Score (%)'})
plt.title('Recall Scores of Machine Learning Models')

plt.show()

Recall Scores of Machine Learning Models

Isolation Forest

Random Forest

Model

One-Class SVM

Recall Score (%)

Supervised SVM

Recall

Figure 20 — Heatmap for recall scores

Saving the preprocessed dataset with selected features to a new CSV file
preprocessed_file_path = r'C:\Users\aalaz\MastersProjectSource\AWID_preprocessedDataset.csv’
X_selected.to_csv(preprocessed_file_path, index=False)

print(f"\nPreprocessed dataset with selected features saved to: {preprocessed_file_path}")

Preprocessed dataset with selected features saved to: C:\Users\aalaz\MastersProjectSource\AWID_preprocessedDataset.csv

Figure 21 — saving the pre-processed data

References

References should be formatted using APA or Harvard style as detailed in NCI Library
Referencing Guide available at https://libguides.ncirl.ie/referencing

You can use a reference management system such as Zotero or Mendeley to cite in MS
Word.

Anaconda. (n.d.). Download Now. [online] Available at:
https://www.anaconda.com/download/success.

https://libguides.ncirl.ie/referencing

