

Configuration Manual

MSc Research Project

Cybersecurity

Abbas Abdur Rahman

Student ID: x23162821

School of Computing

National College of Ireland

Supervisor: Niall Heffernan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Abbas Abdur Rahman
……. ………

Student ID:

X23162821
………..……

Programme:

MSc Cyber Security
………………………………………………………………

Year:

2023/24
…………………………..

Module:

Research in Computing
…….………

Supervisor:

Niall Heffernan
…….………

Submission
Due Date:

12/08/2024
…….………

Project Title:

BehavioGuard: A Gesture-Based Authentication System for Mobile
Applications.
…….………

Word Count:

4098 19
……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Abbas Abdur Rahman
……

Date:

11/08/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Abbas Abdur Rahman

Student ID: X23162821

1 Introduction
Thus, the BehavioGuard project marks a major evolution in the concept of securing the mobile

applications as it uses behavioral biometrics to identify the gesture patterns of the user. This

unique solution aims at the problem of increasing requirements for safe and unobtrusive

identification, especially in cases where simple measures, such as passwords or fingerprints,

will not suffice. This configuration manual will enable you to understand and implement all

the settings of the BehavioGuard system in its entirety. It covers such areas as installation of

development environment, data gathering and preparation, feature engineering, model training,

and inclusion of a real-time machine learning model in a basic mobile application. The goal is

thus to make all aspects of the system effective, while delivering security measures to an

application, as well as making it integrate with the rest of the components without negative

effects on user-friendliness. This is a configuration manual that provides extensive details of

all the steps that need to be followed in order to deploy and incorporate BehavioGuard system

in a real-time mobile application. Starting from the initial state and establishment of the

development environment up to the fine-tuning of the integrated machine learning model all

the aspects of the configuration are included. This manual ensures that every single part of

Firebase such as the protection of data to the TensorFlow Lite model for real time, gesture

recognition functions in perfect coordination to deliver a stable, fluid and highly useful user

experience. Thus, by following the given guide, you will be prepared to install high-quality

security for the application that will increase user confidence and set a high bar for mobile

application security.

2 System Requirements
In order to obtain effective functionality of the BehavioGuard system, several requirements

both in the hardware and in the software should be met.

2.1 Architecture:
The accent in the design of the BehavioGuard system is made on unobtrusive integration of

mobile application protection with the usage of machine learning for identification of users by

behavioral biometrics. A few of them are largely integrated to each other with the aim of

recording, deciphering, and analyzing user gesture data. The front end of the system is the

mobile application through which the user communicates and the interaction data is captured

real-time using the gesture detection modules. These interactions are optimized locally before

data transmission for efficiency to the cloud services such as Firebase for secure data storage

and synchronization. The core of the solution is the machine learning layer that is fed with the

acquired data to authenticate users with the help of a neural network model trained in

TensorFlow and optimized in TensorFlow Lite. This model processes in real-time on the

mobile device hence the latency is kept to a minimum. There is also data security in the

architecture through data encryption and secure access to the data by the users in the system.

Consequently, with constant tracking and immediate decision making, the system is capable of

identifying behavioral shifts and immediately establish and maintain users’ authentication and

security. Sca-ability directly addresses the problems of construction through the use of cloud

services of Firebase cloud services to provide the needed capacity when users of the system

increases or add more features to the system.

2.2 Hardware Requirements:
As for the specifications of the device which should run the mobile application containing

BehavioGuard, the application is best used on a device with at least 2GB of RAM, and a CPU

speed of at least the ARM Cortex-A53. By such arrangement, it becomes easy and efficient to

perform the gesture detection operations as well as the model inference operations. However,

if the user plans to push the performance of his device especially for the most demanding and

intricate tasks, it is recommended that he has a device that has at least 4GB of RAM and

Qualcomm Snapdragon 855. These specifications will allow the app to process data input in

real-time, and make model prediction without lagging or stalling while performing the

authentication by keeping the integrity and responsiveness high.

2.3 Software Requirements:
In particular, the. AndroidStudio, TensorFlow, and Firebase are the fundamental pillars of

BehavioGuard for they build the solid software base for it. Android Studio IDE must be the

latest stable build, to support newer released Android SDKs and tools. Python 3.7 or later is

required to execute the machine learning scripts which the neural network models in the system

are derived from. Additionally, TensorFlow 2. x is needed to build the model and as well as

for converting it into TensorFlow Lite whereas Keras which is provided within TensorFlow,

makes the process of creating deep learning models faster. Firebase Services and

Authentication through FirebaseAuth and FirebaseStore is important for the app mostly when

it comes to signing in or signing up a user. Finally, the last but not the least, data preprocessing

and selection can be performed only if good preparation is done on the input data and for this

purpose libraries like Scikit-learn, NumPy and Pandas have been helpful.

2.4 Cloud Services:
One of the key elements of the system, thus, lies in the employment of the cloud services.

Firebase is also very vital in this kind of architecture; a user sign-in process with FirebaseAuth

is scorable, while real-time high quality data storage with FirebaseFirestore is scalable. Also,

these cloud-based solutions help to provide synchronization and updates for the data complex

and inputs coming from the users such as the gesture data across the devices. Therefore, using

the elements of Firebase, BehavioGuard has time-tested secure and fast authentication that does

not degrade even in conditions that can be critical in terms of network performance.

2.4.1 Table 1: Hardware Components

Component Specification Purpose

Smartphone/Tablet Android OS (7.0 or higher), Minimum 4GB RAM Device for running the BehavioGuard mobile application

Computer/Workstation Intel i5/i7 Processor, 8GB RAM, 500GB HDD/SSD Used for development, model training, and debugging

External Storage Device 64GB USB Drive or External HDD Backup and transfer of datasets and application files

Network Router Standard Wi-Fi Router (2.4GHz/5GHz bands) Provides internet connectivity for cloud services integration

Fingerprint Scanner USB or Integrated (optional) Comparison testing against traditional biometric systems

2.4.2 Table 2: Software Components

2.4.3 Table 3: Cloud Services

2.4.4 Table 4: System Specifications

2.4.5 Table 5: Model Specifications

3 Installation and Setup
The general implementing plan scope comprises the installation of the BehavioGuard system,

which is made of several procedures, including the configuration of Firebase, the development

environment, and the final feeding and training of the final Machine learning model.

3.1 Setting Up Firebase:
First and foremost, you need to create a Firebase project that will act as the backend of the

developed mobile app called BehavioGuard. This project is built in the Firebase’s web

interface, here you will authenticate your Android application thus allowing it to access

Firebase services. The next significant step is activating Firebase Authentication services to

sign in and register users without local storing of sensitive data. Firestore, Firebase’s NoSQL

Component Version Purpose

Android Studio 4.1 or higher IDE for developing the BehavioGuard mobile application

Firebase SDK Latest Enables cloud-based authentication and data storage

TensorFlow 2.4 or higher Machine learning framework used for training the model

TensorFlow Lite Latest Optimized version of TensorFlow for mobile applications

Python 3.8 or higher Programming language used for scripting and model development

Keras 2.4 or higher Deep learning API for building the neural network

Pandas Latest Data manipulation library used in preprocessing

NumPy Latest Numerical computing library used in model training

Firebase Authentication Latest Manages user sign-in and sign-up operations

Firebase Firestore Latest Stores user data and gesture patterns securely in the cloud

Jupyter Notebook Latest Interactive environment for running code and documenting experiments

Service Provider Purpose

Firebase Authentication Google Firebase Secure user authentication and management

Firebase Firestore Google Firebase Cloud-based database for storing gesture data and user profiles

Firebase Cloud Messaging Google Firebase Push notifications and real-time updates

TensorFlow Model Hosting Google Cloud Deployment and management of TensorFlow models

Cloud Storage Google Cloud Backup and archival of user data and model versions

Specification Requirement

Minimum Android Version 7.0 (Nougat) or higher

Minimum RAM 4GB (Device), 8GB (Development Workstation)

Storage Requirement 200MB (App Installation), 2GB (Model Storage and Data)

Internet Connection Required for cloud synchronization and authentication

Processor ARM Cortex-A53 (Mobile Device), Intel i5 (Workstation)

Battery Life Minimum 8 hours (for mobile device testing)

Screen Resolution 720p or higher (Mobile Device)

Component Specification Purpose

Neural Network Layers 3 Layers: Input, Hidden (128, 64 neurons), Output Structure of the model used for user authentication

Activation Function ReLU for hidden layers, Softmax for output Introduces non-linearity and computes class probabilities

Optimizer Adam Optimizes model parameters during training

Loss Function Sparse Categorical Cross-Entropy Measures model performance

Training Data 80% of collected data Data used to train the model

Validation Data 20% of collected data Data used to validate the model

Model Format TensorFlow Lite (.tflite) Format optimized for mobile devices

database, are used to store user information and shared array of gesture patterns data. When

faced with data such as users, gestures, as well as auth_logs, collections are made to ensure the

data is organized properly. Last but not the least, configuration file (google-services. json) is

downloaded from firebase and pasted in app folder in android studio to integrate the app with

the firebase service.

Figure 3.1.1 Code snippet Model Training

3.2 Development Environment Setup:
The most important step towards the setup of development environment is done through

downloading of Android Studio in which all SDK tools and emulator images has to be

downloaded in order to promote the development and testing. Python is installed, along with

all necessary libraries, with the help of which I organize dependencies in the virtual

environment. The BehavioGuard project is then checked out from the above URL and brought

into the local computing environment through Git, including all the files related to Android

programming and the Python scripts. Gradle which is the build tool used by Android Studio is

used to handle the dependencies of projects. It also involves the correct library management,

that is, correct referencing of the necessary libraries including the Firebase SDK and

TensorFlow Lite in the build configuration files including the build.gradl.

3.3 Dataset Collection:
The dataset for gesture recognition was gathered in a methodical approach where the use of
a mobile application which can record, different kinds of touch based gestures was installed.
The respective collection process was initiated by installing the application under test on a
range of devices and checking the permissions for touch and motion sensors. A further pool
of participants was then chosen to carry out a set of purposely designed swipes, taps and
other custom moves on the specific mobile devices.

Every participant was told to perform the gestures several times for them to capture the fact
that people may display differences in their movements. While making each gesture, the
application recorded a variety of information concerning the type of gesture, the time stamp

of the gesture, the starting and ending coordinates of gesture, velocities in X and Y directions.
This data was stored in a structured format of a table where each gesture was a record in the
database. The suite of collected data was further checked for the quality of data completeness
and accuracy before being finalized for training from the machine learning model.

3.3.1 Basic Dataset Parameters

 The dataset consists of the following parameters for each recorded gesture: The dataset
consists of the following parameters for each recorded gesture:

 Gesture Type: Enumerates the kind of gesture made, (for instance, swipe or tap).

 Timestamp: The specific time at which the action was filmed.

 Start X: The Y coordinate of the gesture’s beginning.

 Start Y: The Y coordinate of the first point where the gesture begins.

 End X: in ‘the End_X’ The X coordinate of the gesture’s ending point.

 End Y: The Y coordinate of the gesture’s ending point.

 Velocity X: The component of the velocity in the X direction of the gesture.

 Velocity Y: The magnitude of the speed of the gesture in the Y direction.

3.4 Model Training and Conversion:
Training of the machine learning model is an important part in the overall aspect of the

BehavioGuard system. This is facilitated by the model. Bat file that runs the respective py script

in the Python environment that is defined and configured. The script fits the neural network to

the gesture data that has been preprocessed through a set of parameters to yield the best

performance. After training is done, the model is saved in the TensorFlow format The

following is an example of the model architecture: The converter. After that, using the py script

the TensorFlow model is converted into TensorFlow Lite model format. This conversion is

necessary to prepare the model to be deployed for mobile apps, making it lightweight, and less

resource-intensive, and enables the mobile application to perform real-time predictions

adequately.

Figure 3.3.3 Code snippet Model Training

3.5 Android Project Configuration:
The subsequent step for the Android project setting is done after the machine learning model

is set up. This requires the project from which the BehavioGuard application is to be copied

into the Android Studio, and confirm the right dependencies are resolved. The settings of the

project are also Subject to revision, as the build options. Gradle files, to match by the current

version of the SDK. Layout files are adjusted to fit the design and give the interface a friendly

look while meeting the project’s objectives. This a smooth flow through the different

components of UI to enable the user easily to go through the gesture input and authentication.

4 Application Configuration
This mainly includes initial Firebase setting up which consists of the Firebase Authentication

app, organizing the Firestore data management, including the TensorFlow Lite model, and the

advanced UI polishing.

4.1 Firebase Authentication:
It harnesses the Firebase Authentication System which enables the use to register and also sign

in the application securely. This is done in MainActivity. java file, where FirebaseAuth is

declared and setup. In addition, error control for this user authentication process will also be

embedded top-notch so that even if there is network problem or false input the system will be

able to manage it. The authentication flow is heavily integrated with Firebase Firestore which

stores user credential as well as gesture data where each user gets their own data and thus can

be easily retrieved and is secured.

4.2 Firestore Configuration:
Firestore also has a capability of storing the gesture data and user profile data in a structured

and optimized way. Collections are maintained with respect to the user and each field also

identifies the user information such as gesture_type, coordinates, timestamp and user_id. This

can be to test real-time authentication that involves large amount of data and thereby indexes

are created on important fields to enhance efficient data searches. To protect this data, security

rules are put in place meaning that no other person can interact with or change another person’s

data without a proper identity. These rules are, therefore, reviewed and modified from time to

time based on the current need in the field of security.

Figure 4.2.2 code snippet for storing gestures data to firebase

4.3 TensorFlow Lite Model Integration:
The TensorFlow-Lite model is included in the integrated model for mobile deployment which

has been optimized for the same. This integration is performed in the MainActivity as it is

defined in the previous section. java file, where the model is downloaded and it further uses

TensorFlow Lite interpreter to load the model. Loading of a model should be made as

asynchronous to avoid any hindrance that may be caused to the main UI thread hence causing

the application to hang. Real-time processing of gestures is provided by a separate function

which takes user input data and passes it through the model and the results of the prediction

are returned. By integrating such a system, the latencies have been optimized and determined

to cause minimum delays hence parameterizing the app to be able to authenticate its users in

real time.

Figure 4.3.3 TensorFlow lite Model Loading code snippet

4.4 User Interface Configuration:
Some components of the application include, and are not limited to, the user interface, which

should be straightforward and interactive for the BehavioGuard application. MainActivity is

created in a way of initializing Firebase components and real-time gesture capture. The UI

provides interface components to instruct the users about how to make the gestures with

downstream visual feedback information of the recognition status. Such feedback is critical for

enhancing the user experience because users get a real-time confirmation of successful or

unsuccessful authentication efforts.

5 Running the Application

Running the BehavioGuard application involves a series of tests to ensure that all components

function as expected and that the system can accurately authenticate users based on their

gesture inputs.

5.1 Testing the Application:
The first thing which you have to do in order to test this application is to place BehavioGuard.

apk on some test device or, if you do not have physical device for testing, use Android Emulator

integrated in Android Studio. The application at first Setup should not show any error with

Firebase and any of the services such as Authentication, FirebaseFirestore etc should be fully

functional when the application is launched. Sign up and sign in features are tested so as to

confirm that multiple users can sign up and whether the data will be stored in Firestore in the

correct way. Once the user signs in, the app goes to the gesture capture screen where all the

user’s gestures are logged in real-time.

Figure 5.1.1 Authorized User Access Granted

Figure 5.1.1 Anomaly detected UI Automatically Logging Out in 5 sec

5.2 User Authentication Flow:
They drew the user authentication flow starting from time when the user logs in. I precise

touching movements as swiping, tapping and long pressing of your fingers, after which the

TensorFlow Lite model authenticates it. The concepts of identity comparison of such gestures

with the data previously saved in the app remains the key priority of the app as well. The match

involves calculation of a match percentage and the decision as to whether the current gestures

correspond to the stored pattern. The switching between the different states that include idle

state, capturing state, and the authentication state is intended to be swift, and without much

delay so that when the user is at the point of authentication, there will not be a long waiting

period.

6 Model Saving and Conversion
6.1 Saving the Model:
Once in a while in the process of successful training of the neural network model, the model

should be saved in TensorFlow format. This step saves the structure of the model and floats for

it, such that the trained model can be used each time without needed to be trained again. Saving

the model also helps in tweaking and improving the model so that developers can make

adjustments to the particular model with their different logging configurations without loss of

the core model.

6.2 Conversion to TensorFlow Lite:
The trained TensorFlow model is then converted to TensorFlow Lite which is pivotal for

deploying a model on a mobile phone. TensorFlow Lite is designed to be used in phones and

other similar devices and it has smaller models and faster conclusions. This procedure applies

quantization, whereby the precision of the model weights is lowered and results in a

considerable reduction of the model’s size, though accuracy is also slightly affected. The

resulting . tflite file is further incorporated into the load asset of the applications and can be

implemented in real time.

Figure 5.1.1 TensorFlow Model conversion code snippet

7 Application Integration
7.1 SignIn and SignUp Activities:
The SignIn and SignUp activities are developed using FirebaseAuth as it is easy to implement

and also it is secured. FirebaseAuth is responsible for handling of the user credentials such as

the email and password as well as Firebase authentication service for integration with

FirebaseFirestore where the user information and gesture patterns shall be kept. This setup

ensures that all the users’ data are well secured while at the same time ensuring that such data

can be easily retrieved especially when it comes to the authentication processes.

Figure 7.1.1 Authentications Code Snippet

Figure 7.1.1 Auth Code Snippet

7.2 MainActivity Implementation:
MainActivity is the main part of actual BahavioGuard application; it contains all initialization

of Firebase components and detecting/processing gestures. This activity records the user’s

gestures as they are performed and analyses them using the TensorFlow Lite model. The

gestures are then compared with stored data in FirebaseFirestore to check if the user is valid or

not. This process is made in a way that they optimise a lot of time so that users can have little

delay time while they are authenticating.

Figure 7.2.1 Code Snippet for capturing gestures for training the model

Figure 7.2.2 Code Snippet for capturing gestures of different gestures

Figure 7.2.3 Code Snippet for compares the new data with stored gestures data

Figure 7.2.4 Code Snippet for calculating match percentage between stored and new

gestures

Figure 7.2.4 Code Snippet whether two datasets matches

7.3 Real-Time Authentication:
This last point is one of the most important because through the real-time authentication the

app is constantly checking and validating user gestures. The Android system employs a

GestureDetector to capture input related to various gestures including measures like swipes,

taps, and long press to be processed. The TensorFlow Lite model is then employed for post-

gesture analysis, and in real time, the application determines the status of being authenticated

or not. It means that clients are monitored in real time and there is no possibility for an

unauthorized person to have access to the application, which is very significant.

8 Final Testing and Validation
8.1 Extensive Testing:
Substantial testing is thus made prior the last deployment of the BehavioGuard application,

testing that seeks to identify and correct any component faults, as well as testing that seeks to

determine the overall efficiency of the system in meeting the set accuracy and performance

standards. The testing process consists of checking the ability of the app to record and recognize

gestures, the accuracy of the TensorFlow Lite model predictions and functionality of the

Firebase support. In case there is a problem with a program or application during testing, it is

fixed by debugging and finally optimized so that users can have the best experience with the

final product.

8.2 Validation of Accuracy and Performance:
The effectiveness of the solutions given by the BehavioGuard system can be recognized when

the outcomes of the model are compared to the real user information. The validation process

to confirm such system involves the use of as many users as possible and numerous gestures

to confirm that the system can be able to identify the user well. Other key factors including

system response time, usability, and security are also audited to guarantee the system

corresponds to real-time mobile application systems’ stringent standards.

9 User Data Comparison and Security
9.1 User Data Management:
User data is stored and accessed when needed from FirebaseFirestore storage with the focus on

the date of registration. To address this issue, the system is built to warrant protection of user

data such that the unauthorized users cannot access any users’ data, but only the users with

Firebase Auth credentials. This setup guarantees that the system follows the right practices

concerning data management and security offering a surety of the privacy of the individual

data.

9.2 Gesture Comparison and Authentication:
This goes on as the system analyzes new gestures against the stored data with regard to the

tensorflow lite model to determine whether the gestures are in sync with the user’s defined

patterns. The system then assigns each gesture a match percentage, on which the identification

of the user, based on tolerance, is done. This comparison process is intended to be very precise

so that the system will be able to reliably separate the legitimate users from the impostors.

10 Maintenance and Updates
10.1 Ongoing Maintenance:
The general management of the BehavioGuard system includes constant updating of the

machine learning model, firebase settings and the app modules as well. As new data is acquired,

the model may have to be updated for the system to reflect the changes in the use patterns and

increase the efficiency of its performance. Firebase rules and permission settings should also

have to be set appropriately and have to be checked from time to time with the current security

standards.

10.2 Future Enhancements:
Possible future development of BehavioGuard includes having more inputs from several other

biometric indicators like gait, face or voice files, to enhance the protection level. Other possible

enhancements include, the adaptation of the system on low-end devices, the updating of the

UI/UX, and extension of the guidelines for more intricate authentication solutions.

11 Glossary
Behavioral Biometrics: The type of user identification that takes into account the user’s
signature in the behaviour such as click, mouse movments, typing pattern on the keyboard.

Gesture Recognition: Communicating with the help of devices in the informal language with
materials that can imitate the human gestures.

Neural Network: An imitation of the human mini-brains called artificial neural networks
specially designed to acquire patterns.

TensorFlow: A machine learning toolbox, initiated by Google and is opensource.

TensorFlow Lite: The new version TensorFlow mobil specially designed for the mobile and
portable operating systems the most familiar of which is Android.

ReLU (Rectified Linear Unit): Non-linear function which is commonly used in the hidden layers
of the neural networks to present non-linearity.

Adam Optimizer: A method that is used in training of neural networks and in instance of
adjusting learning rates.

Firebase: Mainly involve in the provision of company and service mainly in the provision of
cloud solutions for mobile and web applications.

Firebase Authentication (FirebaseAuth): An application that relates to the processes of users’
identification in the course of operating the service.

Firebase Firestore: An Example: A NoSQL cloud database for data depository and real time
synchronisation of the data.

Preprocessing: The procedure in data preprocessing where a noble feature is removed, or
missing values are filled in the raw data.

Model Inference: Where there is the use of a trained model on new data in other to predict
something or make some form of a forecast.

Latency: This is the time to complete a round in a system from the input and to the output.

Swipe Gesture: A move with the hand and a finger on looking at the touch screen as a
controller.

Tap Gesture: A light touch on an object usually of a screen with an aim of choosing or changing
something.

12 Acronyms
ML: Machine Learning

 AI: Artificial Intelligence

 ReLU: Rectified Linear Unit

 API: Application Programming Interface

 SDK: Software Development Kit

 ID: Identification

 NoSQL: Not Only SQL

 CSV: Comma-Separated Values

 UI: User Interface

 RAM: Random Access Memory

 HDD: Hard Disk Drive

 SSD: Solid State Drive

 OS: Operating System

 IDE: Integrated Development Environment

 JSON: JavaScript Object Notation

