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Implementing Information theory techniques for 

detecting multi-vector DDoS attacks in SDN 

Vishnu Arun – 22224785 

Abstract 

Networking architecture has seen a shift in solutions since the introduction of Software 

Defined Networking (SDN). This update in technology has introduced opportunities to create 

solutions for problems that existed in the traditional realm, while bringing in new avenues of issues 

that didn’t exist prior to its adoption. The proposed research is done on the DDoS attack detection 

solutions that are implemented in SDN networks in the form of programmable SDN controllers. An 

attention-grabbing solution presented for tackling this utilizes Information Theory for real-time 

detection of DDoS attacks on an SDN network. The study is conducted on this subset of solutions, 

compared to other widely researched detection techniques such as machine learning and signature-

based detection solutions and it offers an interesting yet effective take on protection against complex 

DDoS attacks. The study proposes a novel system utilizing information theory techniques to detect 

combinations of different complex DDoS attack patterns created by volume generation manipulation. 

The results obtained from testing the suggested attacks on the simulated network show the detection 

capabilities of the system, which are backed up by measuring consistent threshold deviations in values 

based on entropy that are used in the mechanism, leading to successful detection in network changes, 

coupled with detection times for different attack patterns carried out in the study.  

 

1) Introduction 

Software Defined Networking is a form of networking architecture that is 

systematically gaining traction as more and more service domains are adopting it due to the 

undeniable benefits that it brings to the table. SDN is seen in action when the hardware nodes 

in a network which is known as the data plane in SDN terminology, are separated from the 

software that controls it, which means that the data plane is only responsible for data 

forwarding activities. The component known as the controller communicates with the 

application plane, which runs different networking programs that are now abstracted and 

designed in high level programming languages to suit any desired networking use cases. SDN 

is seen in huge effect mainly in data centers and is a chosen design for connecting on-premise 

infrastructure to the cloud because of the ease of access that it provides in setting up the 

hardware irrespective of its vendors. This has resulted in multiple cloud service providers 

offering their own SDN software as part of their services. 

Traditional network security has relied on signature-based techniques such as Intrusion 

Detection Systems (IDS) and Intrusion Prevention Systems (IPS), which was in effect way 

before the introduction of SDN concept. These systems are used at present in both traditional 

network and SDN contexts, but are limited in providing protection against advanced 

persistent threats in the SDN space, as they work by detecting known attacks instead of newer 

more complicated attack patterns that are yet to be identified (Shirsath et al., 2024). In a SDN 

environment, attacks are therefore detected using different detection mechanisms that are 

deployed on the controller, which are programs that utilize unique software-based solutions 

other than signature-based techniques. Since the architecture is relatively new when 
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compared to the traditional networks, the entire structure has a multitude of new security 

vulnerabilities. The documented research on the security issues of SDN is abundant, yet 

incomplete due to the complexity of the attacks that presently exist. 

A DDoS attack is used to deplete the resources of a target system, making its services 

unavailable. The attack is carried out by an attacker by using botnets, which is a collection of 

compromised devices. These devices can be anything, from computers to IoT devices that can 

transmit data, and the attacker can program them to send useless traffic to a target, which 

depletes its resources such as bandwidth or processing power. DDoS attacks are classified 

mainly as volumetric, protocol or application based. Volumetric attacks are carried out by 

mass forwarding of traffic via the aforementioned botnets, protocol-based attacks are carried 

out by exploiting inherent vulnerabilities that are present in different network protocols that 

are in use to transfer data between systems, and application-based attacks leverage the 

vulnerabilities that are present in the application layer of a web service which can be used to 

spam requests. In context of SDN networks, DDoS attacks can be distinguished on the basis 

of the planes of the architecture, since the components in the network are structured 

differently.  

1.1) DDoS attacks based on SDN architecture 

As mentioned earlier, a SDN network structure has three planes; Application, Control and 

Data planes. This is the key representative characteristic of the architecture, as it refers to the 

migration of all of the network data control and intelligence to a centralized software-based 

control, which functions on the over-arching applications running network functions that can 

be designed using high level programming languages (Camilo et al., 2020). The components 

in each plane communicate with each other using different SDN based protocols that are used 

in the interfaces between them. The protocols that are being used for implementing SDN 

networks in the industry are varied at present as different vendors come up with their own 

protocols integrated with their hardware products. A lot of the research done in SDN 

networks is implemented on OpenFlow protocol for communication between the nodes and 

the controller. (Singh and Behal, 2020) distinguishes the security problems within the SDN 

structure according to the planes that have the vulnerabilities within them. They go in depth 

on the types of DDoS attacks that are implemented based on the target plane and what 

vulnerability within it is exploited. The same method of dividing the attacks is used for 

understanding the topic focused on in this thesis (Figure 1: Security Issues in SDN 

Application plane: The application layer is the part of the SDN architecture that is used for 

deploying customized SDN applications which can be developed as per requirement. 

(Jimenez et al., 2021) discussed a variety of security issues on the entire SDN architecture in 

the survey, in which persistent issues on the application layer are determined to be mainly 

malicious apps or apps which have pre-existing vulnerabilities in them. Applications are 

implemented on an SDN network by using different APIs or programming languages, that 

communicates via the northbound interface. Most of these apps lack authentication and 

access control mechanisms, and can be maliciously accessed and used to implement DDoS 

attacks on the controllers, amongst other attacks.  

Control plane: The SDN controller can be thought of as a “brain” for the network, and is 

most sought-after target for different types of attacks as it can be a single point of failure for 

the entire network if the attacks succeed. In the survey paper focusing specifically on the 
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control plane and interfaces that surround it, (Zaheed et al., 2023) discusses on the multitude 

of vulnerabilities that pose on the SDN controller. The authors give an exhaustive list of 

different attacks that target the northbound, southbound and the east-west controller 

interfaces, which all connect to the controller itself, and are beyond the scope of this study. 

However, the main takeaway from the paper is that DDoS attacks are the biggest concern 

when looking at the attack scenarios on the control plane. The attack taxonomy depicted in 

their paper shows DDoS attacks are mainly targeting the controller itself and the southbound 

interface. On the controller, DDoS attacks are executed by methods such as using packet-in-

flooding, saturating the controller with application requests sent by exploiting the vulnerable 

or malicious apps as discussed in the application plane section, and flow table flooding.  

Data plane: The data plane comprises of the hosts, and data forwarding elements that can 

perform SDN functions. The nodes in the data plane are just regular endpoint devices that are 

connected to each other via the SDN enabled forwarding devices that form the network.  On 

the southbound API that is used for communication between SDN enabled devices and the 

controller, packet-in-flooding the switches and congestion of the API itself is done to execute 

DDoS attacks that target the network. DDoS attacks are also carried out by spoofing the SDN 

switches, or by flooding the switch buffer to saturate its memory. 

 

 

Figure 1: Security Issues in SDN architecture 

Research on DDoS attacks in SDN based network designs is a very vast field as SDN 

offers the opportunity to program the software-based controller with a variety of detection 

mechanisms which are effective instantly once deployed. Multiple vendors have their own 

SDN solutions with their own security features available, however much of the research done 

on implementing different experimental solutions, and the DDoS attacks themselves of the 

SDN data plane network is conducted on simulations that use the OpenFlow protocol, which 

is one of the first southbound interface network protocols. It is used in OpenFlow enabled 

switches and works based on the instructions obtained from an OpenFlow enabled controller 

(Patel et al., 2023). The labs for simulating SDN networks and testing of DDoS attacks that 

are utilized for conducting research use these OpenFlow enabled simulators and controllers. 
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1.2) Motivation for the study 

DDoS detection solutions in SDN that hve been implemented until the time of creation of this 

study are documented in the survey (Wang and Li, 2024) and is mainly divided into three 

categories; Information theory metrics, machine learning and deep learning techniques. 

Machine learning and deep learning techniques for detection are extensively researched upon 

at the moment and is not the focus of this project. Information theory techniques, mainly 

entropy-based detection solutions, work in real time by calculating statistical values based on 

anomalous behavior of different features of the OpenFlow flow table variables and detect said 

anomaly by comparing it to the value that is obtained during regular traffic simulation. 

Presently there are multiple variations of entropy-based techniques that work either in 

isolation or as part of a hybrid mechanism with machine or deep learning techniques. The 

original motivation of this study is to implement Shannon and Renyi entropy, two important 

information theory techniques, in order to detect a multi-vector DDoS attack scenario that 

targets a host on the SDN network. The novelty of the study originates from implementing 

both the entropy techniques together as well as testing of the proposed model with complex 

DDoS attack patterns that gives insight on the effectiveness of the mechanism.  

1.3) Research Objective 

It can be seen from the introduction of this thesis and the following literature review section 

that information theory techniques are being extensively looked into; particularly for 

detecting attacks in the data plane in a SDN setup. It can also be seen that certain aspects are 

overlooked within the present research which accredits the objectives that are the focus of 

this study that are listed below: 

DDoS attack complexity based on packet rate manipulation. 

Modifying existing Entropy/s techniques for threshold detections for overlooked complexity 

of DDoS attacks. 

1.4) Research Question 

Can an SDN controller be programmed to detect both high-rate and low-rate DDoS attacks by 

using different Entropy methods for a case of multi-vector DDoS attacks? How does the 

controller behave when the specified DDoS attacks are implemented additionally with burst 

attacks as in a multi-vector attack format that further resemble real time attacks? 

Can the selected entropy-based detection mechanism perform its duty during different 

combination of these attacks during the trials? 

 

2) Related works 

The section gives a description of the papers studied for getting an understanding of the 

current research that has been conducted on entropy-based mechanisms for DDoS attacks, 

specifically targeting the control and data plane. The related work section is intended to 

clarify the basis of the decisions chosen for designing the trials conducted in this project as 

mentioned in the research objective, based on the prior work done for similar topics. The 

initial proposal of this project was inspired from DDoS detection solutions for a SDN 
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network, which was a very broad area of research. The survey papers that give an overview 

on security vulnerabilities and research done for SDN networks go in depth on the DDoS 

attacks of the different planes, which has been discussed upon in the introduction section for 

this study. The survey papers have listed multiple research papers on information theory 

detection solutions for different types of DDoS attacks on the SDN network, including 

Shannon and Renyi entropy. The basis of this project is derived from critically analyzing the 

work done in these research papers. 

2.1) Focus on testing attack scenarios 

(Sumantra and Gandhi, 2020) simulate a SDN network and execute three types of DDoS 

attacks, a TCP-SYN flood attack, a UDP flood attack and a slow HTTP attack. A TCP-SYN 

flood and UDP flood attack target the victim host in the network by saturating the data plane 

network link that the victim shares with the OpenFlow switch. The third attack they chose to 

simulate was a slow HTTP attack on one of their victim hosts that was simulated to function 

as a web server, which led to the server’s CPU exhaustion. The detection solution proposed 

was based on Shannon Entropy, and the resulting mitigation times were given for each attack. 

Anomalies were detected based on the network features that change during the attacks, which 

are source IP addresses, TCP flags, Number of packets and Number of requests. The attack 

mitigation time measures the controller’s time requirement for processing the entropy values 

and running their mitigation solution upon detecting an attack. The study did not implement a 

multi-vector attack scenario, which meant coupling of DDoS attacks together targeting 

multiple systems, which leaves room for experimentation. 

A suitable outline for the experimentation for this research to be conducted is obtained 

from (Singh and Behal, 2021), where three entropy calculation techniques; Shannon, Renyi 

and Jensen-Renyi Divergence are used, and compares them for a high-rate and low-rate 

DDoS attack. However, no specifications were given on the type of DDoS attack, and there 

was no explanation on which features were particularly seen to have changes in its entropy 

values which led to the detection of the attacks. The attacks were also conducted separately, 

without the trials for a multi-stage attack scenario and comparisons were done based on a 

detection rating system of their own design, where it was compared to a dataset as well as a 

synthetic traffic dataset for analysis. The experiments concluded that JRD performed better in 

detecting both low and high-rate attacks, with a better detection and precision rate. Their 

study did not involve utilizing the entropy techniques in tandem to study on how a combined 

detection solution would perform when the attacks are executed simultaneously, and leaves 

room for future work. 

The testing attack scenarios were explained with a breakdown of the detection 

mechanism used by authors (Asgari and Akbari, 2022) for their implementation of Shannon 

entropy to detect UDP, ICMP and TCP-SYN Flooding attacks, which gives an insight into the 

experimentation methodology that is used in most of the papers that conduct research on this 

topic. The detection mechanism they proposed involves two modules, a learning and a 

detection phase. The regular entropy values get determined during the learning phase of the 

simulation by calculating a threshold value under the assumption that the topology does not 

get affected. The detection phase compares the attack entropy values to the pre-calculated 

threshold. The mitigation is implemented by enforcing a hard or idle timeout on the switches, 

since the attacks used spoofed source IP addresses. Each of the attacks is carried out at 
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different intensity levels, and results declare the accuracy and the False Positive rates for each 

of them. The paper leaves room for further work in the form of extending the algorithm for 

detecting DDoS attack categories themselves, but overlooks the possibilities of multiple 

attacks targeting the network simultaneously. 

In the papers by (Zhang et al., 2023) and (Shirsath et al., 2024), both discuss Renyi 

entropy to detect a DDoS attack of varying traffic levels in a simulated network. The papers 

discuss the α value that is used in Renyi entropy as a coefficient, and gives an understanding 

of its use in detecting more sensitive changes to the network variable values which is 

otherwise tougher to detect. (Zhang et al.) calculate the entropy values by only considering 

the source and destination IP addresses in order to detect a high-volume flooding DDoS 

attack which was not explained in depth. The attack was also conducted in different levels, at 

25 and 75 percent, and confidence interval was calculated which was used as a tool for 

determining the false positive rate, which was found to be 0. (Shirsath et al.) goes into depth 

on the relation between Shannon and Renyi entropy, and proposes a multi-stage detection 

system coined as SYNTROPY, for TCP-SYN flooding attacks. A dynamic threshold entropy 

value mechanism is used for updating the values for a fine-tuned time window. The 

experimentation was carried out by deploying different Datasets in the Ryu controller and 

results were compared to that of another detection mechanism called SAFETY, another TCP-

SYN flood detection mechanism based on Shannon entropy from (Kumar et al., 2018) to 

which they concluded with their proposed solution outperforming the former in metrics such 

as CPU load, Detection time and Confusion metrics. 

2.2) Focus on comparing Entropy techniques 

(Tseng et al., 2018) proposed a solution that can secure application deployment in SDN, 

where the controller was divided into two parts for performing both data plane and 

application plane functions. The application plane controller part is designed with an updated 

policy engine that runs on a sandbox outside the controller to provide a secured 

communication to defend against resource exhaustion attacks which is a type of DoS attack 

on the controller of the SDN network. The authors implemented this attack along with 

malicious command injections or API abuse attacks. DoS attack from a malicious app is not 

to be confused with application layer attacks in a general DDoS context as SDN applications 

use different APIs for running their apps. 

(Swami et al., 2021) experiments with a statistical analysis method called a Z-score in 

order to detect spoofed TCP-SYN flood attacks on a SDN network emulation. The statistical 

measure is used to detect an attack and is used with two different tables of values, one for 

calculating the score by taking in the feature variables of the network and detecting spoofed 

IPs and other is used for storing the flagged IPs. The the authors have explained a unique 

mitigation scheme and the details on its steps. The paper proposes a model where both the 

detection and mitigation are compiled into a single component that is run on a controller, and 

results are measured based on the bandwidth usage, the CPU usage and response time after 

the blacklist is used to mitigate the attack by blocking the stored IPs.  

(Valizadeh and Niar, 2022) implement a larger SDN network for their testing and uses 

Shannon entropy, along with another determining method that they proposed called PWI, in 

order to detect DDoS attacks that are carried out in multiple configurations. The attack is 

performed in repetition with differing attack scenarios, which are configured based on 
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increasing numbers of attacking hosts and victim hosts, and shows that the entropy detection 

solution fails to deliver when multiple victims are under attack, however their proposed 

solution were claimed to deliver results. Their solution is implemented in a separate 

controller, which receives the network traffic information and their proposed addition to the 

initial entropy detection finds success in detection when there are increasing number of 

victims. The authors have compared their technique only with detection based on Shannon 

entropy, along with only performing a single type of DDoS attack.  

(Van et al., 2022) applies a threshold method that is dynamically updated during the 

traffic run in the simulation. The value is calculated by taking Shannon entropy values for a 

time window, then adding the average entropy and the standard deviation of the entropy for 

the given time window. The DDoS attacks are carried out in different rates, different volume 

of attack traffic, and the results were established according to the response times that were 

different for different levels of attack rates as well as coefficient values that were used for the 

standard deviation. The study offers an alternative approach to implementing Entropy along 

with statistical measurements, and focuses on the topic of early detection solutions for 

network attacks. The simulation is carried out with different attack rates at 25, 50 and 75 

percent attack strengths, essentially comparing the threshold values at static assigning and 

their proposed dynamic assigning mechanism. The entropy detection solution does not 

consider for scenarios of multiple attack rates, and specifically low-rates of attack traffic. The 

dynamic threshold mechanism is not an entropy-based technique, but it is used for detecting 

low-rate attacks successfully. 

A detection technique based on φ-entropy is discussed in the paper by (Li and Wu, 2020), 

which is another alternative proposed to enhance the sensitivity of the entropy value for the 

intensity of the DDoS attack simulated. The φ-entropy works by utilizing the hyperbolic sine 

function to adjust the entropy sensitivity, and is explained in depth in the paper. The 

comparison of the values obtained from this entropy function is compared to the Shannon 

entropy for a DDoS attack simulated at different levels of intensities, collaborated with 

different values of the tuning parameter of the function. The testing proved that higher 

intensities of attacks lead to stronger fluctuations in the entropy values. The idea of 

comparing different entropy values can be observed in this study, however the yielding values 

were not tested against different types of attacks, thereby limiting its use cases. This leaves 

room for implementing the entropy along with other information theory techniques; however 

the particular entropy method discussed in the paper is not the focus of this study. 

2.3) Literature Review Summary 

The different entropy-based detection solutions proposed in the reviewed studies conduct 

their testing with some level of packet-rate variations for displaying the metrics of their 

detection models and other factors, however it can be noticed that packet-rate is not 

considered as a definitive method for inducing complexities in attack scenarios, unlike the 

ones seen in abundance in real networks. The detection techniques used are varied in the 

studies where entropy techniques are utilized with different approaches in their proposed 

solutions. The solution proposed in this study tests the Shannon and Renyi entropy values in a 

novel mechanism for the relevant overlooked complexity of packet-rate based attack patterns. 
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The detection solution implemented in this study is tested on an extensive level of attack 

patterns based on this oversight with the intention to gather more insights on how the newly 

designed detection mechanism built on the basics of entropy behaves to this added challenge. 

3) Research Methodology 

Based on the previous section, it can be established further that information theory techniques 

are being sought after for developing logical solutions with reasonable computational 

requirements for defense against DDoS attacks in an SDN environment. It is also evident that 

a lack of attention is given to the complexities of DDoS attacks that can be simulated while 

testing out the proposed solutions. The research methodology is established based on the core 

procedure that were used for conducting tests in multiple papers that were studied.  

The section provides an in-depth description of the components that will be used 

throughout the study, that is setting up the tools used in creating an OpenFlow enabled 

network topology, and the controller based upon the research papers reviewed as a test-bed 

for running SDN enabled applications in a controlled environment. The focus of the research 

problem is worked on using an SDN controller that will be connected to the network via the 

OpenFlow southbound API, which will be programmed to run the proposed detection logic. 

Once the detection component is implemented on the controller which can then be used to 

carry out multiple testing scenarios, the network can be populated with regular internet traffic 

in order to establish the entropy values that can be considered as threshold values used for the 

purpose of setting a limit. The simulated network will then be utilized for performing DDoS 

attacks, which will be used for testing the deployed detection mechanism, in increasing 

complexities that are seen in multi-vector DDoS attacks. 

3.1) SDN network simulation 

 The network simulation for this project is done on Mininet, which is a free python-based 

software tool that allows the creation of virtual networks using virtual network links and 

virtualized server creation technology available on Linux platforms. A considerable number 

of the research papers utilize Mininet for testing out their experiments. This virtualization 

feature is called a network namespace which is used for providing a process that runs on the 

Linux kernel with a unique network interface and other network components such as routing 

or ARP tables, and are then connected using virtual ethernet pairs. The software is almost 

entirely developed on Python, with a little bit of C, and comes with a GUI tool called 

MiniEdit that can be used to visually design complex network topologies and export it as a 

Python script file. 

3.2) SDN controller 

SDN enabled controllers are programmable frameworks that can be used to develop virtual 

network functions in the form of “components” for different requirements. Mininet is pre-

installed with a default OpenFlow controller but it does not provide sufficient functionality. 

Multiple open-source controllers such as OpenDaylight, ONOS, Ryu, Floodlight and POX 

are extensively used in enterprise network services and research. The most commonly used 

controllers based on the papers seemed to be either POX or Ryu. Excluding commercial 

focused controllers and focusing more on controllers that are used for conducting research, 

and by taking into consideration of the controller chosen by multiple research paper authors 
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that were referenced, I decided to use the POX controller for carrying out this study. In a 

study by (Sinha et al., 2023) four different open-source controllers were studied upon for the 

purpose of its behavior in response to DDoS attacks. A comparative testing of the open-

source controllers listed above excluding ONOS, were subjected to DDoS attacks of multiple 

types were carried out to study the impact on their performance without implementing any 

detection mechanism. The studies concluded that the POX controller was negatively 

impacted by DDoS attacks that used spoofed source IP, MAC Addresses and destination IP 

addresses, which led to the selection of the type of attack to be simulated for effective testing 

of the proposed detection solution in this study. The controller behavior is gauged by the 

authors through the utilization of its CPU and memory bandwidth resources during the 

instance of a simulated attack. 

The POX controller is a lightweight open-source framework that is entirely designed 

in Python, and has a good baseline collection of virtualized components which is intended to 

be used as starting grounds for developing custom solutions, making it ideal for the purpose 

of research. It is modified with the custom designed detection logic based on two entropy 

calculation techniques, Shannon and Renyi entropy, in order to detect fluctuations in the 

network feature variables. 

3.3) Simulation of normal traffic 

Once the lab is created for testing, the calculation of the different entropy values is to be 

carried out for regular simulated network traffic by using a custom python script that 

generates internet packets from random source IP addresses. The script is designed for 

simulating traffic within the Mininet network akin to an idle network with randomized 

packets being sent without any patterns. 

3.4) Simulation of DDoS attacks and testing  

The Mininet simulation is subjected to a high-rate UDP flood DDoS attack that targets hosts 

in the network. Further testing is then carried out by simulating another UDP flood attack, but 

as a low-rate attack which would be harder to detect, then creating multi-vector scenarios. 

The experimentation result is to be then recorded and analyzed in the later sections of this 

study, with the objective of achieving the goal of understanding the detection capabilities of 

the entropy techniques during a multi vector DDoS attack, thereby providing clarity in the 

research gaps discussed. The testing rounds are to be analyzed with a clear explanation of the 

results at the end of this study. 

3.5) References to previous works  

The papers studied for this project include a structure for the steps carried out for testing out 

each of their proposed solutions. The research methodology for this study can be explained 

using the traditional waterfall method for complete visualization. 
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Figure 2: Waterfall Methodology 

4) Design Specification   

4.1) Designing the network topology  

The network topology is designed using MiniEdit, and the script is submitted with the 

artefacts. The network topology can be connected to the POX controller by specifying the 

controller’s network details in the topology script. This enables the controller to be 

implemented remotely on another system as well. However, it has been deployed in the same 

virtual machine for ease of use in the study. As seen (Figure 3: Network Topology), the 

controller is connected with two Open vSwitches that are connected to each other. Open 

vSwitches are functioning on the Linux VM kernel since the switch class is set to 

“OVSKernelSwitch” and utilizes its resources for better performance. There are 12 hosts 

connected in the network, 6 hosts to each switch. The network links are customized by 

utilizing “TCLink” (Traffic Control Link) a class in Mininet, to add some extent of realistic 

network features such as bandwidth, packet loss and delay values between host to host, host 

to switch and switch to switch. The simulated topology is usually ideal for research setups for 

testing and is commonly found in real life in small businesses and educational networks. The 

topology was chosen because of feasibility reasons of running the simulation on the system 

without compromising the resources, as it would be needed for simulating DDoS attacks. 

 

Figure 3: Network Topology 
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4.2) Detection mechanisms 

a)  Shannon Entropy 

Entropy by its definition, is the measurement of uncertainty within a system. In information 

theory, entropy is utilized to understand the randomness within any variable, and is measured 

in bits which is binary. In the context of the detection mechanism, entropy is utilized for 

detecting changes in the probability distribution of the packets received by victim IP 

addresses during a DDoS attack, since it will fluctuate significantly. Two mathematically 

related information theory techniques are considered for the detection solution, Shannon and 

Renyi entropy. Shannon entropy was introduced in 1948 by Claude Shannon (Shannon, 

1948), and defined the formula for calculating Entropy(H) for a discrete random variable(X) 

with outcomes for it (x1, x2, x3, …xn) and its probability distribution P(X) as- 

 𝐻(𝑋) = −∑𝑥=1
𝑛 𝑝(𝑥𝑖)𝑙𝑜𝑔2𝑝(𝑥𝑖) 

In the context for detection, the random variable would be the destination IP addresses, and 

the probability distribution is calculated for the packets received for each of them. Higher 

packet counts for any IP would be recorded in the distribution, which leads to a change in the 

Entropy. Shannon entropy has been extensively proven to detect high volume DDoS attacks 

in a number of previous studies. 

b) Renyi Entropy 

Renyi entropy is a generalization of Shannon entropy, created by Alfred Renyi in 1961 

(Renyi, 1961). The entropy measure introduces an additional parameter alpha(α), which is 

used to obtain a spectrum of entropy values, that give useful insights to different aspects of 

the probability distribution. The Shannon Entropy is included in the list of Renyi entropy 

values for alpha as one of the special cases, where α equals 1. The entropy is calculated by 

the formula for the same destination IP address distribution P(X) as- 

𝐻𝛼(𝑋) =
1

(1−𝛼)
𝑙𝑜𝑔2(∑𝑥=1

𝑛 𝑝(𝑥𝑖)
∝), where α is a finite positive real number. 

The entropy values at different values of the order α gives us an insight into the properties of 

the distribution. This is possible as the parameter is used to define the entropy calculation’s 

focus on different parts of the distribution itself. Therefore, Renyi entropy is used to find out 

traits about P(X) by tuning α. There are a few special cases of α which gives us distinctive 

properties of the distribution. For the detection module’s context, this can be utilized to find 

out information about anomalous patterns of the packet distribution. 

When α = 0, the entropy is the number of the non-zero probabilities (Hartley entropy). 

When 0 < α < 1, the entropy can be used to detect variables with low probability distributions 

in the collection. This is the main area of tuning that can may prove useful in detecting low-

rate attacks, especially when there are multiple targets. 

When α = 1, the entropy converges to Shannon entropy due to approaching indeterminate 

fraction. After processing the limit of the equation as α reaches 1, we get the equation for 

Shannon entropy. 
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For α > 1, Renyi entropy values are more sensitive towards the IP addresses with very high 

probability distributions.  

When α = 2, it magnifies the values of higher occurring probabilities as it squares the 

probabilities. In the study’s context, this provides inadequate relevance. 

4.3) Combined custom detection using Shannon entropy, Renyi Entropies 

Entropy values are found to be less reliable when packet-rate decreases or number of targets 

increase. Renyi entropy at α = 1.5 is more sensitive and deviates further when attack is 

targeted towards one or a few victims, and always deviates more than Shannon entropy. The 

first detection threshold is obtained as: 

Ratio1 = Renyi entropy (1.5)/Shannon entropy                                                          

Renyi entropy at α = 0.5 deviates more for low probability events, such as lower packet 

distributions to IP addresses with low activity. This can be utilized to detect attacks targeted 

at systems which don’t receive as much traffic compared to the rest of the network, as well as 

attacks targeting multiple targets. The ratio can be defined as: 

Ratio2 = Shannon entropy/Renyi entropy (0.5)                                                       

These ratios can be utilized to compare the deviation of the Entropy values for different 

attack patterns, and can be used to determine threshold values that would help in its detection. 

The ratios are calculated in this way to keep them between the range of 0 to 1, which makes it 

easier for detecting anomalies. The average of the ratios is calculated after collecting them 

three times for a current(c) estimation and any deviations in the entropy ratio is compared 

with the previous(p) calculated value, which gives us a difference value. This is done using 

the deque datatype in Python. The difference value is calculated, and then utilized as a flag. 

The equations are: 

Average ratio = (Entropy ratio)1 + (Entropy ratio)2 + (Entropy ratio)3 /3 

Difference = (Average ratio)c – (Average ratio)p … if  c < p 

4.4) forwarding.l3_learning 

 The POX controller is available with a decent number of components to get started. 

The controller consists of a script called Forwarding.l3_learning, which is used for carrying 

out Layer 3 learning switch functions. The script is used for prototyping as it has the 

necessary key features of a Layer 3 network device, upon which additional custom functions 

can be tested. The switches in the topology send every new packet that they don’t have 

instructions of, to the controller for processing by utilizing the “packet_in” function of the 

controller, which contains the detection mechanism written into the script itself. 

The learning phase of the algorithm can be visualized with the help of the flow-chart given 

(Figure 4) 
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A defaultdict variable is utilized 

by the PacketIn function of the POX 

controller to record incoming packets that 

are created from the simulated network 

traffic. This will help in keeping count of 

the number of packets arriving at each 

distinctive destination IP address. The 

learning process comprises the collection 

of this network information and 

executing the entropy calculation 

mechanism, which is the main part of the 

detection process. This is active during 

the entire duration of incoming network 

traffic. The entropy calculation is started 

at a periodic time interval during this 

learning phase, set at 20 seconds. The 

defaultdict variable is also updated with 

packets using OpenFlow stats request 

functionality, however this is used at a 

longer interval due to it’s computational 

load on the controller. 

Figure 4: Learning phase flow-chart 

 

4.5) Network traffic simulation tools and scripts 

a) Normal Traffic 

The SDN network is populated with normal UDP packets generated using a script that 

assigns randomized source and destination IP addresses within the designed hosts. This is 

done by utilizing Scapy and randrange. The normal traffic is active throughout the testing 

phase in the study, as it provides a base network entropy value to which malicious traffic is 

tested. The different attack patterns are then conducted alongside this traffic, which would 

test the detection mechanism. 

b) Attack Traffic 

A spoofed UDP flooding attack is conducted for attacks with a custom script that uses Scapy 

as well. This script is used to generate spoofed source IP DDoS attack traffic UDP packets at 

different packet rates and is also used for the purpose for multiple-victim targeting.  

c) Additional attack 

An additional attack is conducted along with spoofed UDP flooding using burst traffic in 

order to test the proposed multi-vector attack scenarios. The UDP flooding attack script is 

used to generate burst packets as well, creating rapid segmented attacks along with the 

flooding attacks carried out.  
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The detection phase of the algorithm is described in the following flow-chart (Figure 5). 

Once the time window is met, the entropy calculation is done on the data in the defaultdict 

variable. The probability distribution is calculated for the IP address and their respective 

packet counts. Three consecutive entropy values are then stored based on this probability 

distribution. The high-rate and low-rate averages are calculated, and their respective 

differences to their previous values are recorded as well. The thresholds are determined and 

compared to during the testing phase of this study.  

 

 

 

Figure 5: Entropy calculation flow-chart 
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The Implementation cycle used in the next section can be visualized with the flow-diagram: 

 

Figure 6:  Implementation cycle 

5)  Implementation 

The testing trials are carried out on a VirtualBox virtual machine (VM) running a Linux 

Ubuntu 20.04.6 LTS operating system. It has been assigned the following key resources: 

CPU Cores: 2, RAM: 2 GB, VRAM: 16 MB, Dedicated Hard Disk Memory: 25 GB 

The host machine is a Windows 11 Laptop which has the following key specifications: 

CPU Cores: 10, RAM: 16 GB, VRAM: 7 GB (shared), Hard Disk Memory: 400 GB (SSD) 

The VM is installed with Mininet 2.3.1b4, which comes prepacked with the POX SDN 

controller. The POX controller version was changed to 0.8.0 (halosaur), the latest one and to 

ensure Python 3 compatibility. The Mininet network topology, the custom POX controller 

script modified upon the component forwarding.l3_learning and the required network traffic 

scripts are all written in Python and shared in the artefacts subsection.  Based on the network 

described in Figure 3: Network Topology, different attack scenarios are set up to test the 

proposed solution. Hosts from h1 to h4 are assumed to be infected and will be used to execute 

the attacks, with hosts from h7 to h12 as the targets. The topology script is started in the VM, 

and the xterm windows are used to open individual command line terminals for the relevant 

host machines in the network.  

The testing environment offers flexibility for conducting the trials but the limitations of the 

resources were an unavoidable factor. The traffic generation involved in the testing induces 

overall lag in the host machine when kept running over time for generating the values, which 

highlights the clear distinction between the results obtained within the lab and in real SDN 

networks. The attacks were to be conducted therefore in moderated times and multiple trial-

runs. Another notable difference is the complexities between generation of the base network 

traffic in comparison to real world networks, as real-time network traffic is much more 

random.  

The normal network traffic is simulated within the network, and begins to generate traffic 

comprising of TCP, UDP and ICMP packets at equal probabilities of 1/3, to random 

destination IPs at a fixed packet traffic rate of 10 packets per second (pps). This is used to 

establish the base values of entropy which would be the highest values, as the randomness of 

the destination IP addresses, the types of packets and the packet rate are all chosen to 

establish maximum network traffic randomness. Real-time SDN networks have much more 

random traffic moving around and packet rates would be unpredictable, however the method 

executed for the study provides a decent starting point for satisfying the need of randomized 

traffic. 
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The attack scenarios are designed based on two key aspects; and are exercised to create 

distinct multi-vector attack scenarios as proposed for the study: 

Packet rate: The high-rate flood is carried out at 100 pps, which is significantly higher 

compared to the regular traffic as stated earlier. This means that the low-rate flooding is 

carried out at 5 pps, lower than the defined regular traffic.    

Number of targets: The attacks are tested for a minimum target of 1 host to a maximum of 4 

hosts. This also plays a role in the calculation of entropy, and leaves room for testing the 

proposed detection mechanism. 

The results are obtained from the calculated entropy values for different types of attacks, and 

their detection times. The breakdown of the metrics recorded is included in this section. 

Three entropy values are calculated for a simulation of regular real-time traffic. Shannon 

entropy and Renyi entropy values at α 0.5 and 1.5 during this phase are at their highest due to 

the lack of probabilistic patterns that DDoS attacks would introduce to the distribution. The 

three entropy values averages at 3.3 to 3.4 during this phase. 

 The entropy ratios are based on the postulate of the relation between the collection of 

entropy values as theorized by Renyi, as stated in the earlier section. The ratios are used to 

stabilize the noise of the actual entropy values, and enable the threshold values for the 

different attack patterns be calculated within the range from 0 to 1. The averages of these 

ratios are calculated in order to detect the flooding attack type, to get information on their 

changes with each time window. The average values during normal simulation are recorded at 

0.99 for both the values, as expected. 

The detection time is calculated for each attack pattern, and gives insight on the 

effectiveness of the proposed entropy-based technique and the controller, in detecting the 

tested attack patterns and the speed of detection. The detection time was calculated by 

logging the attack script’s execution start time and the time of detection by the controller, and 

subtracting the times. The results are visualized using Python in the form of graphs of the 

values to the time window for each attack pattern. One unit of the x-axis parameter on the 

graph represents the time window (TW) for the calculation, that is 20 seconds.  

 

6) Results and Evaluation 

The detection times for each of the tested scenarios are given below: 

Attack pattern 

(Test Scenarios) 

Detection time thresholds at 

detection(ratio1) 

thresholds at 

detection(ratio2) 

High rate/1 victim 59 seconds/ 3 TW 0.48 0.33 

High rate/4 victims 56 seconds/ 2.8 TW 0.94 0.86 

Low rate/1 victim 55 seconds/ 2.75 TW 0.66 0.64 

Low rate/4 victims 50 seconds/2.5 TW 0.93 0.91 

Multi-vector flooding 

at increasing levels 

19s/22s/53s 0.91/0.86/0.91 0.90/0.79/0.86 

Multi-vector flooding 

with burst attack  

19s/20s/20s/54s 0.95/0.91/0.87/0.88 0.93/0.87/0.80/0.82 



17 
 

 

6.1) DDoS high-rate flood  

 

For one victim host: The trials are started by conducting high-rate flooding attacks targeting 

one victim. The entropy values are then recorded and used as thresholds for further testing. 

The UDP flooding is conducted from hosts h1, h2, h3 and h4 to one victim h7. The entropy 

values and the averages are both significantly lower, since the probability distribution skews 

due to flooded packets to the single destination IP of host h7. The threshold is set between the 

range (0.45, 0.50) for Ratio1 average and (0.30, 0.35) for Ratio2. The detection time for this 

attack was calculated to be at 59 seconds that is close to three-time windows. 

 

For multiple victims: The second scenario involves the same 4 attackers, this time targeting 

4 different victims h7, h8, h9 and h10. The entropy values deviate less since the probability 

distribution is spread to more IP addresses. Ratio1 is set to (0.90, 0.95) and Ratio2 is set to 

(0.82, 0.87) for threshold. The detection time is calculated at 56 seconds. 

6.2) DDoS low-rate flood 
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For one victim host: The attack is done similar to the high-rate flooding pattern to a single 

victim. The entropy values start to become varied due to lower packet counts. The Renyi 

entropy at α of 1.5 deviates more than the others as the single IP address is receiving all the 

low-rate attack packets. The averages are set at (0.65, 0.70) for Ratio1 and (0.63, 0.68) for 

Ratio2 as thresholds. The detection time for this pattern is calculated at 55 seconds. 

 

For multiple victims: Similar to the high-rate flooding attack, low packet rates are 

transmitted this time to 4 hosts h7, h8, h9 and h10. The attack creates heavy fluctuation in the 

entropy values, with Renyi at α of 1.5 still deviating the most. However, the proposed 

averages are assigned values of (0.90, 0.95) to both Ratio1 and Ratio2 for this pattern. This 

attack is detected at 50 seconds. 

Based on the tested scenarios, different threshold ranges are assigned for the averages 

calculated. This information is now utilized to assume threshold ranges for the proposed 

multi-vector attacks, a combination of both the tested attack patterns. The threshold ranges 

for detecting this combined pattern can be visualized using the graph as shown. 

 

As seen, high-rate and low-rate average values form an ascending order of values for 

both cases of single and multiple targets at different parts of the scale between 0 to 1. For the 

proposed scenarios in this study, the threshold ranges are set between the values recorded. 

The Ratio1 is set at (0.52, 0.62) and (0.72, 0.90) and Ratio2 is set to (0.36, 0.62) and (0.70, 

0.90), which exist between the recorded thresholds. 
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6.3) Low and high-rate attacks 

For testing out the threshold values, an incremental, combined pair of low and high-rate 

attacks are carried out on individual targets at gradual stages. The attack starts from hosts h1 

and h2 initiating a low and high-rate attack respectively towards hosts h7 and h8. The next 

attack follows the same pattern, starting from h3 and h4 towards h9 and h10, followed by h5 

and h6 targeting h11 and h12. 

 

The first set of attacks triggered the low-rate thresholds between (0.90 and 0.95) for both 

ratios, however the averages were trending downwards as seen in the graph. The second 

attack was detected by the estimated multi-vector thresholds between (0.72, 0.88) for ratio1 

and (0.70, 0.80) for ratio2. The third layer of the attack is detected as high-rate flooding by 

the thresholds assigned earlier, at (0.90, 0.95) for ratio1 and (0.83, 0.87) for ratio2. The 

detection time for the attacks were at 19 seconds due to the premature detection of the low-

rate threshold at the start, followed by 22 seconds for the second layer, and the third layer of 

the attacks were detected at 53 seconds by the high-rate threshold. 

6.4) Burst traffic attacks 

The difference values calculated are used as flags for detecting whether the multi-vector 

attacks are involving burst traffic as well. The difference between the averages calculated 

over the time window will generate a difference if there are random packets arriving to the 

target IP during the flooding attack, irrespective of the time window. Since the addition of 

burst traffic can be considered in the multi-vector category, the same thresholds are applied, 

however with this added check for flag conditions in action. The differences calculated are 

used as a simple flag, if the values are zero, while the thresholds are met, the attack is 

assumed to be flooding, and burst traffic is involved if not. 
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The attack pattern is conducted by implementing 2 high-rate and 2 low-rate attacks on 4 

separate hosts, and then conducting a burst attack on a 5th system from a different attacker. 

The low-rate threshold, being the most sensitive values and being closest to the normal 

entropy averages, gets triggered at the start followed by the high-rate threshold. The multi-

vector attack gets flagged as flood at the third point of detection. The burst rate attack was not 

conducted until this point. After the flood-based detection is triggered, the 5th system was 

targeted with the burst-rate attack, which gets detected as burst-rate at the 4th point of 

detection. As seen, the entropy values become highly unreliable at this stage and heavy 

fluctuations are introduced, however the averages react better to some extent, and had 

successfully detected the variation in packet rate. The detection times are logged as follows; 

19 seconds for first detection, 20 seconds for second detection after the first, 20 seconds for 

detecting the flood rate; that is the third detection. The burst rate was started after a certain 

period of detecting the flood attack, and the detection time was calculated at 54 seconds. 

 

7) Discussion 

 The results of the testing scenarios have showcased the use of the proposed metrics, 

and their fluctuations(differences) in comparison to two entropy values from Renyi’s entropy 

collection and Shannon entropy. The foundation of this concept arises from the mathematical 

rule of the chosen entropy values having the same magnitudes at maximum uncertainty 

within the probability distribution. The entropy values themselves were used for most of the 

research that was referred to for this study, with added statistical measurements and/or 

machine learning aspects that followed up on the initial information theory detection solution. 

The attacks conducted for this study covered mainly one key aspect of the features of DDoS 

attacks, that is packet rates. The number of types of DDoS attacks are vast and there are a 

multitude of complex patterns involving different tools, however the most common and large-

scale DDoS attack types are still based on volume and number of packets. The SDN 

technologies used in present day networks are equipped with different solutions, however 

DDoS attacks still exist and affect these networks. Statistical and information theory-based 

solutions offer a real-time approach to deal with this problem, as well as considering the 

importance of computational resources during the attack, which is extensively researched 

upon at the moment as seen from the literature review. 

 The presented solution for detecting multi-vector attacks was built upon the original 

idea of implementing entropy techniques to detect more than a certain type of attack; instead 

focusing on a range of attack patterns, which are used to trick existing detection systems into 

assuming it as regular traffic. Entropy values successfully deviate based on the network 

information that it has been given, however the values themselves are unreliable due to the 

expected chaos that ensues in any network, ranging from network spikes to inactivity. The 

proposed solution uses the relation between the collective entropy values, and uses an 

average of them to obtain a more reliable variable. A difference calculating mechanism is 

proposed that successfully detected traffic fluctuations from burst attacks, which would be a 

much more difficult challenge if it was meant to be determined using only entropy values. 

The initial first 4 rounds of testing belong to a subcategory of its own, as in they are flood 

based volumetric attacks. These attacks work on the principle of damage by numbers, but it 

also makes it easy for the detection mechanism to do its job. When patterns change however, 
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the initial entropy detection system ceases to perform as well as it used to. The comparison 

between entropy values and average values are seen, and it can be seen that the more 

complex the execution pattern becomes, the more deviations are seen in the entropy values, 

compared to the averages of the ratios. The difference of the averages is only taken into 

consideration when the entropy values keep changing due to the burst rate. The proposed 

solution detects the magnitude of change of the averages in either direction, since the burst 

traffic can work both ways in either reducing or increasing the averages. This feature 

combined with the thresholds of different levels of packet-rate based attacks obtained 

previously gives us an opportunity to detect more complex attacks. The proposed solution is 

not intended to be scalable, and the initial regular traffic entropy values are subjective to 

change because of the limitations of the normal traffic generation used. However, the solution 

is proposed to be considered as a foundation to use the entropy values by combining the 

aspect of its flexibility in detecting variations in the probability distribution; a key feature in 

calculating the values themselves. 

 

8) Conclusion and Future work 

The proposal of this study was to implement information theory solutions for detecting DDoS 

attacks that are complex and challenging to detect. The research done for this study revealed 

different approaches of applying detection solutions to different aspects of an attack, which 

was placed as a core principle for developing the project implemented. The resulting project 

involved using packet-rate based attacks, which arguably creates the most challenging 

situation for the proposed solution - entropy values. The study implemented a novel solution 

by using the averages of related entropy values in Renyi’s entropy collection, and then using 

the same values to detect another particular type of packet-rate based attack; burst traffic 

attacks. The project in this study can be considered as implemented in a vacuum of sorts, 

where there are minimal external factors that affect the network traffic; the simulation 

solution cannot be considered realistic. Despite this factor, an added effort was put into 

setting up the network topology with some realistic resembling network features using 

TCLink. The project in this study is also carried out with special concern given to not 

exhausting the host machine resources, as prolonged testing periods have led to the host 

machine crashing and shutting down.  Despite these setbacks, the results were successfully 

produced from the solution implemented for the question that was proposed. 

 The main aspect when considering future works based on this study should involve 

setting up classifications for the entropy range to the respective types of attacks with 

extended testing. This testing can be carried out either manually, which was done in this 

study, or by using some form of automation solution. The different types of attack patterns 

can be assigned to different ranges of the proposed average values, and using the difference 

values to determine whether it falls into either flooding or burst attack category. 

Implementing machine learning to this solution would be the logical next step when it comes 

to further study. A critical survey needs to be done beforehand on the computational factors 

since this adds an added expense in the detection mechanism. The entropy calculation 

mechanism can be built for volumetric based attacks that cause a deviation in other network 

features as well. A fleshed out multi-purpose DDoS detection component can be built on top 

of the proposed method, which could detect other types of DDoS attacks. 
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