
1 

 

 

 

 

 

Real-Time Threat Detection: Suricata Log 

Analysis and Visualization for Network 
 

 

 

MSc Research Project 
 

Master of Science in Cyber Security  

 

 

 

Nikhil Nikhil 
 

Student ID: 23161442 

 

 

 

School of Computing 
 

National College of Ireland 

 

 

 

Supervisor:  Michael Pantridge  

 

 

 



2 

 

 

National College of Ireland 

MSc Project Submission Sheet 

School of Computing 

 

Student Name: 

 

Nikhil Nikhil 

 

Student ID: 

 

23161442 

 

Programme: 

 

Master of Science in Cyber Security 

 

Year: 

 

2023-24 

 

Module: 

 

Practicum Part 2 

 

Supervisor: Michael Pantridge 
 

Submission Due 

Date: 

 

12th August 

 

Project Title: 

 

Research Project part 2 

Word Count: 

 

8525                                      Page Count 24 

 

I hereby certify that the information contained in this (my submission) is information pertaining 
to research I conducted for this project.  All information other than my own contribution will be 

fully referenced and listed in the relevant bibliography section at the rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are required to 

use the Referencing Standard specified in the report template. To use other author's written or 

electronic work is illegal (plagiarism) and may result in disciplinary action. 
 

Signature: 

 

Nikhil Nikhil 

 

Date: 

 

11-08-24 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed into the 

assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



3 

 

           Real-Time Threat Detection: Suricata Log Analysis 

and Visualization for Network 
 

Nikhil Nikhil  

23161442 

 
Abstract 

Systems that help in detecting different kinds of intrusions in networks are called Intrusion 

detection Systems (IDSs). There are many popular IDSs that are used both by companies and 

individuals in the detection of intrusions. Suricata is one such tool. This tool helps in the detection 

of intrusions and networks. However, studies need to be conducted based on the data collected in 

the logs generated by the Suricata. So in the study proposed here a system that uses the Suricata 

to detect intrusions in a network is proposed. In the study the Suricata is set up on a computer 

connected to a network and cyber-attacks are simulated to assess its performance of the Suricata 

in detecting intrusions. Along with detecting intrusions the system proposed in the study sends 

an email as a notification when the Suricata detects an intrusion. The log generated by Suricata 

when an attack is detected is uploaded to Google Drive. The data associated with the logs 

generated by Suricata is analysed and visual representations of the data in the logs are generated. 

The results of the study show that the Suricata is effective in detecting intrusions and that insights 

about the kind of attacks can be gained when the data associated with logs of the Suricata is 

analysed. The email sending and analysis of the data associated with the logs is done using 

methods in Python. 

 

1 Introduction 

1.1 Background 

 

Identifying intrusions or cyber-attacks in networks is a crucial aspect of cyber security. Cyber-attacks 

are happening frequently on a global scale. Cybercriminals carry out attacks against both individuals 

and organizations to obtain financial gains. In 2023, there was a significant rise in cyber-attacks, with 

over 343 million people falling victim to these incidents (St. John, 2024). Additionally, it was 

discovered that data breaches increased by 72% between 2021 and 2023(St. John, 2024). So, for 

making sure that the data being transferred over a network is safe a layer of security needs to be 

added. This layer of security can be anything from encrypting the data to adding an Intrusion 

Detection System (IDS) that helps in detecting the intrusions or cyber-attacks that enter a network 

(Chu, 2019; Khraisat et al., 2019). In the study performed here, the focus is on the IDSs that detect 

intrusions in networks. 

1.2 Problem Definition 

An intrusion in a network can only be removed when it is detected properly. If an intrusion in a 

network is not detected properly in time, then functionalities and the operation of the network may 

be compromised due to the intrusions causing a negative impact on the working of the network (Hu 

et al., 2023). So, the intrusions in the networks must be effectively detected. IDS is a tool that detects 

intrusions in a network. IDSs work by detecting intrusions and notifying the people using the network 



4 

 

in which the intrusion was detected. The IDS is usually placed in front of the Firewall in the network 

and the network first encounters the IDS before the systems in the network (Figure (1)). An IDS 

machine gathers data from multiple sources and examines information from various areas within a 

computer or network to identify potential security breaches, including both external attacks 

(intrusions) and internal attacks (misuse). IDS utilizes vulnerability assessment (also referred to as 

scanning) to assess the security of a computer system or network (Jain and Anubha, 2021). The IDSs 

can help in tracing the changes made in a network, it differentiates between abnormal and normal 

activities in the network and audits the activity of the system (Jain and Anubha, 2021). IDSs are built 

using different techniques and one major method that has been used to build IDSs is machine learning 

(Othman et al., 2018). The intrusion detection can also be carried out using tools that are open source. 

There are different kinds of IDSs like signature-based IDSs and anomaly-based IDSs (Einy, Oz and 

Navaei, 2021).). IDSs based on techniques like machine learning are anomaly-based IDSs while IDSs 

based on open-source tools are signature-based IDSs. The intrusion detection models based on 

machine learning are not able to capture the packets of data in a network and these models are 

normally built based on the data previously collected from networks (Abdallah, Eleisah and Otoom, 

2022). The signature-based IDSs like Snort, Suricata etc., do not need to be built based on the data 

associated with networks. These kinds of IDSs can be used readily to detect intrusions in real-time 

(Díaz-Verdejo et al., 2022). In the study performed here, intrusion detection using an open-source 

tool is proposed. There are several open-source tools that detect intrusions from networks like Snort, 

Suricata and Bro (Bada, Nabare and Quansah, 2020). The different open-source IDS tools are: 

• Snort: Snort is a lightweight intrusion detection tool that logs and analyzes packets passing 

through the network (Gupta et al., 2017). It is an IDS that employs a set of rules to identify 

and describe malicious network activities. It uses these rules to detect mismatched packets 

and generates alerts for users. Snort compares incoming packets to user-defined rules and 

generates alerts if any matches are found (Gupta et al., 2017).  

• Suricata: Suricata is a fast, open-source, free, mature, and strong network threat detection 

system (IPS (Suricata) — NethServer 7 Final, 2024). Suricata has the Multiple Threading 

functionality (Ouiazzane, Addou and Barramou, 2022). Suricata is a rule-based Intrusion 

Detection and Prevention engine that operates according to user-defined rules (Saive and 

Saive, 2022).  

• Bro: Bro is a Network Intrusion Detection System (IDS) based on Unix. Bro observes 

network activity and identifies intrusion attempts by analyzing both the content and 

characteristics of the traffic (Paxson et al., 2006). Bro identifies intrusions by examining 

network traffic in relation to rules that outline potentially problematic events.  

 



5 

 

 

Figure (1): IDS placed in a network (PyNet Labs, 2023) 

 

The research question of the study is “What insights can be gained by analyzing the data stored in 

the logs by Suricata?”. 

The aim of the study is to detect network intrusions using Suricata and analyze the logs generated 

by Suricate when it analyses a network. The objectives of the study are: 

• Install the Suricata tool on the PC to use it as an IDS. 

• Configure the Suricata so it can be run. 

• Define the rules of the Suricata to get a system capable of detecting attacks. 

• The logs of Suricata needs to be stored in a drive to obtain logs of attacks detected by the 

Suricata. 

• Simulate attacks for the Suricata to detect. 

• Analyze the logs of Suricata and generate visual representations of the data in the logs of 

Suricata. 

• Implement a mail sending functionality when the Suricata detects an attack in the network. 

In the study that is carried out here the focus is on the IDS tool Suricata and in the study the Suricata 

is used to analyze networks and detect intrusions. The novelty of the study is that existing studies that 

use the Suricata for cyber-attack detection do not analyze the logs of data that is captured and stored 

by the Suricata from the network. So, in the study performed here the data in the logs of Suricata will 

be analyzed. 

Section 1 of this report contains the background information associated with the detection of 

intrusions in networks using open-source IDS tools. Section 2 of this report contains the details of the 

literature associated with the detection of intrusion using open-source IDS tools and the existing 

studies like the one being performed here. Section 3 of this report contains details about the different 

methods used in the study. Section 4 contains the details about the implementation of the IDS and the 



6 

 

analysis of the logs generated by the Suricata. Section 5 contains a discussion of the results of the 

study. Section 6 contains details like the methods used in the study, the results and findings from the 

study and the enhancements that can be made to the study in the future. 

2 Literature review 
 

The existing studies that propose a system for detecting intrusions were studied and this section is a 

review of the different literature studied. The literature studied included IDS based on machine 

learning and open-source intrusion detection tools. 

2.1 IDS based on machine learning 

 

An Experimental Cyber Attack Detection Framework (ECAD) is proposed in the study by 

(Mironeanu et al., 2021). Analytical tools and machine learning techniques are used in the study to 

detect cyber-attacks in real-time. The data used in the study was obtained from system and network 

traffic logs. The low-level information in the data associated with networks was extracted using 

multiple reconnaissance agents. The model proposed in the study has a module that detects 

connections that are potentially suspicious. This study shows that the logs associated with networks 

can be used for understanding and studying more about cyber-attacks. However, in this study for the 

real-time detection of cyber-attacks, the model proposed here uses offline data that was previously 

recorded and due to this, the cyber-attack detection model proposed here may not be effective. The 

data obtained from networks is used to build a cyber-attack detection system in the study by (Delplace 

et al., 2019).  Machine learning algorithms are used to detect malicious traffic in the study. The 

machine learning algorithms used in the study are Logistic Regression (LR), Support Vector Machine 

(SVM), Gradient Boosting (GB), Random Forest (RF) and Extreme Learning Machine (ELM). The 

data used in the study is the NetFlow dataset and it contains the data associated with network traffic. 

The best network features from the dataset were extracted from the data using a feature selection 

method and 22 features were obtained. The RF model showed the best performance as it achieved an 

accuracy of 95%. However, the dataset used in the study contained only Botnets, so the model 

proposed here detects different Botnets only. Both studies use machine learning algorithms for the 

detection of cyber-attacks. The study by Mironeanu et al. (2021) used an analytics tool which was not 

done in the study by Delplace et al. (2019).  These studies show that the network features and logs 

can be used to analyze the data associated with the network.  

The machine learning models can detect intrusions in networks, but these are anomaly-based systems 

and do not scan or analyze the packets of data transferred over the network. The network data is not 

captured and stored by the IDSs based on machine learning. So, in the next section, the signature 

based IDSs that analyze the packets of data by capturing and storing the data are studied. 

 

2.2 Signature based anomaly detection tools 

 

An open-source IDS named Snort was used for the detection of intrusions in the study by (Rafa et al., 

2022). The data used in the study contained patterns associated with network traffic. The Snort 

analyzed the data packets sent from the source to a destination in a Wide Area Network (WAN). The 

results of the study showed that the signature-based method, like the Snort, is effective in detecting 

cyber-attacks in networks. This study shows that a signature-based tool can be used to effectively 

detect cyber-attacks in a network. However, this study was done focusing only on a cloud 



7 

 

environment and no other kind of networks were considered. The Poisson distribution model was 

used along with Snort to detect DDoS attacks in networks in the study by (Chen and Lai, 2023). The 

data used in the study were samples of DDoS attacks which were simulated using four virtual 

machines on the CDX 3.0 platform. The network was analyzed using tools like PRTG and Wireshark. 

The study showed that different kinds of attacks had different impacts on a network. The study found 

that ICMP flood attacks affected the memory utilization of the system affected by it while the TCP 

SYN flood attack affected the performance time and CPU utilization. However, the model proposed 

in the study has an issue and that is the overreaction of the model to a sudden change in network 

traffic. Another limitation of the study is that only detected DDoS attacks, and no other kinds of 

attacks were considered in this study. Both studies considered here used the Snort for intrusion 

detection in a network. The study by Chen and Lai (2023) used additional methods like the Poisson 

distribution model, to detect of intrusions in a network. Both studies show that a signature-based IDS 

tool is effective in detecting intrusions in network traffic. 

Wireshark was used for detecting different kinds of cyber-attacks in LANs in the study by (Iqbal and 

Naaz, 2019). In the study, the rules of the Wireshark tool were configured to detect network intrusions. 

The remote packet capture or Switched Port Analyzer (SPAN) was used for the analysis of data flow 

in the study. The results showed that the Wireshark tool is effective in detecting attacks that are 

commonly seen like DHCP spoofing, DOS attacks, MAC flooding and ARP poisoning. Mitigation 

techniques for each of the attacks are also defined in the study. The study showed that the rules of an 

IDS tool can be configured for detecting different kinds of attacks. However, this study only focused 

on the use of  Wireshark in a LAN and no other networks were considered in the study. The packets 

in the network were analysed using Wireshark to detect different attacks in the study by (Dodiya and 

Singh, 2022). In the study, the behaviour of a network was studied by analysing the packets of data 

captured by the Wireshark tool.  The malicious activity was detected using Indicators of Compromise 

(IOCs). The study showed that the Wireshark tool was able to collect data associated with parameters 

in IOC like MAC addresses of hosts, hostnames, domain names, host IP addresses and hashes. The 

study showed the effectiveness of Wireshark and its ability to analyse the traffic transferred in a 

network at a microscopic level. This study showed that the important parameters that can be used to 

find malicious network traffic in a network can be obtained when an IDS tool is used. However, the 

rules of the Wireshark were not configured in this study to detect intrusions. Both of these studies 

showed the effectiveness of Wireshark while Iqbal and Naaz(2019) configured the Wireshark for 

detecting cyber-attacks in the study by Dodiya and Singh(2022) only used the Wireshark for analysis 

of the packets of data sent over networks. 

Bro was used for generating metadata to detect intrusions and analyze the SMB protocol in the study 

by (Cyrus, 2016). Data for the research was produced in a controlled testing environment designed to 

mimic a corporate network. This setup included virtual machines running Security Onion, Windows 

7 and Windows Server 2012. Traffic was monitored through port mirroring. Tailored Bro scripts were 

developed to suit the network environment, utilizing string pattern or event-based indicators to detect 

potentially suspicious SMB activity. The findings of the study illustrated Bro's effectiveness in 

promptly detecting malicious activity in real-time, along with its capability to retrospectively analyze 

packet captures. The study shows that writing the rules of a rules-based IDS can help in detecting 

intrusions in the network. However, false positives may be generated by the Bro due to the detection 

of legitimate administrative tasks as intrusions. 

The studies discussed here show that the signature-based IDSs are highly effective and the data 

analysed and captured in the network by these IDSs are stored as logs. As the signature-based IDSs 



8 

 

were found to be effective in detecting intrusions, the signature-based IDS- Suricata is discussed in 

the next section. 

2.3 Intrusion detection using Suricata 

 

An IDS was implemented to analyse the network and detect intrusions in the network of Small 

Medium Enterprise (SMEs) in the study by (Veerasingam et al., 2023). The IDS proposed in the study 

was implemented in a Raspberry Pi 2B platform in the network of the SME using Suricata. A web 

application was developed in this study and it notified people working in the SME of an intrusion in 

their network detected using the Suricata. The notifications were generated based on the data collected 

from the logs  of Suricata. The results of the study showed that the Suricata is effective in detecting 

intrusions in networks based on the rules that are configured in the Suricata. However, this study only 

focused on the detection of intrusion in the SME network. The alert detection performance of Suricata 

is analysed in the study by (Raharjo and Salman, 2023). This study had a two-phase methodology 

and it included a designing phase and testing phase. The design phase of the study included the 

designing of the testing environment, defining performance parameters and designing the generation 

of the dataset used in the study. In the testing phase, the designs were implemented. The dataset that 

was used in the study was created using Pcap datasets that contain IoC parameters. Five different 

datasets were created in this study to represent the five types of IoCs.  The local IoC rules were 

extracted from the Pcap datasets in this study and these rules were tested in different situations. The 

results of the study showed that the accuracy of the Suricata in detecting intrusions decreased when 

the number of rules increased. This study showed how the rules in the Suricata can be configured to 

get an effective intrusion detection performance from the Suricata. However, in this study, the testing 

was carried out on a medium-range device, so the performance of the Suricata on a high-range device 

cannot be studied. The studies by Veerasingam et al., (2023) and Raharjo and Salman(2023) both 

used the Suricata however in the study by Raharjo and Salman(2023) the intrusion detection 

performance of Suricata was tested while the study by Veerasingam et al., (2023) used the Suricata 

to detect the intrusions in a SME network. Both studies showed that the Suricata is effective in 

detecting intrusions and generating alerts if the rules of the Suricata are configured properly. 

The Suricata is effective in detecting intrusions and generating alerts when intrusions are detected. 

The Suricata works based on the rules defined in it. The Suricata also stored the packets of data 

captured by it in the network. 

 

2.4 Summary 

 

Study Methods Results Limitations 

Mironeanu et al., 

(2021) 

The study proposed 

the Experimental 

Cyber Attack 

Detection 

Framework 

(ECAD), utilizing 

analytical tools and 

machine learning 

techniques to detect 

The proposed 

model successfully 

identified 

potentially 

suspicious 

connections, 

demonstrating that 

network logs can be 

instrumental in 

The study's reliance 

on previously 

recorded offline 

data for real-time 

detection limits the 

model's 

effectiveness in live 

cyber-attack 

scenarios. 



9 

 

cyber-attacks in 

real-time. They 

analyzed system 

and network traffic 

logs, extracting 

low-level network 

information using 

multiple 

reconnaissance 

agents. 

understanding 

cyber-attacks. 

Delplace et al., 

(2019) 

The study 

developed a cyber-

attack detection 

system using 

machine learning 

algorithms, 

including Logistic 

Regression, SVM, 

Gradient Boosting, 

Random Forest, and 

Extreme Learning 

Machine. They 

utilized the 

NetFlow dataset, 

applying feature 

selection to identify 

22 key features for 

training the models. 

The Random Forest 

model achieved the 

highest accuracy of 

95% in detecting 

malicious traffic. 

The dataset used 

contained only 

Botnets, limiting 

the model's 

detection 

capabilities to 

various Botnet 

attacks exclusively. 

Rafa et al., (2022) The study utilized 

the open-source 

IDS Snort for 

intrusion detection, 

focusing on 

patterns in network 

traffic data. The 

study specifically 

analysed data 

packets exchanged 

across a Wide Area 

Network (WAN) 

within a cloud 

environment. 

The study 

demonstrated the 

effectiveness of 

Snort's signature-

based approach in 

detecting cyber-

attacks within the 

cloud network 

environment. 

The research was 

limited to 

examining cyber-

attacks exclusively 

in cloud 

environments, 

without 

consideration for 

other network types 

or environments. 

Chen and Lai, 

(2023) 

The study 

employed the 

Poisson distribution 

model in 

conjunction with 

Snort for detecting 

DDoS attacks. They 

simulated DDoS 

The study identified 

varied impacts of 

different DDoS 

attacks on network 

performance 

metrics. For 

instance, ICMP 

flood attacks 

The model 

exhibited 

overreaction to 

sudden changes in 

network traffic, 

potentially leading 

to false positives. 

Additionally, the 



10 

 

attacks using virtual 

machines on the 

CDX 3.0 platform 

and analyzed 

network data using 

PRTG and 

Wireshark. 

affected system 

memory utilization, 

while TCP SYN 

flood attacks 

impacted CPU 

performance and 

response times. 

study focused 

exclusively on 

DDoS attacks, 

omitting analysis of 

other types of 

cyber-attacks. 

Iqbal and Naaz, 

(2019) 

The study utilized 

Wireshark for 

detecting various 

cyber-attacks 

within Local Area 

Networks (LANs). 

They configured 

Wireshark rules to 

identify network 

intrusions and used 

remote packet 

capture or Switched 

Port Analyzer 

(SPAN) for data 

flow analysis. 

The study 

demonstrated 

Wireshark's 

effectiveness in 

detecting common 

attacks such as 

DHCP spoofing, 

Denial of Service 

(DOS), MAC 

flooding, and ARP 

poisoning. 

Mitigation 

techniques for each 

attack type were 

also outlined. 

The research was 

confined to the use 

of Wireshark within 

LAN environments, 

with no exploration 

of its effectiveness 

in other network 

types. 

Dodiya and Singh, 

(2022) 

The study analysed 

network packets 

using Wireshark to 

detect malicious 

activity. They 

focused on 

capturing and 

studying network 

behaviour through 

packet analysis, 

leveraging 

Indicators of 

Compromise 

(IOCs) to identify 

suspicious patterns. 

The study 

illustrated 

Wireshark's 

capability to gather 

data related to IOCs 

such as MAC 

addresses, 

hostnames, domain 

names, host IP 

addresses, and 

hashes. It 

highlighted 

Wireshark's 

effectiveness in 

providing detailed 

insights into 

network traffic at a 

granular level. 

The study did not 

configure 

Wireshark rules 

specifically for 

intrusion detection 

purposes, 

potentially limiting 

its ability to 

proactively detect 

intrusions based on 

predefined criteria. 

Cyrus, (2016) The study 

employed Bro for 

generating 

metadata and 

analysing the 

Server Message 

Block (SMB) 

protocol to detect 

intrusions. The 

study utilized a 

The research 

demonstrated Bro's 

effectiveness in 

real-time detection 

of malicious 

activities and its 

ability to 

retrospectively 

analyse packet 

captures. The study 

One limitation 

identified was the 

potential for false 

positives generated 

by Bro, particularly 

due to its detection 

of legitimate 

administrative tasks 

as intrusions. This 

could lead to 



11 

 

controlled testing 

environment 

mimicking a 

corporate network, 

with virtual 

machines running 

Security Onion, 

Windows 7, and 

Windows Server 

2012. Traffic 

monitoring was 

conducted through 

port mirroring, and 

customized Bro 

scripts were 

developed to detect 

suspicious SMB 

activity using string 

pattern or event-

based indicators. 

highlighted Bro's 

capability to 

promptly detect 

intrusions while 

providing insights 

into network traffic 

through metadata 

generation. 

operational 

challenges in 

distinguishing 

between malicious 

activities and 

normal network 

operations. 

Veerasingam et al., 

(2023) 

The study 

implemented an 

Intrusion Detection 

System (IDS) using 

Suricata to analyse 

and detect 

intrusions within 

the network of 

Small Medium 

Enterprises 

(SMEs). The study 

utilized a Raspberry 

Pi 2B platform to 

host Suricata, and a 

web application 

was developed to 

notify SME 

personnel of 

detected intrusions 

based on Suricata's 

log data. 

The study 

demonstrated 

Suricata's 

effectiveness in 

detecting intrusions 

based on 

configured rules 

within SME 

networks. 

Notifications were 

generated promptly 

upon detection, 

leveraging 

Suricata's log data 

to inform SME 

personnel of 

potential security 

breaches. 

One limitation of 

the study was its 

focus solely on 

detecting intrusions 

within SME 

networks. The 

applicability of 

Suricata's 

performance in 

larger enterprise 

environments or 

under different 

network conditions 

was not explored. 

Raharjo and 

Salman, (2023) 

The study analysed 

the alert detection 

performance of 

Suricata using a 

two-phase 

methodology. The 

study included a 

design phase where 

the testing 

The research found 

that as the number 

of rules increased, 

the accuracy of 

Suricata in 

detecting intrusions 

decreased. Five 

different datasets 

representing 

A limitation of the 

study was the use of 

a medium-range 

device for testing, 

which restricted the 

exploration of 

Suricata's 

performance on 

high-end devices. 



12 

 

environment was 

established, 

performance 

parameters were 

defined, and 

datasets were 

generated using 

Pcap datasets 

containing 

Indicators of 

Compromise (IoC) 

parameters. In the 

testing phase, the 

effectiveness of 

local IoC rules 

extracted from the 

Pcap datasets was 

evaluated under 

various conditions. 

various types of 

IoCs were used to 

test Suricata's 

performance, 

highlighting the 

impact of rule 

complexity on 

detection accuracy. 

This limitation may 

affect the 

generalizability of 

the findings to 

different hardware 

configurations or 

larger-scale 

network 

environments. 

Table (1):Summary of literature review findings 

 

The literature studied here showed that the data captured and stored in the logs by the Suricata is not 

analysed or studied, so in the study that is done here the data in the logs of the Suricata is analysed 

for determining if any insight associated with the intrusions in the network can be gained from the 

logs. The study that is performed here proposes the detection of intrusions using Suricata. 

3 Methodology 
 

This research project introduces a real-time intrusion detection system utilizing the Suricata tool in a 

controlled VirtualBox environment, complemented by cloud-based storage integration. It aims to 

detect and respond to various network attacks simulated between the Ubuntu (victim) and Kali Linux 

(attacker) machines. By monitoring network traffic and applying Suricata's detection rules, the system 

identifies threats and securely logs them in Google Drive. The project emphasizes proactively 

enhancing  network security measures through effective intrusion detection and reliable cloud-based 

log storage, enhancing accessibility and response capabilities against cyber threats. 

 

Figure (2): Workflow of network security system from attack generation to log analysis 



13 

 

Figure (2) shows the block diagram of the research system, illustrating its workflow from attack 

generation using Kali Linux to detection with Suricata, saving logs, sending email alerts to 

administrators, storing attack details on Google Drive, and ultimately analysing and visualizing attack 

logs. This diagram provides a clear overview of how the system operates in detecting and responding 

to network security threats. 

 

3.1 Setting up the virtual machines 

 

A network simulation was necessary to enable Suricata to analyse network activity, generate logs, 

and detect intrusions effectively. In this study, the simulation involved setting up two virtual machines 

on a single PC using VirtualBox, one running Ubuntu as the victim machine and the other running 

Kali Linux as the attacker. Ubuntu, known for its user-friendly interface and extensive community 

support, is widely adopted in both personal and professional settings due to its robust security 

architecture and frequent updates, ensuring resilience against vulnerabilities. Kali Linux, based on 

Debian, specializes in digital forensics and penetration testing, equipped with a comprehensive suite 

of tools for network analysis and vulnerability assessment. Despite its strengths, challenges such as 

resource consumption (RAM and processing power) and time-consuming setup for running two 

operating systems concurrently on a single machine were encountered during the implementation. 

Next, the Ubuntu system was prepared to ensure it was updated and ready for new software 

installation. This step is crucial in ensuring that all software dependencies required by Suricata are up 

to date, thereby preventing potential conflicts or issues during the installation process. The first step 

in this process was to update the package lists and upgrade existing packages. This was done using 

the commands ‘sudo apt update’ and ‘sudo apt upgrade -y’. Executing ‘sudo apt update’ ensures that 

the system retrieves information about their dependencies and the latest versions of packages, while 

‘sudo apt upgrade -y’ upgrades all existing packages to their latest versions without user intervention. 

 

3.2 Suricata Installation 

 

Suricata is a free and open-source signature-based intrusion detection system, that offers a quick and 

resilient engine for detecting network threats (Bada, Nabare and Quansah, 2020). In the study by 

Kumar et al. (2023), Suricata was compared with other intrusion detection tools like Snort, Bro and 

OSSEC. The results of the study by Kumar et al. (2023), found that Suricata had better performance 

in the detection of intrusions as it showed low false negative and false positive rates, high rate of 

detection and accuracy. So the Suricata has a better performance in detecting intrusions in networks, 

than Bro and OSSEC. Following the system preparation phase, the installation of Suricata 

commenced to bolster the system's security capabilities. This involved adding the Open Information 

Security Foundation (OISF) PPA repository, renowned for hosting stable Suricata releases, and 

updating the package list to incorporate this repository. The installation process proceeded with 

careful consideration of system dependencies and potential conflicts, aiming to ensure seamless 

integration. 

 

3.3 Network Interface Configuration Setup 

 

Configuring the network interface for Suricata involves a series of steps aimed at ensuring it can 

effectively monitor and analyse network traffic. It begins with identifying the correct network 

interface that Suricata will monitor. This involves using commands like 'ip a' to list available 



14 

 

interfaces and select the appropriate one, such as 'eth0' or 'ens33'. Once the interface is identified, the 

next step is to configure Suricata's settings to optimize its performance. This includes editing the 

Suricata configuration file located at '/etc/suricata/suricata.yaml'. In this configuration file, 

parameters under the 'af-packet' section are adjusted to match the specifics of the network interface. 

These adjustments are crucial as they dictate how Suricata interacts with network packets, for 

example, setting the number of threads to handle packet processing efficiently. Additionally, settings 

related to packet defragmentation and cluster IDs are configured to ensure Suricata can handle various 

types of network traffic effectively. One of the challenges encountered during this process is ensuring 

that the configuration accurately reflects the network setup. Mistakes in configuring the network 

interface or mismatched settings can lead to Suricata either missing important network events or 

generating false alerts, which can impact the overall effectiveness of the intrusion detection system. 

The ultimate goal of configuring the network interface for Suricata is to align its intrusion detection 

capabilities with the specific characteristics of the network environment. By fine-tuning parameters 

like packet handling and monitoring settings, Suricata can effectively monitor for suspicious activities 

such as port scans, denial-of-service attacks, or unauthorized access attempts. This proactive approach 

not only enhances the security posture of the network but also ensures that potential threats are 

identified and mitigated in a timely manner. Configuring the network interface for Suricata is a critical 

aspect of setting up an effective intrusion detection system. It involves careful selection and 

configuration of the network interface, adjustment of performance parameters, and consideration of 

resource constraints. This process ensures that Suricata operates optimally within the network 

environment, providing robust monitoring and detection capabilities against evolving cyber threats. 

 

3.4 Setting up rules 

 

Configuring Suricata involves crucial steps to ensure effective network monitoring and threat 

detection. Starting with updating its rule set, this process ensures Suricata remains equipped to 

identify evolving threats. However, managing Suricata's service can be challenging due to resource 

constraints, such as high RAM usage and processing demands, especially when enabling automatic 

initiation on system boot. Verification, includes checking Suricata's operational status and monitoring 

real-time logs to confirm its functionality in capturing and analysing network traffic, which can be 

time-consuming. Testing involves generating specific network activities to trigger custom rules, 

validating Suricata's responsiveness in alerting to potential security breaches. Adding Custom rules 

to Suricata's configuration enhances its ability to detect ICMP Echo Requests, TCP port scans, and 

SSH authentication attempts, tailored to specific network threats for proactive security monitoring 

and response. 

 

3.5 Email Sending and Uploading to Google Drive 

 

In response to detecting malicious attacks, an automated workflow initiates the prompt dispatch of 

email notifications and uploads of log files to Google Drive, facilitated by Python libraries like os, 

smtplib, email.mime, and watchdog. This system relies on a meticulously crafted Python script that 

monitors the Suricata log directory for new files, signalling potential security breaches. Upon 

detection, the script triggers email alerts, containing detailed breach information and actionable 

guidance, ensuring swift communication with relevant stakeholders. The use of smtplib ensures 

secure email transmission, authenticating sender credentials for reliable delivery. Meanwhile, the 

watchdog library's observer function maintains continuous folder surveillance, enabling real-time 



15 

 

incident detection to swiftly inform security administrators. This proactive approach empowers 

timely response to security threats, bolstering network defences and pre-emptively mitigating risks. 

The email notification mechanism serves a crucial role in promptly notifying designated recipients 

about detected security breaches, enabling swift response actions to mitigate potential risks. However, 

a challenge encountered during implementation involved managing dependencies and compatibility 

issues among Python libraries, which required careful configuration to ensure seamless functionality 

across different environments. Additionally, setting up and configuring Google Drive API credentials 

for file uploads posed initial complexities, necessitating a clear understanding of developer options 

and proper credential management. These challenges underscored the importance of meticulous setup 

and testing to ensure the reliable and effective operation of the automated security protocol. 

4 Design Specification 
 

4.1 Suricata 

 

Suricata is an open-source Intrusion Detection and Prevention System (IDPS) renowned for its robust 

capabilities in monitoring and protecting computer networks against cyber threats. Developed by the 

Open Information Security Foundation (OISF), Suricata operates by analyzing network traffic in real-

time, detecting suspicious patterns, and alerting administrators to potential security breaches. Snort 

is similar to Suricata and it generates an alert when intrusions are detected in a network. In the study 

by Sharma et al. (2021), it was found that the Snort failed to generate alerts for two kinds of cyber-

attacks that were defined in its rules but the Suricata successfully generated alerts for all the cyber-

attacks or intrusions that were defined in its rules. It was specified in the study by Sharma et al. (2021) 

that Suricata was more computationally expensive than Snort but since the main aim of the study is 

to generate alerts properly according to the rules defined for Suricata was a better choice for the study 

that was carried out here. The study used computers that were high end and had high computational 

power so these computer systems could be used to handle the installation and working of Suricata 

effectively.  Suricata was also found to be more versatile than Snort in the study by (Sharma et al. 

2021).  

 

5 Implementation 
 

The Real-Time Intrusion Detection System using Suricata is designed to strengthen network security 

by leveraging advanced monitoring and cloud-based log storage capabilities. Implemented within a 

controlled VirtualBox environment, the project focuses on detecting diverse network attacks 

originating from an attacker machine (Kali Linux) directed towards a victim machine (Ubuntu). The 

implementation begins with setting up VirtualBox to create a secure testing environment conducive 

to simulating network scenarios. This environment hosts Ubuntu as the victim machine and Kali 

Linux as the attacker, each configured with specific network settings to facilitate controlled attack 

simulations. Suricata, a powerful Intrusion Detection and Prevention System, is then deployed on the 

Ubuntu victim machine. Installation involves downloading and configuring Suricata to optimize its 

performance in detecting various types of threats. This includes setting up essential configuration 

files and directories, crucial for defining rules that govern the detection of specific attack patterns, 

once configured, Suricata actively monitors network traffic in real-time, analyzing packets to identify 



16 

 

suspicious activities based on predefined rules. Concurrently, attacks are generated from Kali Linux, 

simulating scenarios like ICMP Echo Requests, TCP port scans, and SSH login attempts. Suricata’s 

ability to detect these attacks is critical in demonstrating effective proactive security measures. To 

enhance accessibility and reliability, the study integrates cloud-based storage via Google Drive for 

storing Suricata’s logs securely.  

This setup ensures that log files, containing crucial information about detected threats, are readily 

accessible and protected against unauthorized access or tampering. The implementation includes 

automated email notifications to alert administrators in real-time upon detecting potential security 

breaches. This proactive alert system utilizes Python scripts to monitor Suricata’s log directory 

continuously. Upon detecting new logs indicative of an attack, the system triggers email alerts to 

designated recipients, providing actionable insights to mitigate risks promptly. The implementation 

includes automated email notifications to alert administrators in real-time upon detecting potential 

security breaches. This proactive alert system utilizes Python scripts to monitor Suricata’s log 

directory continuously. Upon detecting new logs indicative of an attack, the system triggers email 

alerts to designated recipients, providing actionable insights to mitigate risks promptly. In addition to 

real-time alerting, the project focuses on analyzing incidents afterward using Python scripts. These 

scripts facilitate detailed analysis of attack patterns and trends, offering insights that aid in refining 

Suricata’s detection capabilities and strengthening overall network defenses. The Real-Time Intrusion 

Detection System integrates VirtualBox, Suricata, cloud-based storage, and automated alerting 

mechanisms to create a comprehensive defense strategy against cyber threats. By implementing these 

steps from environment setup to attack simulation, detection, storage, and analysis the project aims 

to showcase effective network security practices, bolstered by cloud technology’s scalability and 

reliability in safeguarding critical network infrastructures. 

6 Results and Evaluation 
 

6.1 Results 

Results of EDA 

The results of the EDA are shown in the figures presented here. 



17 

 

 

Figure (3): Count of each attack type 

 

A bar plot to visualize the frequency of various attack types detected in network logs was generated, 

as shown in the figure(3). The process begins by preparing two lists: one for the attack types and 

another for their corresponding counts. A bar chart is created, with the attack types along the x-axis 

and their counts on the y-axis. Labels for the x-axis and y-axis are added, indicating 'Attack Type' and 

'Count' respectively. This visualization helps in understanding the distribution and frequency of 

different attack types, making it easier to identify prevalent threats and prioritize security measures 

accordingly. 

 

 

Figure (4): Count of attacks by protocol 



18 

 

A bar plot is shown in figure(4) to visualize the number of attacks categorized by protocol was 

generated. The process starts by initializing a data structure to count occurrences of each protocol. It 

then iterates through the provided log data, incrementing the count for the corresponding protocol 

each time it is encountered. After processing the data, two lists are prepared: one containing the 

different protocols and another containing their respective counts. A bar chart is then created, with 

protocols along the x-axis and their counts on the y-axis. The bars are coloured light coral to make 

the plot visually appealing. Labels for the x-axis and y-axis are added, indicating 'Protocol' and 'Count' 

respectively. This visualization helps in understanding the distribution of attacks across different 

protocols, making it easier to identify which protocols are most frequently targeted and thus prioritize 

security measures accordingly. 

 

 

Figure (5): Attack details 

The log in the figure(5) shows the entries depicting a series of ICMP Echo Request events, each 

identified by a unique SID (Signature ID) of 1, belonging to the Group ID (GID) 10000001, and 

having a revision (REV) of 1. These requests originate from the source IP address 192.168.56.102 

and are directed towards the destination IP address 192.168.56.101. The classification field is marked 

as "null", indicating an unspecified classification for these requests. With a priority level of 3, these 

ICMP Echo Requests denote a relatively moderate significance level in terms of network traffic. The 

protocol used is ICMP (Internet Control Message Protocol), and it is utilized for control and 

diagnostic purposes in network communications. These repeated requests suggest a potential pattern 

of communication or testing activity between the source and destination IP addresses. 

 

 

 



19 

 

Attack Detection 

A network connectivity test from a Kali Linux system through the utilization of the ping command 

was performed. The command prompt initiates a ping command targeting the IP address 

192.168.56.101, a network utility used to ascertain the reachability of a host on a network. 

Subsequently, the output confirms pings that are successful to the specified host, round trip times are 

displayed for each ping sent. The ping command was then suspended for unspecified reasons.  

The text "user@kali: -" presents user-related information, including the username "user" logged into 

the host named "kali", a machine running the Kali Linux distribution renowned for security and 

penetration testing. Following this, a command that is partially typed "ping 192.168.56.101" shows 

an attempt to make use of the "ping" network utility tool to evaluate the reachability of a device using 

the IP address that is specified. Subsequent lines display output from the ping command, affirming 

successful communication with the target device. However, the last line, "zsh: suspended ping 

192.168.56.101", suggests an interruption or suspension of the ping command execution. This 

comprehensive analysis highlights the user's engagement with network testing activities on a Kali 

Linux system through the terminal interface.  

 

 

Figure (6): attack generation 

The text "ping 192.168.56.101" suggests the user's initiation of the "ping" command, a network utility 

tool utilized to ascertain the reachability of a host on a network, with the specified IP address serving 



20 

 

as the target. Displayed lines exhibit output from the ping command, confirming its success and 

receipt of responses from the device with the IP address 192.168.56.101. Additionally, the round trip 

time for each ping is likely provided. The final line "zsh: suspended ping 192.168.56.101" indicates 

the suspension of the ping command for unspecified reasons, with "zsh" denoting the utilized shell as 

shown in the figure(6). 

 

 

 

Figure (7): attack detection 

 

A command, "sudo tail -f /var/log/suricata/fast.log", is used, where "sudo" grants superuser privileges 

and "tail -f /var/log/suricata/fast.log" continuously monitors a security-related log file, possibly 

associated with the Suricata security tool. This comprehensive analysis suggests a user interaction 

scenario within a virtualized Ubuntu 18.4 environment, characterized by active monitoring of a 

security log file via the terminal interface as shown in the figure(7). 

 

 



21 

 

6.2 Evaluation 

 

The study was successfully completed and from the results of the study it was seen that the attacks 

were successfully detected by the Suricata based on the rules defined in the Suricata. Logs generated 

by the Suricata were saved in the Google Drive and analysed using Python. The system also sent 

notifications to users when an attack was detected by the Suricata, this mail sending was implemented 

using Python. The main objectives of this study were achieved. 

The investigated study leveraged the powerful Suricata tool for the purpose of cyber-attack detection 

within network environments. The implemented Suricata-based system demonstrated remarkable 

efficacy in promptly identifying potential security threats and generating pertinent alerts. Leveraging 

predefined rules within Suricata, the system adeptly detected a spectrum of cyber-attacks based on 

these established parameters. Notably, the system's ability to detect attacks was contingent upon the 

existence of appropriate rules, underscoring the pivotal role of defined rules in Suricata's detection 

capabilities. In instances where specific attack types were not encompassed by defined rules, the 

system's ability to detect these threats would be compromised, emphasizing the critical nature of a 

comprehensive rule set in fortifying network security. It's important to note that while the system 

excelled in the detection of cyber-attacks, the study did not delve into the active prevention of these 

identified threats. By elaborating on the feasibility of integrating preventive measures following the 

system's successful detection of attacks within a network, the study could further enhance the depth 

and impact of its findings. Introducing the capability to prevent detected attacks would augment the 

system's operational value, fostering a more robust and proactive security posture. This proactive 

functionality would empower security stakeholders to effectively mitigate potential threats upon 

detection, thereby minimizing the impact and risk imposed by cyber-attacks on network 

infrastructure.  

7 Conclusion and future enhancements 
 

The study conducted focused on developing and evaluating a cyber-attack detection system 

leveraging Suricata, which proved successful in achieving its primary objectives. To commence, the 

robust system integrated Suricata, thereby enabling the detection of cyber-attacks, and subsequently, 

custom rules were meticulously defined to further fortify the system's defensive capabilities. This 

cultivated a highly effective cyber-attack detection mechanism, showcasing the system's adeptness in 

identifying and responding to potential security threats in real-time. Moreover, the study aptly 

incorporated the implementation of email-sending and log-saving functionalities, seamlessly 

accomplished through the integration of Python, highlighting the system's multifaceted operational 

proficiency. The successful transmission of email notifications upon attack detection, as well as the 

seamless archiving of logs in Google Drive, underscored the system's comprehensive approach to 

security threat management. Furthermore, the study comprehensively tested the system's resilience 

by simulating cyber-attacks using various commands, affirming Suricata's efficacy in detecting and 

responding to diverse forms of cyber threats. Notably, the study culminated in the production of 

detailed visual representations based on the logged data, shedding light on critical insights such as 

the type and distribution of attacks, attack frequencies by protocol and IP addresses, and 

comprehensive attack details. Through this comprehensive visualization, the study provided a deep 

understanding of the attack landscape, further fortifying the system's analytical capabilities and 

facilitating proactive security measures. Consequently, the study outlined an intricate and robust 

cyber-attack detection system facilitated by Suricata, underlining its efficacy and multifaceted 



22 

 

functionality in fortifying network security. The research question proposed in the study was 

answered: 

• What insights can be gained by analyzing the data stored in the logs by Suricata? 

 

This study showed that the data associated with the logs generated by Suricata can be analyzed 

to gain different insights about the type of attacks, protocols etc., taking place in a network 

detected by the Suricata. 

The email sending implemented in the system, the storing of the logs generated by the Suricata, and 

analysis of the data associated with the logs generated by Suricata. This study helps in providing 

insights about how the data in the logs or the data collected by Suricata can be analyzed and how the 

analysis of the data helps in improving the security of a network. The study also showed ways in 

which functionalities can be integrated with IDSs. The integration of Python with IDSs can help in 

improving the functionalities of IDSs and results in the addition of several functionalities to an IDS 

like it has been done with the Suricata in this study. 

In the future, a machine learning method can be integrated with the Suricata to make the system built 

here more robust as the machine learning models will help the Suricata in detecting cyber-attacks 

more effectively. Methods for preventing the cyber-attacks detected by the Suricata can be integrated 

into the system and the detected attacks can be prevented. More rules can be defined in the Suricata 

so that more kinds of cyber-attacks can be detected. 

 

References 
 

Abdallah, E.E., Eleisah, W. and Otoom, A.F. (2022). Intrusion Detection Systems using Supervised 

Machine Learning Techniques: A survey. Procedia Computer Science, 201, pp.205–212. 

doi:https://doi.org/10.1016/j.procs.2022.03.029. 

Bada, G.K., Nabare, W.K. and Quansah, D.K.K. (2020) 'Comparative analysis of the performance 

of network intrusion Detection systems: SNORT, Suricata and BRO Intrusion Detection Systems in 

perspective,' International Journal of Computer Applications, 176(40), pp. 39–44. 

https://doi.org/10.5120/ijca2020920513. 

Chen, C.-L. and Lai, J.L. (2023) 'An experimental detection of distributed denial of service attack in 

CDX 3 platform based on SNorT,' Sensors, 23(13), p. 6139. https://doi.org/10.3390/s23136139. 

Chu, W. (2019) 'Application of data encryption technology in computer network Security,' Journal 

of Physics. Conference Series, 1237(2), p. 022049. https://doi.org/10.1088/1742-

6596/1237/2/022049. 

Chu, W. (2019) 'Application of data encryption technology in computer network Security,' Journal 

of Physics. Conference Series, 1237(2), p. 022049. https://doi.org/10.1088/1742-

6596/1237/2/022049. 

Cyrus, R. (2016) Detecting Malicious SMB Activity Using Bro. PhD. Dissertation. The SANS 

Institute. https://www.giac.org/paper/gcia/10091/detecting-malicious-smb-activity-bro/140938. 



23 

 

Delplace, A., Hermoso, S. and Anandita, K. (2020) 'Cyber Attack Detection thanks to Machine 

Learning Algorithms,' arXiv (Cornell University) [Preprint]. 

https://doi.org/10.48550/arxiv.2001.06309. 

Díaz-Verdejo, J., Muñoz-Calle, J., Estepa Alonso, A., Estepa Alonso, R. and Madinabeitia, G. 

(2022). On the Detection Capabilities of Signature-Based Intrusion Detection Systems in the 

Context of Web Attacks. Applied Sciences, 12(2), p.852. doi:https://doi.org/10.3390/app12020852. 

Dodiya, B. and Singh, U.K. (2022) 'Malicious Traffic analysis using Wireshark by collection of 

Indicators of Compromise,' International Journal of Computer Applications, 183(53), pp. 1–6. 

https://doi.org/10.5120/ijca2022921876. 

Einy, S., Oz, C. and Navaei, Y.D. (2021). The Anomaly- and Signature-Based IDS for Network 

Security Using Hybrid Inference Systems. Mathematical Problems in Engineering, 2021, pp.1–10. 

doi:https://doi.org/10.1155/2021/6639714. 

Gupta, R. et al. (2017) 'Intrusion detection system using SNORT,' International Research Journal of 

Engineering and Technology (IRJET), 4(4), pp. 2100–2104. 

https://www.irjet.net/archives/V4/i4/IRJET-V4I4439.pdf. 

Hoover, C. (2022) 'Comparative Study of Snort 3 and Suricata Intrusion Detection Systems,' 

Computer Science and Computer Engineering Undergraduate Honors Theses. 

https://scholarworks.uark.edu/csceuht/105 

Hu, X. et al. (2023) 'Toward early and accurate network intrusion detection using graph embedding,' 

IEEE Transactions on Information Forensics and Security, 18, pp. 5817–5831. 

https://doi.org/10.1109/tifs.2023.3318960. 

IPS (Suricata) — NethServer 7 Final (2024). https://docs.nethserver.org/en/v7/suricata.html. 

Iqbal, H. and Naaz, S. (2019) 'Wireshark as a tool for detection of various LAN attacks,' 

International Journal of Computer Sciences and Engineering, 7(5), pp. 833–837. 

https://doi.org/10.26438/ijcse/v7i5.833837. 

Jain, G. and Anubha, N. (2021) 'Application of SNORT and Wireshark in network traffic analysis,' 

IOP Conference Series. Materials Science and Engineering, 1119(1), p. 012007. 

https://doi.org/10.1088/1757-899x/1119/1/012007. 

Khraisat, A. et al. (2019) 'Survey of intrusion detection systems: techniques, datasets and 

challenges,' Cybersecurity, 2(1). https://doi.org/10.1186/s42400-019-0038-7. 

Kumar, A. et al. (2023) 'A COMPARATIVE ANALYSIS OF DIFFERENT INTRUSION 

DETECTION SYSTEMS,' International Research Journal of Modernization in Engineering 

Technology and Science, 05–05(4), pp. 3029–3030. 

https://www.irjmets.com/uploadedfiles/paper/issue_4_april_2023/36289/final/fin_irjmets16819234

81.pdf. 

Mironeanu, C. et al. (2021) 'Experimental Cyber Attack Detection Framework,' Electronics, 10(14), 

p. 1682. https://doi.org/10.3390/electronics10141682. 

Othman, S.M. et al. (2018) 'Intrusion detection model using machine learning algorithm on Big 

Data environment,' Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0145-4. 



24 

 

Ouiazzane, S., Addou, M. and Barramou, F. (2022) 'A Suricata and machine learning based hybrid 

network intrusion detection system,' in Lecture notes in networks and systems, pp. 474–485. 

https://doi.org/10.1007/978-3-030-91738-8_43. 

Paxson, V. et al. (2006) Bro Intrusion Detection System. https://www.osti.gov/biblio/1245188. 

PyNet Labs (2023) Difference between IDS and IPS - PyNet Labs. 

https://www.pynetlabs.com/difference-between-ids-and-ips/. 

Rafa, F. et al. (2022) Detecting Intrusion in Cloud using Snort: An Application towards Cyber-

Security. https://doi.org/10.1145/3542954.3542984. 

Raharjo, D.H.K. and Salman, N.M. (2023) 'ANALYZING SURICATA ALERT DETECTION 

PERFORMANCE ISSUES BASED ON ACTIVE INDICATOR OF COMPROMISE RULES,' 

Jurnal Teknik Informatika, 4(3), pp. 601–610. https://doi.org/10.52436/1.jutif.2023.4.3.1013. 

Saive, R. and Saive, R. (2022) Suricata - Intrusion Detection and Prevention Security Tool. 

https://www.tecmint.com/suricata-intrusion-detection-prevention-linux/. 

Sharma, N.V. et al. (2021) 'Performance study of SnOrT and Suricata for Intrusion Detection 

System,' IOP Conference Series. Materials Science and Engineering, 1099(1), p. 012009. 

https://doi.org/10.1088/1757-899x/1099/1/012009. 

St. John, M. (2024). Cybersecurity Stats: Facts And Figures You Should Know. [online] Forbes 

Advisor. Available at: https://www.forbes.com/advisor/education/it-and-tech/cybersecurity-

statistics/#:~:text=As%20the%20globe%20becomes%20more,%25%2C%20surpassing%20the%20

previous%20record. [Accessed 17 Apr. 2024]. 

Veerasingam, P. et al. (2023) 'INTRUSION DETECTION AND PREVENTION SYSTEM IN 

SME’S LOCAL NETWORK BY USING SURICATA,' Malaysian Journal of Computing and 

Applied Mathematics, 6(1), pp. 21–30. https://doi.org/10.37231/myjcam.2023.6.1.88. 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.37231/myjcam.2023.6.1.88

	1 Introduction
	1.1 Background
	1.2 Problem Definition

	2 Literature review
	2.1 IDS based on machine learning
	2.2 Signature based anomaly detection tools
	2.3 Intrusion detection using Suricata
	2.4 Summary

	3 Methodology
	3.1 Setting up the virtual machines
	3.2 Suricata Installation
	3.3 Network Interface Configuration Setup
	3.4 Setting up rules
	3.5 Email Sending and Uploading to Google Drive

	4 Design Specification
	4.1 Suricata

	5 Implementation
	6 Results and Evaluation
	6.1 Results
	6.2 Evaluation

	7 Conclusion and future enhancements
	References

