~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Master of Science in Cybersecurity

Dinal Varma
Student ID: 23241021

School of Computing
National College of Ireland

Supervisor:  Dr. Evgeniia Jayasekera




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Dinal Varma
Student ID: 23241021
Programme: Master of Science in Cybersecurity
Year: 2024
Module: MSc Research Project
Supervisor: Dr. Evgeniia Jayasekera
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 1483
Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Dinal Sunil Varma

Date: 10th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Dinal Varma
23241021

1 Introduction

This configuration manual serves as a guide to assist in setting up the project and re-
producing the outcomes. This document contains references to all of the code libraries,
hardware specs, and software specifications used in the artefact’s implementation. This
configuration manual is a key component of the research and the proposed concept along
with the implementation and the setup on the cloud.

2 Hardware and Software Specifications

2.1 Hardware Specifications
e Operating system: Windows 11 Home
e Processor: Intel i5-12500H CPU @ 2.50GHz
e System Type: 64-bit operating system, x64-based processor
e Hard Disk: 512GB SSD

e Installed physical memory RAM: 16GB

2.2 Software Specifications

e Visual Studio Code (IDE)
e Python (version = 3.11.5)

e Jupyter Notebook (version = 7.3.0)

3 Dataset Information and Collection

The dataset used in this research is public repository - Cybersecurity: Suspicious Web
Threat Interactions |JanCSG| (2024)). The data can be directly downloaded from the link
provided and to be stored in the appropriate folder where the files reside. Web traffic
records gathered by AWS CloudWatch are included in this dataset in order to identify
suspicious activity and possible attack attempts. In order to find unusual patterns, the
data was created by tracking traffic to a production web server using a variety of detection
methods.



4 Python Libraries Used

The following python libraries were used overall to develop and train the machine learning
model along with the web application and the log consumer script:

Library Version
pandas 2.2.3
numpy 2.0.2
seaborn 0.13.2
matplotlib 3.9.3
networkx 3.4.2
joblib 1.4.2

scikit-learn 1.5.2
tensorflow 2.18.0

keras 3.7.0
flask 3.1.0
geoip2 4.8.1
python-dotenv | 1.0.1
boto3 1.35.76

Table 1: Python Libraries

Optional: To install all the above requirements in one go, please run the following com-
mand (ensure ‘requirements.txt’ file provided in the artefact is present in the same dir-

ectory):

pip install -r requirements.txt

5 Data Preprocessing and Generation

Synthetic Data Generation was employed to simulate potential normal behaviours because
the dataset only includes suspicious data. To address this issue and to enhance the dataset
synthetic normal traffic data was generated to balance the dataset, simulating realistic

web traffic patterns using the code below in Figure [1}

np.random. choice([np.random ( np.random. lognormal(9, 1), np.rand
np. random. choice( [np. rando . np.randon. lognormal(9, 1), np.ran

‘waf_rule’, ‘no_detection'], num_entries),

)

ion_time'1).dt. total_seconds()

- _ (non_malicious_indi
sample_indices, 'bytes_out'].values * np.random.uniform(o on_malicious_indices))

_data[ ‘bytes_in'] * np.randon.uniforn conbined_data))
out'] * np. random. uni ol ombined_data))

Figure 1: Synthetic Data Generation



The data preprocessing involved removing the duplicates and the addition of a new feature
column called "duration_seconds’ as shown in Figure [2| below:

df_unique = data.
df_unique['creation_time'] = pd. ime(df_unique['creation_time'])
df_unique['end_time'] = pd.t time(df_unique['end_time'])
df_unique['src_ip_country_code'] = df_unique['src_ip_country_code'].str.upper()
print("Unique Datasets Informati

6 df_unique.info()

Unique Datasets Information:
<class 'pandas.core.frame.DataFrame’'>
RangeIndex: 10282 entries, @ to 10281

Data columns (total 19 columns):

‘Column Non-Null Count Dtype

Unname: 10282 non-null int64

bytes_. 10282 non-null float64
bytes_out 10282 non-null float64
creation_time 10282 non-null datetime64[ns]
end_time 10282 non-null datetime64[ns]
src_ip 10282 non-null object
src_ip_country_code 10282 non-null object
protocol 10282 non-null object
response.code 10282 non-null int64
dst_port 10282 non-null int64

dst_ip 10282 non-null object
rule_names 10282 non-null object
observation_name 10282 non-null object
source.meta 10282 non-null object
source.name 10282 non-null object

time 10282 non-null object
detection_types 10282 non-null object
duration 10282 non-null float64

label 10282 non-null int64

dtypes: datetime64[ns](2), float64(3), int64(4), object(1e)
memory usage: 1.5+ MB

#
0
1
2
3
4
5
6
7
8
9

2 df_unique['duration_seconds'] = (df_unique['end_time'] - df_unique['creation_time']).dt.

Figure 2: Data Preprocessing

scaler = StandardsScaler()
scaled_features = scaler.fit_transform(df_unique[['bytes_in', 'bytes_out', 'duration_seconds']])

encoder = OneHotEncoder [ t=
enc_features = encoder.fit_transform(df_unique[['src_ip_country_code']])

scaled_columns = ['scaled_bytes_in', 'scaled_bytes_out', 'scaled_duration_seconds']
enc_columns = encoder ['src_ip_country_code'])

scaled_df = pd.DataFrame(scaled_features caled_columns, dex=df_unique.index)
encoded_df = pd.DataFrame(enc_features, co =enc_columns, index=df_unique.index)

transformed_df wcat([df_unique, scaled_df, encoded_df], axis=1)
transformed_df.

Figure 3: Data Preprocessing - Encoding

6 Exploratory Data Analysis

The following code demonstrate the Exploratory Data Analysis Process that was followed
to gain initial insights about the dataset and to check the distribution, correlation of the
data at hand and proceed accordingly:

corr_df = transformed_df. include=["float64', "int64'])
corr_mat

t (corr_mat, rue ".2f", cmap="coolwarm')
plt.title('Correlation Matrix Heatmap')
6 plt.show()

Figure 4: Correlation Matrix Code



1 plt.figure(figsize=(8, 8))
data[ 'src_ip_country_code'].value_counts().plot(kind="pie', autopct='%1.1f%%', startangle=140, cmap='tabi@')
"Source IP Country Codes Distribution')

)

Figure 5: Pie Chart Generation

data['creation_time'] = pd.to_datetime(data['creation_time'])
data.set_index('creation_time', inplace=True)

=(11, )
index, data['bytes_in"], label="Bytes In', mark
ot(data.index, data['bytes out'], label='Bytes Out', ma
tle('Web Traffic Analysis Over Time')

id{(True)
(rotation=45)

ut()

(14, 10))

with_labels=True, node_si Fe 51, 8, node_color="skyblue', font_color="'darkblue')
plt.title('Network Interaction between Source and Destination IPs')
plt.axis('off")
pl )

Figure 7: Network Graph Code

1 plt.figure(figsize=(11, )
sns.histplot(data['duration'], kde=True, color='blue")
plt.title('Duration distribution')

1('Duration (seconds)"')
1('Frequency')

Figure 8: Histogram of Duration Distribution

7 Machine Learning Models

The following Machine Learning Models were used to test and evaluate their performance
on the dataset.



7.1 Isolation Forest

iso_forest = IsolationForest(contamination=0.2, random_state
3 iso_forest.fit(x)

/ 0s

IsclationForest ee

IsclationForest (contamination=0.2, random state=42)

Figure 9: Isolation Forest Model

7.2 Random Forest

rf = RandomForestClassifier(n estimators=50, random state
2 rf.fit(x, y)
’ 04s

RandomForestClassifier o0

RandomForestClassifier(n_estimators=50, random state=42)

Figure 10: Random Forest Model

7.3 Support Vector Classifier (SVC)

model _svc = SVC(kernel="rbf', random_
2 model_svc.fit(X, y)

Figure 11: Support Vector Classifier (SVC) Model

7.4 Gradient Boosting

grad_boost = GradientBoostingClassifier(random_state=42)
2 grad_boost.fit(X, y)
1is

GradientBoostingClassifier ee

ier (random state=42)

Figure 12: Gradient Boosting Model



7.5 Neural Network

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

model = Sequential([
'relu’, input_shape=(X_train.shape[1],)),
‘relu’),
tion="relu'),
Dense(1, activation='sigmoid')
D
model.compile(optimizer:
inaryCrossentropy

BinaryAccuracy()])

history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epoch. , batch_size=1024, verbose=1)

Figure 13: Basic Neural Network Model

tuned_model = Sequential([
Dense(128, input_shape=(X_train_prepared.shape[1],), activation='relu', kernel_regularizer=12(0.01)),
BatchNormalization(),
B
activation="'relu', kernel_regularizer=12(0.01)),
BatchNormalization(),

activation="'relu', kernel_regularizer=12(0.01)),
Dropout R
pense(1, activation='sigmoid')

i)

tuned_model.compile( optimizer-Adam( learning rat loss="binary_crossentropy', metrics=['accuracy'])

history = tuned_model.fit(X_train_prepared, y_train, epochs=50, validation_data=(X_val_prepared, y_val))

Figure 14: Fine Tuned Neural Network Model

8 Experimental Setup

This section gives the step by step for setting up and deploying the system on the AWS
Cloud environment along with the services essential for running of the prediction and
alerting script.

8.1 Web-Application

The web application was developed using Flask framework since it is a lightweight web
framework which is easy to deploy and integrates easily with other web technologies. The
one html page was developed as a prototype to simulate the web application and was
served using Flask

The basic flask code for setting up 2 API Endpoints is defined in the Figure [15] below. It
also includes setup for logging with ‘traffic.log’ file containing all of the application logs.



t os
t time
t logging
t datetime
1 flask 1 t Flask, request,
t geoip2.webservice

*fapi’, methods=['GET','POST"])
1 api():

incoming data = request.g j ()

5)

return jsonify(incoming data),

if __pame__ = "__
app.run(debug=

Figure 15: Basic Flask Web Application Code

The Flask framework also provides with a inbuilt way to log each request through the
‘@app.before_request’ and ‘Qapp.after_request’ decorators as seen in the Figure [16| below:

0

.direct_passthrough:
e.direct_passthrough = Fa

bytes_in = request.headers (*content-Length

bytes_out = len(response.get_data(as text=Tr

src_ip = request.remote_addr

protocol = request.scheme

response_code = ponse.status_code

dst_port = 443 if protocol = "HTTPS

end_time = datetime.datetime ()

duration = (end_time - request.start_time).total_secnnds()

try:

with geoip2.webservice.Client(GEOTP_ Y, host='geolite.info') as client:
geo_response = client. t

src_ip_country_code = geo_response.country.iso_code

t geoip2.errors.AddressNotFoundError:

src_ip_country_code = 'Unknown'

log_entry f* _in={ src_ip}, src_ip_country_cod rc_ip_country code}, "
f st_port={dst_port}, duration uration}")

app.logger.info
t Exception
app.logger.

urn response

Figure 16: Flask Request Logging



8.2 GeolP Service

For getting the country code from the incoming IP Address, a service called ‘GeolP’
MaxMind, (no date) was utilized. Below show the steps to get the ‘Account ID’ and

‘LICENSE_KEY

1. Go to Maxmind websitel and create a free account

2. On the account dashboard, go to ‘Manage License Keys’ section and click on ‘Gen-

erate New license key* to generate and get the license key.

3. Note down the ‘Account ID’ and ‘LICENSE_KEY’ from this page and replace

the values in the flask code as seen in the figure [15| above.

8.3 Prediction and Alerting Script

This script loads the final model and model preprocessor pipeline from the AWS S3
Bucket and constantly reads the AWS Cloudwatch logs from the log group specified to
run the models on the incoming data to detect if the incoming logs are anamolous or
not and if the model predicts them to be anamolous, then it sends out an email to the
concerned stakeholders using the ‘send_email’ function that utlizes the Mailgun Email

Service to send emails.

session = boto3.Session(region_name AWS_REGION_NAME"),

"AWS_ACCESS_KEY_ID"),
AWS_ACCESS_SECRET_KEY"))

log_group_name = 'MyAppTrafficlLogs'
logs_client = session.client('logs"')

downloads = {

ttps://zerodaymlmodel.s3.ap-south-1.amazonaws.com/final_model.keras",
./final_model.keras"

"preprocessor”:{

H httbs ://zerodaymlmodel.s3.ap-south-1.amazonaws.com/preprocessor.joblib",
"./preprocessor.joblib"

p, df):
/("MAILGUN_API_KEY")
"MATLGUN_API_DOMAIN")
RECIPIENT_EMAIL")

fidence = int(rou onfidence, * 100)

tamp = datetime.f estamp/ 1

detail_dict = {

}

details

"Source Ip": ['src_ip'].item(),

"Country Code of incoming request": df['src_ip_country_code'].item(),
"Incoming Bytes": df['bytes_in'].item()

"Outgoing Bytes": df['bytes_out'].ite

"puration of the connection/request”: df 'duration'].item()} seconds",
"Response Code": df[ 'response.code’].item(),

"Protocol": df['protocol'].item(),

"\n".join([f"{key}: {value}" for key, value in detail_dict.items()])

message = (

f"There has been a suspicious activity on the website with a confidence score of {
f"Please log in to the website and check the logs of the incoming request at time
f"Details of the activity:\n{details}"

Figure 17: Alerting Script


https://www.maxmind.com/en/home

or name,
url = item['url']
path = item['path']
if not url:
print(f"URL for {name} is missing.")
ontinue
t os.path i (path):
print(f"Downloading {name} from {url} to {pat
response = requests.
if response.status_code
with n(path, 'wb') f:
e(response.content)
prin L ()} downloaded successfully.™)

rint(f"Failed to download {name}. Status code: {response.status_cod

model = load_model(downloads|'model” ][ "path’])
preprocessor = joblib. (downloads[ 'preprocesso

processed_event_hashes = set()

response = logs_client.describe_log_streams(

if not response['logStreams’']:
logging. "No log streams found.")
time.
ntinue

latest_log_stream = response['logStreams'][0]['logStreamName’]

events_response = logs_client.get_log events(
logGroupName=1o

Figure 18: Alerting Script

events - events_response.get('events', [])
if events:
f event in events:
timestamp = event['timestamp']
message = event['message’']
event_hash = hashlib. f*{timestamp}-{message}".
if event_hash in processed_event_hashes:

processed_event_hashes.add(event_hash)
if 'bytes_in=" t in message:

cols = ['bytes_in', 'bytes_out', 'src_ip', 'src_ip_country code®, 'protocol’, 'response.code', 'dst_port', 'duration’
matches = re.f e (Ve \ o N | \ws )= ([ \wA\ . ]+)", message)

log_data {key: value.strip( key, value in matches}

log_data {col: log_data.get(col, None) for col in cols}

df = pd.DataFrame([log_datal)
numeric_cols = ['bytes_in', 'bytes_out', 'response.code’, 'dst_port', 'duration']
f col in numeric_col:

df[col] = pd. umeric(df[col], errors='coerce')

transformed_record = preprocessor.transform(df)
prediction = model.predict(transformed_record, ve

if prediction[e][e]
confidence - prediction[0][6]

logging fo ALERT: Suspicious ivity detected! Confidence: {confidence:
il(confidence, timestamp, df)

confidence = 1 - prediction[e][0]
i Normal activity. Confidence: onfidence

e:
rror(f"An error occurred:

p(10)

Figure 19: Alerting Script



8.4 Mailgun Email Service

For sending the alerting emails in case of suspicious behaviour, Mailgun
date) was utlized which provides an easy way to send emails. The following steps allow
to create an account and obtain the ‘API_.KEY’ and ‘DOMAIN':

1. Create a free account on the mailgun website
2. On the dashboard page, click on ‘API Keys‘ as shown below:

““““ . i — Dinal Varma
@ iaigun B o == QX
<
# Getstarted D Good evening, Dinal Varma!
# Dashboard

4 send

. 6116 : S
& optimize v Q% velverea ;}F e = PRV
- 100% °% 0% Wl 0%
= validate - o
Sending overview R N VR Dinal Varma \/"\\
Account Stings O

Plan detalls
| Mailgun Plan:

Emai sent 16 013K
Validations: 00f0

Dedicated IPs: 0010

Log retention: 1 day

Upgrade plan

m Sending domains  Openlickels  Dedicated IPs
B o

Figure 20: Mailgun Dashboard

3. Then click on ‘Add new Key’ button to generate API_KEY and save it.

4. Next, on the dashboard home page, click on the ‘Sending’ submenu from the left
sidebar and open ‘Domains’ tab. Here, a default Sandbox domain will be created.

5. Next, inorder to send emails using this sandbox, the recipient needs to be verified:

Domain sandbox70c739d9ac8d43  «

Authorized Recipients

Email address*

bob@gmail.com

varmadinal@gmail.com
Verified

6 APl keys

0 Help center

o¢
oo APl documentation

Figure 21: Mailgun Email Verify

6. Replace the ‘API_.KEY’ and ‘DOMAIN’ obtained from above steps in the script to
start sending /receiving emails.

10



8.5 Amazon Web Services (AWS) Setup and Deployment

For the system deployment, Amazon Web Service (AWS) Cloud was chosen to setup and
deploy the web application along with the prediction and alerting script as well. Below
steps show the process to setup and deploy the Flask based Web-application used in this
research as mentioned above:

AWS EC2 Instance Configuration:

1. Create an Free account on Amazon AWS Cloud |AWS| (no date)

2. Search for the EC2 service from the services tab and click on ‘Launch Instance
Button’ to create and start an EC2 Instance.

3. On the screen, give the server a name and choose the ‘Amazon Linux 2023 AMI’
instance image which is free tier eligible:

EC2 > Instances > Launch an instance (6]

Launch an instance i

Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by following the
simple steps below. Number of instances | Info

G )

Software Image (AM1)

v Summary

Name and tags info

Name

| eg. My web Server | Add additional tags
Virtual server type (instance type)
t2.micro

v Application and OS Images (Amazon Machine Image) info Firewall (security group)

An AMI is a template that contains the software configuration (operating system, application server, and applications) required

to launch your instance. Search or Browse for AMIs if you don't see what you are looking for below Storage (volumes)

| Q Search our full catalog including 1000s of application and OS images

® Free tier: In your first year includes 750~ X
Recents Quick Start hours of t2.micro (or t3.micro in the
_—— Regions in which t2.micro is

- - unavailable) instance usage on free tier
Amazon mac0s Ubuntu Windows RedHat || SUSELinux || € Q AMIs per month, 750 hours of public
inee Browse more AMIS 1Pv4 address usage per month, 30 Gi
— > g A of EBS storage, 2 million I0s, 1 GB of
. . S ncluding AMIs from <
aws '8 ubuntu® || B8 Microsoft || o meaiat o= pduding e o, cnanchate and 10 GR f handwidth o
Mac Suse the Community
Cancel Launch instance
AAmazon Machine Image (AMI) 57 Preview code
Amazon Linux 2023 AMI Free tier eligible ‘

Figure 22: Launch an Amazon EC2 Instance

4. Next, choose ‘t2.micro’ as the instance type which is included in the free tier. And
also, create a new Key pair of type RSA and ‘.pem’ type extension for connecting
to the ec2 instance as shown below:

11



Create key pair

Key pair name
Key pairs allow you to connect to your nstance securely.

[ Enter key pair name

The name can include up to 255 ASCI characters. It can't include leading or trailing spaces.

Key pair type

O RSA O ED25519 ]

RSA encrypted private and public key ED25519 encrypted private and public
pair key pair

Private key file format
O pem

For use with OpenSSH

O ppk

For use with PuTTY

your computer. You will need it later to connect to your instance. Learn

£\ When prompted, store the private key in a secure and accessible location on
more [2

Figure 23: Create Key Pair to connect to EC2 Instance

5. For the ‘Network Settings’, choose ‘Create security Group’ and enable SSH
traffic from your TP Address (If known) or anywhere and also ensure you enable
‘HTTP’” and ‘HTTPS’ traffic to allow traffic to connect to the EC2 instance via

web-application.

¥ Network settings info

Network Info

vpc-004389e0e41315fel

Subnet Info

No preference (Default subnet in any availability zone)
Auto-assign public IP Info

Enable

Additional charges apply when outside of free tier allowance

Firewall (security groups) | info
A security group is a set of firewall rules that control the traffic for your instance. Add rules to allow specific traffic to reach your instance.

[ © Create security group ] [ (O Select existing security group ]

We'll create a new security group called 'launch-wizard-2' with the following rules:

Allow SSH traffic from [ Anywhere v ]

Helps you connect to your instance 0.0.0.0/0

Allow HTTPS traffic from the internet
To set up an endpoint, for example when creating a web server

Allow HTTP traffic from the internet
To set up an endpoint, for example when creating a web server

/N Rules with source of 0.0.0.0/0 allow all IP addresses to access your instance. We recommend setting security X
group rules to allow access from known IP addresses only.

Figure 24: Network Settings for EC2

6. Now click on ‘Launch Instance’ and the instance will now be ready and up and
running to be connected.

7. On newly created instance page, go to ‘Actions’ and select ‘Security’ and then click
on ‘Modify TAM Role’.

8. Click on ‘Create new IAM Role’ Option as shown below:

12



Modify IAM role i

Attach an IAM role to your instance.

Instance ID
ID3 i-030aee5f33a121ac8 (webserver)

IAM role
Select an 1AM role to attach to your instance or create a new role if you haven't created any. The role you select replaces any roles that are currentlf attached to your instance.
[ No IAM Role v ] @ Create new IAM role [2

Figure 25: Modify IAM Role Screen

9. On the next screen, click on ‘Create Role” option and assign the below trusted entiry

and use cases:

= 1AM > Roles > Create role

Step 1
(@ Select trusted entity

Step 2
Add permissions

Step 3
Narne, review, and create

Select trusted entity i+

Trusted entity type

© AWS service
Allow AWS services like EC2,
Lambda, or others to perform
actions in this account.

O AWS account
Allow entities in other AWS
accounts belonging to you or a 3rd
party to perform actions in this
account.

O Web identity
Allows users federated by the
specified external web identity
provider to assume this role to
perform actions in this account.

(O SAML 2.0 federation
Allow users federated with SAML
2.0 from a corporate directory to
perform actions in this account.

() Custom trust policy
Create a custom trust policy to
enable others to perform actions
in this account.

Use case

Allow an AWS service like EC2, Lambda, or others to perform actions in this account.

Service or use case
(ke v

Choose a use case for the specified service.
Use case

[« Q=)

Allows EC2 instances to call AWS services on your behalf.

Figure 26: Create IAM Role

10. For the permissions on the next screen, search for ‘Cloudwatch’ in the search bar
and select the below permission policy shown:

Add permissions i

Permissions policies (1/1017) info @
Choose one or more policies to attach to your new role.
Filter by Type
(@ doudwater %] ( All types v ] 37 matches 12y @
B  Policy name [2 a | Type v Description
[ @ ¥ AmazonAPIGatewayPushToCloudWatchLogs AWS managed Allows API Gateway to push logs to user's account. ]

il AmazonCloudWatchEvidentlyFullAccess AWS managed Provides full only access to Amazon CloudWatch Evidently. Also provides access to rel...

W AmazonCloudWatchEvidentlyReadOnlyAccess AWS managed Provides read only access to Amazon CloudWatch Evidently
W AmazonCloudWatchRUMFullAccess AWS managed Grants full access permissions for the Amazon CloudWatch RUM service
¥ AmazonCloudWatchRUMReadOnlyAccess AWS managed Grants read only permissions for the Amazon CloudWatch RUM service

il AmazonDMSCloudWatchLogsRole AWS managed Provides access to upload DMS replication logs to cloudwatch logs in customer accou...

000000
B B EEEE

1 AmazonGrafanaCloudWatchAccess AWS managed “This policy grants access to Amazon CloudWatch and the dependencies needed to us...

Figure 27: Assign Permission Policy to IAM Role

11. Review the details and provide a name for the Role created:

13



Name, review, and create

Role details

Role name
Enter a meaningful name to identify this role

{ EC2Role

Maximum 64 characters. Use alphanumeric and "+=,.@-_' char

Description
Add a short explanation for this role.

racters

Allows EC2 instances to call AWS services on your behalf.

Maximum 1000 characters. Use letters (A-Z and a-z), numbers (0-8), tabs, new lines, or any of the following characters: _+=,. @-/\[()#$%*(;"

Step 1: Select trusted entities

Trust policy

1-{

2 "Version": "2012-18-17",
3+ "Statement™: [

4o {

7 "sts:AssumeRole"

“Principal”: {
"Service": [
"ec2.amazonaws.com"
12 1

Figure 28: TAM Role Review

12. Click on ‘Create Role’ to save the role and create the new Role attached to the EC2

instance created earlier.

13. Verify on the EC2 instance settings that this newly created Role is now attached
to the EC2 instance screen:

Instance summary for i-030aee5f33a121ac8 (webserver) info

Updated 29 minutes ago
Instance ID

[0 i-030aee5f33a121ac8

IPv6 address

Hostname type
IP name: ip-172-31-37-10.ap-south-1.compute.internal

Answer private resource DNS name
1Pv4 (A)

Auto-assigned IP address

1AM Role
[0 EC2_ROLE [2

IMDSv2
Required

Operator

Details Status and alarms Monitoring

v Security details

1AM Role
I5 EC2_ROLE [2

Security groups

T6 sg-0346a2b0b6ec74b7 (launch-wizard-1)

Public IPv4 address

Instance state
© Stopped

Private IP DNS name (IPv4 only)
[5 ip-172-31-37-10.ap-south-1.compute.internal

Instance type
12.micro

VPCID
I5) vpc-004389e0e41315fe1 [2

Subnet ID
I5) subnet-093110986dcd80319 [2

Instance ARN
I_D arn:aws:ec2:ap-south-1:212829096712:instance/i-030aee
5f33a121ac8

Security | Networking = Storage | Tags
Owner ID

15 212829096712

© Coomenr ) Cinstancesate v

Private IPv4 addresses
0 172.31.37.10

Public IPv4 DNS

Elastic IP addresses

AWS Compute Optimizer finding

@® Opt-in to AWS Compute Optimizer for recommendations. |

Learn more [2

Auto Scaling Group name

Managed
false

Launch time
Thu Dec 05 2024 14:28:03 GMT+0000 (Greenwich Mean Time)

Figure 29: EC2 Instance IAM Role Details

Security Groups Configuration:
Go to the newly created EC2 instance and click on the security group assigned to it.

1. Ensure the ‘Inbound rules’ match the below configuration:

14



sg-0346a2b0b6ec174b7 - launch-wizard-1

Details

Security group name
@ launch-wizard-1

Owner
[ 212829096712

Security group ID
0 sg-0346a2b0b6ec174b7

Inbound rules count
4 Permission entries

Description

0 launch-wizard-1 created 2024-11-

16T20:41:38.745Z

Outbound rules count
1 Permission entry

Actions !

VPCID
6] vpc-004389e0e41315fe1 [2

Inbound rules Outbound rules Sharing-new  VPCassociations-new  Tags
Inbound rules (4) @ Manage tags ) ( Edit inbound rules
(Q search ) 1 ]
[J | Name v | SecuritygrouprulelD v | IPversion v | Type v | Protocol ¥ | Portrange v | Source v Description v
o - sgr-Offaad37f95526c00 1Pva HTTP TP 80 0.0.0.0/0 -
o - sqr-071eafae348651556 1Pv4 HTTPS. TP 443 0.0.0.0/0 -
o - sqr-0b21021fff294e18a 1Pva Custom TCP TP 5000 0.0.0.0/0 -
o - sgr-0518ea7913f5f8b6d 1Pv4 SSH TP 22 0.0.0.0/0 -

Figure 30: Inbound Rules for Security Groups

2. ‘Outbound rules’ configuration to allow server to send traffic to anywhere:

_

sg-0346a2b0b6ec174b7 - launch-wizard-1

Details

VPCID
I vpc-004389e0ed1315fe1 [2

Description
fE] launch-wizard-1 created 2024-11-
16T20:41:38.745Z

Security group name
1§ launch-wizard-1

Security group ID
fE] 5g-0346a2b0b6ec174b7

Outbound rules count
1 Permission entry

Inbound rules count
4 Permission entries

Owner
6 212829096712

Inbound rules Outbound rules Sharing - new VPC associations - new Tags

Outbound rules (1) @ Manage tags Edit outbound rules

[ Q Search ] 1 [
(J | Name v | SecuritygrouprulelD v | IPversion v | Type v | Protocol ¥ | Portrange v | Destination v | Description v
o - sgr-008428dd6e12511ed  IPva All traffic Al All 0.0.00/0 -

Figure 31: Outbound Rules for Security Groups

Access Key ID AND Secret Configuration:
To obtain the ‘Access Key ID’ and ‘Secret’ for a user, a new user to be created using the
steps below:

1. Go to ‘IAM’ service in the account and click on ‘Users’ on the left submenu.

2. Click on ‘Create User’ button and specify the User details like below:

Step 1

@ Specify user details Specify user details
Step 2
Set permissions. .
User details
Step3
User name
Review and create
[ Ec2_ROle ]

The user name can have up to 64 characters. Valid characters: A-Z, a-z,0-9, and + =, . @ _ - (hyphen)

[ Provide user access to the AWS Management Console - optional
If you're providing console access to a person, it's a best practice [2 to manage their access in IAM Identity
Center.

@ If you are creating programmatic access through access keys or service-specific credentials for AWS CodeCommit or Amazon Keyspaces,
'you can generate them after you create this IAM user. Learn more [2

Cancel Next

Figure 32: Create a IAM User

15



3. For the permissions on the next screen, search for ‘Cloudwatch’ in the search bar
and select the below permission policy shown:

Set permissions

Add user to an existing group or create a new one. Using groups is a best-practice way to manage user's permissions by job functions. Learn more [

Permissions options
(O Add user to group () Copy permissions © Attach policies directly
Add user to an existing group, or create a new Copy all group memberships, attached Attach a managed policy directly to a user. As
group. We recommend using groups to rmanaged policies, and inline policies from an a best practice, we recommend attaching
manage user permissions by job function. existing user. policies to a group instead. Then, add the user

to the appropriate group.

Permissions policies (1/1314) ©

Choose one or more policies to attach to your new user.

Filter by Type

[ Q. cloudwatch X ] { All types v } 52 matches 12 3 > | @
[-] Policy name [2 A Type v Attached ent... ¥
[ [ # AmazonAPIGatewayPushToCloudWatchLogs AWS managed 2 ]
O 1 AmazonCloudWatchEvidentlyFullAccess AWS managed 0
O = i AmazonCloudWatch EvidentlyReadOnlyAccess AWS managed 0

Figure 33: TAM User Permissions

4. Go to this newly created user and go to ‘Security Credentials’ tab, scroll down
to ‘Access keys” and click on ‘Create access key’ and select the use case as shown
below:

Step 1 . .
(@ Access key best practices & Access key best practices & alternatives i

alternatives Avoid using long-term credentials like access keys to improve your security. Consider the following use cases and

alternatives.
Step 2 - optional

Set description tag

s Use case
Retrieve access keys © Command Line Interface (CLI)
You plan to use this access key to enable the AWS CLI to access your AWS
account.
O Local code

You plan to use this access key to enable application code in a local
development environment to access your AWS account.

O Application running on an AWS compute service
You plan to use this access key to enable application code running on an AWS
compute service like Amazon EC2, Amazon ECS, or AWS Lambda to access your
AWS account.

O Third-party service
You plan to use this access key to enable access for a third-party application or
service that monitors or manages your AWS resources.

O Application running outside AWS
You plan to use this access key to authenticate workloads running in your data
center or other infrastructure outside of AWS that needs to access your AWS
resources.

O oOther

Your use case is not listed here.

Figure 34: Create Access Key

5. The Access key ID and secret key are shown in the page, note them down for use
in the prediction and alerting script:

16



@ Access key created

This is the only time that the secret access key can be viewed or downloaded. You cannot recover it later. However, you can create a new access key any time.

Step 1
@ Access key best practices & Retrieve access keys i
alternatives
Step 2 - optional Access key
@ Setdescription tag If you lose or forget your secret access key, you cannot retrieve it. Instead, create a new access key and make the old
key inactive.
Step 3
(@ Retrieve access keys Access key Secret access key
[ AKIATDDM2JMEJHETNGPI [ Show

Access key best practices

= Never store your access key in plain text, in a code repository, or in code.
« Disable or delete access key when no longer needed.

« Enable least-privilege permissions.

- Rotate access keys regularly.

For more details about managing access keys, see the best practices for managing AWS access keys.

Download .csv file Done

Figure 35: TAM Role Access Key ID and Secret

AWS Cloudwatch Logs Configuration:
To configure the AWS Cloudwatch to get the incoming logs from the webapplication
hosted on EC2 instance, follow the steps below:

1. Go to the ‘Cloudwatch Management Console’ in AWS dashboard and open the ‘Log
Groups’ Screen.

2. Create a new Log Group on the section as shown below:

Create log group

Log group details info

(@ CloudWatch Logs offers two log classes: Standard and Infrequent Access. Learn more about the features
offered by each log class. [2

Log group name

Retention setting

[ Never expire v ]

Log class  Info

[ Standard v ]

KMS key ARN - optional

[ )

Tags
A tag is a label that you assign to an Amazon Web Services resource. Each tag consists of a key and an optional value.
You can use tags to search and filter your resources or track your Amazon Web Services costs.

No tags are associated with this log group.

Add new tag

¥ou can add up to 50 more tag(s).

Cancel Create

Figure 36: Cloudwatch Create Log Group

17



3. Click on the newly created ‘Log Group’ and then create a new ‘Log Stream’.

Create log stream

Log stream name

[ 030aee5f33a121ac8/traffic.log

o

Figure 37: Log Stream Creation

4. The cloudwatch logs setup is now completed

Running the Web-Application:
For running the web-application on AWS EC2 instance created, follow the below steps:

1. Connect to the EC2 Instance using any terminal by copying the connect command
from ‘connect’ tab of the EC2 instance created:

Connect to instance i

Connect to your instance i-030aee5f33a121ac8 (webserver) using any of these options
EC2 Instance Connect Session Manager SSH client EC2 serial console

Instance ID
[E) i-030aee5f33a121ac8 (webserver)

1. Open an SSH client.
2. Locate your private key file. The key used to launch this instance is webserver_key.pem
3. Run this command, if necessary, to ensure your key is not publicly viewable.

IE] chmod 400 "webserver_key.pem”
4. Connect to your instance using its Public DNS:

[0 ec2-3-109-49-241.ap-south-1.compute.amazonaws.com

Example:

[0 ssh -i "webserver_key.pem" ec2-user@ec2-3-109-49-241.ap-south-1.compute.amazonaws.com

[ @ Note: In most cases, the guessed username is correct. However, read your AMI usage instructions to check if the AMI owner has changed the default AMI username. ]
Cancel

Figure 38: Connect to EC2 Instance

2. Copy the ‘flask_app’ folder into the ec2 instance home directory.

[ec2-u5er@ip:1?2-31-3?-1@ ~]$ cd flask_aﬁp/
[ec2-user@ip-172-31-37-10 flask _appl$ 1s

app.py cloudwatch-config.json traffic.log
[ec2-user@ip-172-31-37-10 flask_appl$ i

Figure 39: EC2 Instance Flask Directory

3. Next, cd into the ‘flask_app’ folder and install the python pip and other dependent
libraries using the commands below:

[ec2-user@ip-172 37-10 flask appl$ sudo yum install python3-pip -y
Last metadata expiration check: 12:14 ago on Sun Dec 8 19:04:01 2024.
Package python3-pip-21.3.1-2.amzn2 .0.9.noarch 1s already installed.
Dependencies resolved.

Nothing to do.
Complete!
[ec2-user@ip-172-31-37-10 flask appl$ pip3 install -r reguirements.txt

Figure 40: Install pip and python libraries

18



4. After installation, the next step is to put flask as a system service that starts on
any reboot or keeps running as a service. For this copy the file contents of the file
‘flask_app.service’ and run the following command to open vim editor and paste the
file contents inside this service file:

‘sudo vim /etc/systemd/system/flask_app.service’

Figure 41: Flask Service Code

5. Next, run the command below to enable the flask service to start and to keep
running in background:

‘sudo systemctl enable flask_app’

6. Then run the system daemon reload command for the changes to take effect:
‘sudo systemctl daemon-reload’

7. Next, start the flask service using the command ‘start’ and verify its status:

‘sudo systemctl start flask_app’
‘sudo systemctl status flask_app’

Verify the status of the flask service:

[ec2-user@ip-172-31-37-10 flask app]$ sudo systemctl status flask app
service - Gunicorn instance to serve
‘temd/system/flask_aj ; preset: disabled)
u since Sun 2024-12- 103:55 U min ago
996 (gunicern
11 (limit: 1113)
158.60M
4.301s
p: /system.slice/flask app.service

-1.compute. internal systemd : Starting s pp rvice - Gunicorn instance to serve Flask app
-1.compute. internal systemd[1]: sk_app. - Gunicorn instance to serve Flask apy
-1.compute. internal gunicorn 24-12-0 [INFO] Starting gunico .0
-1.compute. internal gunicorn t
-1.compute. internal gunicorn

-1.compute. internal gunicorn

-1.compute. internal gunicorn

-1.compute. internal gunicorn

Figure 42: Flask Service Status

8. To configure the cloudwatch agent, use the file ‘cloudwatch-config.json’ provided
below:

19



"logs": {
"logs_collected": {
"files": {
"collect_list": [{
"file_path": "/home/ec2-user/flask_app/traffic.log",

"log_group_name": "MyAppTrafficlLogs",

"log_stream_name": "@3@aee5f33al2lac8/traffic.log",
"timezone": “UTC"

H

Figure 43: AWS Cloudwatch Config

Ensure the values and the paths inside this file match the corresponding paths and
names setup in the earlier steps.

Run the following command to enable cloudwatch to start collecting and pushing
the logs into the aws cloudwatch log group configured earlier:

‘sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch
-agent-ctl -a fetch-config —-m ec2 -c
file:/home/ec2-user/flask_app/cloudwatch-config.json -s’

Then restart the cloudwatch agent using the below command:
‘sudo systemctl restart amazon-cloudwatch-agent’

The logs will start to come in to the log group created with the configurations done
as below:

e CloudWatch > Loggroups > MyAppTrafficlogs > 030aeesf33a121ac8/traffic.log

CloudWatch <
Log events C) T

Favorites and recents. » You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns [
Dashboards New (‘@ Fitter events - press enter to search | ((cear am  3om 120 custom @ )( UCtimezone v | (" Display v B
> Alarms Ao @0 ©o > | Timestamp | Message
v Logs There are older events to load. Load more.
Log groups New > enemonsiens INEO: app:bytes_ined, bytes src_ipe47.74.39.39, src_ip_country _codasJP, protocolehttp, res
Log Anomalies » 2024-12-05700:03:31.2167 THFO: app: by 64.212.52, sr
Live Tal > aaenzosToniaiier. 0 1UR0:appit src_1p-37.220.293.209, =
Logs Insights New > oenosTonsaier. s -
Contributor Insights > e nesteesiersen R0z app:t
. > aenzostonssiiar.eon Ro:app:t
» Metrics P
> 2024-12-05T00:31:48.1487 INFO: app: byte
» X-Ray traces New
> oaenrostoosanes.res . 108
» Events
> oaenz-osToniates. 1es 10F0:appit
» Application Signals
PP 9! > 2024-12-05T00: 31:48.9007 ERROR: app:
> Network Monitoring New P 2024-12-05Tee:31:48.5002 IHFO: app:by
» Insights New » 2024-12-05760:31:49.151Z INFO:app:by
> 2024-12-05T00:31:49.401Z INFO:app:b)
Settings
> aenostonsaies.aen INEO: appytes_ined, bytes_ou

Getting Started

Figure 44: AWS Cloudwatch Logs

20



9 Model Results

predictions = iso_forest. X
predictions = [1 if x = e X in predictions]

Teport 3 _report(y, predictions, target na "Normal Web Traffic®, "Suspicious Web Tra
print(report)

print("CONFUSION MATRIX: \ nfusion matrix(y, predictions)
iso_cv_score = cr 1_score(iso_forest, X, *f1_weighted')
iso_cv_score.mean()

precision  recall fi-score support

Normal Web Traffic 5 0.80 8040
Suspicious Web Traffic 0.23 2242

accuracy 0.68 10282
macro ave 0.51 10282
weighted avg g 0.67 10282
CONFUSION MATRIX:
[[6467 1573]
[1758 484]]

=+ np.float64(0.07203084999882561)

predictions_rf = rf.

report_rf = cl fica (y, predictions_rf, target names=[*Normal Web Traffic", "Suspicious Web Traffic*])
print(report_rf)

nt( "CONFUSTON e (y, predictions_rf))

precision  recall fl-score support

Normal Web Traffic 1.00 1.00 1.00 8040
Suspicious web Traffic 1.00 1.00 1.00 2242

accuracy 1.00 10282
macro avg 1.00 10282
weighted avg 1.00 10282

CONFUSION MATRIX:
[[8040 o]
[ 4 2238]]

Figure 46: Random Forest Evaluation

predictions_gb = grad_boost.pre X)

report_gb f J (y, predictions_gb, target_names=["Normal Web Traffic", "Suspicious Web Traffic"])
print(report_gb)

print("CONFUSION MATRIX: \n",confusion matrix(y, predictions_gb))
0.0s

precision  recall fl-score support

Normal Web Traffic 0.80 1.00 0.89 8040
Suspicious Web Traffic 0.90 0.11 0.19 2242

accuracy 10282
macro avg 10282
weighted avg 5 10282

CONFUSION MATRIX:
[[8e13 27]
[2003 239]]

Figure 47: Gradient Boosting Evaluation

21



predictions_svc = model_svc.predict(x)

report_svc = classificat eport(y, predictions_svc, e ["Normal Web Traffic", "Suspicious Web Traffic"])
print(report_svc)

print("CONFUSION MATRIX: \n" n_matrix(y, predictions_svc))
svm_cv_scores = cro re(model_sve, X 1_weighted')

print('Cross-validation Score for Support Vector: ', svm_cv_scores.mean())

precision  recall fil-score support

Normal Web Traffic 0.78 1.00 .88 8040
Suspicious Web Traffic 1.00 0.00 .01 2242

accuracy .78 10282
macro avg .4k 10282
weighted avg .69 10282

CONFUSION MATRIX:

[[8040 0]

[2232  10]]

Cross-Validation Score for Support Vector: ©.68616887925916

.history['binary_accuracy'], label='Train Accuracy')
.history['val_binary_accuracy'], label='Validation Accuracy’)
tle prefix} Accuracy")
1('Epochs*)
hel('Accuracy')

Train Loss')
abel="validation Loss')

Figure 49: Function for Plotting of Evaluation Metrics for Neural Netork

Original Model Accuracy Original Model Loss
0.8 1 137 —— Train Loss
Validation Loss
1.2 4
0.7
114
1.0 4
0.6 q
>
9
£ 2 0.9 4
g E|
0.5 - 084
0.7 4
0.4
0.6
— Train Accuracy
0.3 Validation Accuracy BT e S——

T
0 20 40 60 80 100 [} 20 40 60 80 100
Epochs Epochs

Figure 50: Neural Network Evaluation

22



Model Accuracy Model Loss
0.785 1 —— Train Accuracy " —— Train Loss.

Validation Accuracy 1.6 4 Validation Loss

0.780

0.775 4 14

0.770 124

Accuracy

Loss.

0.765
1.0

0.760

0.8
0.755 4

0.750 4 0.6

0.745

0 10 20 30 40 50 [ 10 20 30 40 50
Epoch Epoch

Figure 51: Fine-tuned Neural Network Evaluation

References

AWS (no date). Cloud computing services - amazon web services (aws).
URL: https://aws.amazon.com/

JanCSG (2024).
URL:  https://www.kaggle.com/datasets/jancsg/cybersecurity-suspicious-web-threat-
interactions

Mailgun (no date). Transactional email api service for developers.
URL: https://www.mailgun.com/

MaxMind (no date). Geolite2 free geolocation data.
URL: https://dev.maxmind.com/geoip/geolite2-free-geolocation-data/

23



	Introduction
	Hardware and Software Specifications
	Hardware Specifications
	Software Specifications

	Dataset Information and Collection
	Python Libraries Used
	Data Preprocessing and Generation
	Exploratory Data Analysis
	Machine Learning Models
	Isolation Forest
	Random Forest
	Support Vector Classifier (SVC)
	Gradient Boosting
	Neural Network

	Experimental Setup
	Web-Application
	GeoIP Service
	Prediction and Alerting Script
	Mailgun Email Service
	Amazon Web Services (AWS) Setup and Deployment

	Model Results

