
Configuration Manual

MSc Research Project

Master of Science in Cybersecurity

Dinal Varma
Student ID: 23241021

School of Computing

National College of Ireland

Supervisor: Dr. Evgeniia Jayasekera

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Dinal Varma

Student ID: 23241021

Programme: Master of Science in Cybersecurity

Year: 2024

Module: MSc Research Project

Supervisor: Dr. Evgeniia Jayasekera

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 1483

Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Dinal Sunil Varma

Date: 10th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Dinal Varma
23241021

1 Introduction

This configuration manual serves as a guide to assist in setting up the project and re-
producing the outcomes. This document contains references to all of the code libraries,
hardware specs, and software specifications used in the artefact’s implementation. This
configuration manual is a key component of the research and the proposed concept along
with the implementation and the setup on the cloud.

2 Hardware and Software Specifications

2.1 Hardware Specifications

• Operating system: Windows 11 Home

• Processor: Intel i5-12500H CPU @ 2.50GHz

• System Type: 64-bit operating system, x64-based processor

• Hard Disk: 512GB SSD

• Installed physical memory RAM: 16GB

2.2 Software Specifications

• Visual Studio Code (IDE)

• Python (version = 3.11.5)

• Jupyter Notebook (version = 7.3.0)

3 Dataset Information and Collection

The dataset used in this research is public repository - Cybersecurity: Suspicious Web
Threat Interactions JanCSG (2024). The data can be directly downloaded from the link
provided and to be stored in the appropriate folder where the files reside. Web traffic
records gathered by AWS CloudWatch are included in this dataset in order to identify
suspicious activity and possible attack attempts. In order to find unusual patterns, the
data was created by tracking traffic to a production web server using a variety of detection
methods.

1



4 Python Libraries Used

The following python libraries were used overall to develop and train the machine learning
model along with the web application and the log consumer script:

Library Version
pandas 2.2.3
numpy 2.0.2
seaborn 0.13.2

matplotlib 3.9.3
networkx 3.4.2
joblib 1.4.2

scikit-learn 1.5.2
tensorflow 2.18.0

keras 3.7.0
flask 3.1.0
geoip2 4.8.1

python-dotenv 1.0.1
boto3 1.35.76

Table 1: Python Libraries

Optional: To install all the above requirements in one go, please run the following com-
mand (ensure ‘requirements.txt’ file provided in the artefact is present in the same dir-
ectory):

pip install -r requirements.txt

5 Data Preprocessing and Generation

Synthetic Data Generation was employed to simulate potential normal behaviours because
the dataset only includes suspicious data. To address this issue and to enhance the dataset
synthetic normal traffic data was generated to balance the dataset, simulating realistic
web traffic patterns using the code below in Figure 1.

Figure 1: Synthetic Data Generation

2



The data preprocessing involved removing the duplicates and the addition of a new feature
column called ’duration seconds’ as shown in Figure 2 below:

Figure 2: Data Preprocessing

Figure 3: Data Preprocessing - Encoding

6 Exploratory Data Analysis

The following code demonstrate the Exploratory Data Analysis Process that was followed
to gain initial insights about the dataset and to check the distribution, correlation of the
data at hand and proceed accordingly:

Figure 4: Correlation Matrix Code

3



Figure 5: Pie Chart Generation

Figure 6: Web Traffic Analysis Over Time Code

Figure 7: Network Graph Code

Figure 8: Histogram of Duration Distribution

7 Machine Learning Models

The following Machine Learning Models were used to test and evaluate their performance
on the dataset.

4



7.1 Isolation Forest

Figure 9: Isolation Forest Model

7.2 Random Forest

Figure 10: Random Forest Model

7.3 Support Vector Classifier (SVC)

Figure 11: Support Vector Classifier (SVC) Model

7.4 Gradient Boosting

Figure 12: Gradient Boosting Model

5



7.5 Neural Network

Figure 13: Basic Neural Network Model

Figure 14: Fine Tuned Neural Network Model

8 Experimental Setup

This section gives the step by step for setting up and deploying the system on the AWS
Cloud environment along with the services essential for running of the prediction and
alerting script.

8.1 Web-Application

The web application was developed using Flask framework since it is a lightweight web
framework which is easy to deploy and integrates easily with other web technologies. The
one html page was developed as a prototype to simulate the web application and was
served using Flask
The basic flask code for setting up 2 API Endpoints is defined in the Figure 15 below. It
also includes setup for logging with ‘traffic.log’ file containing all of the application logs.

6



Figure 15: Basic Flask Web Application Code

The Flask framework also provides with a inbuilt way to log each request through the
‘@app.before request’ and ‘@app.after request’ decorators as seen in the Figure 16 below:

Figure 16: Flask Request Logging

7



8.2 GeoIP Service

For getting the country code from the incoming IP Address, a service called ‘GeoIP’
MaxMind (no date) was utilized. Below show the steps to get the ‘Account ID’ and
‘LICENSE KEY’:

1. Go to Maxmind website and create a free account

2. On the account dashboard, go to ‘Manage License Keys’ section and click on ‘Gen-
erate New license key‘ to generate and get the license key.

3. Note down the ‘Account ID’ and ‘LICENSE KEY’ from this page and replace
the values in the flask code as seen in the figure 15 above.

8.3 Prediction and Alerting Script

This script loads the final model and model preprocessor pipeline from the AWS S3
Bucket and constantly reads the AWS Cloudwatch logs from the log group specified to
run the models on the incoming data to detect if the incoming logs are anamolous or
not and if the model predicts them to be anamolous, then it sends out an email to the
concerned stakeholders using the ‘send email’ function that utlizes the Mailgun Email
Service to send emails.

Figure 17: Alerting Script

8

https://www.maxmind.com/en/home


Figure 18: Alerting Script

Figure 19: Alerting Script

9



8.4 Mailgun Email Service

For sending the alerting emails in case of suspicious behaviour, Mailgun Mailgun (no
date) was utlized which provides an easy way to send emails. The following steps allow
to create an account and obtain the ‘API KEY’ and ‘DOMAIN’:

1. Create a free account on the mailgun website

2. On the dashboard page, click on ‘API Keys‘ as shown below:

Figure 20: Mailgun Dashboard

3. Then click on ‘Add new Key’ button to generate API KEY and save it.

4. Next, on the dashboard home page, click on the ‘Sending’ submenu from the left
sidebar and open ‘Domains’ tab. Here, a default Sandbox domain will be created.

5. Next, inorder to send emails using this sandbox, the recipient needs to be verified:

Figure 21: Mailgun Email Verify

6. Replace the ‘API KEY’ and ‘DOMAIN’ obtained from above steps in the script to
start sending/receiving emails.

10



8.5 Amazon Web Services (AWS) Setup and Deployment

For the system deployment, Amazon Web Service (AWS) Cloud was chosen to setup and
deploy the web application along with the prediction and alerting script as well. Below
steps show the process to setup and deploy the Flask based Web-application used in this
research as mentioned above:

AWS EC2 Instance Configuration:

1. Create an Free account on Amazon AWS Cloud AWS (no date)

2. Search for the EC2 service from the services tab and click on ‘Launch Instance
Button’ to create and start an EC2 Instance.

3. On the screen, give the server a name and choose the ‘Amazon Linux 2023 AMI’
instance image which is free tier eligible:

Figure 22: Launch an Amazon EC2 Instance

4. Next, choose ‘t2.micro’ as the instance type which is included in the free tier. And
also, create a new Key pair of type RSA and ‘.pem’ type extension for connecting
to the ec2 instance as shown below:

11



Figure 23: Create Key Pair to connect to EC2 Instance

5. For the ‘Network Settings’, choose ‘Create security Group’ and enable SSH
traffic from your IP Address (If known) or anywhere and also ensure you enable
‘HTTP’ and ‘HTTPS’ traffic to allow traffic to connect to the EC2 instance via
web-application.

Figure 24: Network Settings for EC2

6. Now click on ‘Launch Instance’ and the instance will now be ready and up and
running to be connected.

7. On newly created instance page, go to ‘Actions’ and select ‘Security’ and then click
on ‘Modify IAM Role’.

8. Click on ‘Create new IAM Role’ Option as shown below:

12



Figure 25: Modify IAM Role Screen

9. On the next screen, click on ‘Create Role’ option and assign the below trusted entiry
and use cases:

Figure 26: Create IAM Role

10. For the permissions on the next screen, search for ‘Cloudwatch’ in the search bar
and select the below permission policy shown:

Figure 27: Assign Permission Policy to IAM Role

11. Review the details and provide a name for the Role created:

13



Figure 28: IAM Role Review

12. Click on ‘Create Role’ to save the role and create the new Role attached to the EC2
instance created earlier.

13. Verify on the EC2 instance settings that this newly created Role is now attached
to the EC2 instance screen:

Figure 29: EC2 Instance IAM Role Details

Security Groups Configuration:
Go to the newly created EC2 instance and click on the security group assigned to it.

1. Ensure the ‘Inbound rules’ match the below configuration:

14



Figure 30: Inbound Rules for Security Groups

2. ‘Outbound rules’ configuration to allow server to send traffic to anywhere:

Figure 31: Outbound Rules for Security Groups

Access Key ID AND Secret Configuration:
To obtain the ‘Access Key ID’ and ‘Secret’ for a user, a new user to be created using the
steps below:

1. Go to ‘IAM’ service in the account and click on ‘Users’ on the left submenu.

2. Click on ‘Create User’ button and specify the User details like below:

Figure 32: Create a IAM User

15



3. For the permissions on the next screen, search for ‘Cloudwatch’ in the search bar
and select the below permission policy shown:

Figure 33: IAM User Permissions

4. Go to this newly created user and go to ‘Security Credentials’ tab, scroll down
to ‘Access keys’ and click on ‘Create access key’ and select the use case as shown
below:

Figure 34: Create Access Key

5. The Access key ID and secret key are shown in the page, note them down for use
in the prediction and alerting script:

16



Figure 35: IAM Role Access Key ID and Secret

AWS Cloudwatch Logs Configuration:
To configure the AWS Cloudwatch to get the incoming logs from the webapplication
hosted on EC2 instance, follow the steps below:

1. Go to the ‘Cloudwatch Management Console’ in AWS dashboard and open the ‘Log
Groups’ Screen.

2. Create a new Log Group on the section as shown below:

Figure 36: Cloudwatch Create Log Group

17



3. Click on the newly created ‘Log Group’ and then create a new ‘Log Stream’.

Figure 37: Log Stream Creation

4. The cloudwatch logs setup is now completed

Running the Web-Application:
For running the web-application on AWS EC2 instance created, follow the below steps:

1. Connect to the EC2 Instance using any terminal by copying the connect command
from ‘connect’ tab of the EC2 instance created:

Figure 38: Connect to EC2 Instance

2. Copy the ‘flask app’ folder into the ec2 instance home directory.

Figure 39: EC2 Instance Flask Directory

3. Next, cd into the ‘flask app’ folder and install the python pip and other dependent
libraries using the commands below:

Figure 40: Install pip and python libraries

18



4. After installation, the next step is to put flask as a system service that starts on
any reboot or keeps running as a service. For this copy the file contents of the file
‘flask app.service’ and run the following command to open vim editor and paste the
file contents inside this service file:

‘sudo vim /etc/systemd/system/flask_app.service’

Figure 41: Flask Service Code

5. Next, run the command below to enable the flask service to start and to keep
running in background:

‘sudo systemctl enable flask_app’

6. Then run the system daemon reload command for the changes to take effect:

‘sudo systemctl daemon-reload’

7. Next, start the flask service using the command ‘start’ and verify its status:

‘sudo systemctl start flask_app’

‘sudo systemctl status flask_app’

Verify the status of the flask service:

Figure 42: Flask Service Status

8. To configure the cloudwatch agent, use the file ‘cloudwatch-config.json’ provided
below:

19



Figure 43: AWS Cloudwatch Config

Ensure the values and the paths inside this file match the corresponding paths and
names setup in the earlier steps.

9. Run the following command to enable cloudwatch to start collecting and pushing
the logs into the aws cloudwatch log group configured earlier:

‘sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch

-agent-ctl -a fetch-config -m ec2 -c

file:/home/ec2-user/flask_app/cloudwatch-config.json -s’

10. Then restart the cloudwatch agent using the below command:

‘sudo systemctl restart amazon-cloudwatch-agent’

11. The logs will start to come in to the log group created with the configurations done
as below:

Figure 44: AWS Cloudwatch Logs

20



9 Model Results

Figure 45: Isolation Forest Evaluation

Figure 46: Random Forest Evaluation

Figure 47: Gradient Boosting Evaluation

21



Figure 48: Support Vector Classifier (SVC) Evauation

Figure 49: Function for Plotting of Evaluation Metrics for Neural Netork

Figure 50: Neural Network Evaluation

22



Figure 51: Fine-tuned Neural Network Evaluation

References

AWS (no date). Cloud computing services - amazon web services (aws).
URL: https://aws.amazon.com/

JanCSG (2024).
URL: https://www.kaggle.com/datasets/jancsg/cybersecurity-suspicious-web-threat-
interactions

Mailgun (no date). Transactional email api service for developers.
URL: https://www.mailgun.com/

MaxMind (no date). Geolite2 free geolocation data.
URL: https://dev.maxmind.com/geoip/geolite2-free-geolocation-data/

23


	Introduction
	Hardware and Software Specifications
	Hardware Specifications
	Software Specifications

	Dataset Information and Collection
	Python Libraries Used
	Data Preprocessing and Generation
	Exploratory Data Analysis
	Machine Learning Models
	Isolation Forest
	Random Forest
	Support Vector Classifier (SVC)
	Gradient Boosting
	Neural Network

	Experimental Setup
	Web-Application
	GeoIP Service
	Prediction and Alerting Script
	Mailgun Email Service
	Amazon Web Services (AWS) Setup and Deployment

	Model Results

