*
\ National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc Cybersecurity

Noel Varghese Oommen
Student ID: 23210567

School of Computing
National College of Ireland

Supervisor: Joel Aleburu

Student Name:
Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

‘-
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet
School of Computing

Noel Varghese Oommen
23210567
MSc Cybersecurity Year: 2025
Practicum Part 2
Joel Aleburu
29/01/2025

An Evaluation of Privacy Enhancing Technologies for Blockchain Based
Voting

1087 Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Noel

29/01/2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Noel Varghese Oommen
Student ID: 23210567

1 Introduction

This configuration manual details the software and hardware specifications and versions used
for setting up the experimental setup. Three separate experients were carried out for different
scenarios. The sections below explains the step by step process for implementing each of
them along with the hardware specifications, and the tools used for them.

2 Experimental Setup

This experiment was carried out on my personal laptop, having the following specifications:
e Laptop Model: HP Pavillion TPN-Q191

Operating System: Windows 10 Home, Version 22H2, OS build: 19045.5131

Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz

RAM: 16GB

System Type: 64-bit operating system, x64-based processor

Some of the testing's were carried out in a virtual machine with the following system

specifications:
e Hypervisor: Oracle Virtual Box Version 7.0.20 r163906 (Qt5.15.2)

Operating System: Ubuntu 24.04.1 LTS (x64)

RAM: 11GB

Cores Allocated: 2

Storage Allocated 90GB

3 Technologies and Software used for Implementation

e Virtual Box: Oracle Virtual Box Version 7.0.20 r163906 (Qt5.15.2)

e Remix IDE: An online Ethereum IDE for compiling and deploying solidity code
(remix.ethereum.org, n.d.).

e MetaMask Wallet: Installed as a browser plugin to interact with smart contracts.

Circom: It is a compiler that can run circuits written in the Circom programing

language and helps in generating the proof and verifying it (Iden3.io, 2025)

SnarkJS: The proof generator

NodeJS: It is a java script run time environment

PrivadolD Issuer: Self Sovereign Identity credential issuer (Privado.id, 2024).

PrivadoID Wallet: Self Sovereign Identity credential wallet (Privado.id, 2024).

4 Common Steps for all three implementations

Although the experiment is done as three separate parts, there are a few steps that are
common for all of them. That are:

e Running Ubuntu Virtual Machine in the Windows 10 operating system:

1

Ubuntu was installed because Circom, the tool used for creating the zero knowledge
proofs is better optimized for the Linux operating system. Any flavour of Linux can
be used instead. I chose Ubuntu due to my familiarity with the OS. Circom can also
be executed on Windows by using Docker containers.

Fle Machine View Input Dewices Help

noel@noel-VirtualBox: ~

BOMS MBS @y
ENG 1234PM

® o & m
o A B ®mIx 7
& 7°C Cloudy O WA 7N 104

Figure 1

e Installing and creating a wallet on MetaMask:
A wallet address was created on the Ethereum blockchain and the secret key of the
wallet was securely stored.

£3 MetaMask chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#

¢85y METAMASK

@ Account1 Vv
® Ethereum Mainnet v

0x4A62a...07131 @
$0.00USD ©
+$0.00 (+0.00%) Portfolio (4

V2 = o A

Buy &Sell Swap Bridge Send Receive
NFTs Activity

All networks

® Ethereum e Stake
¢

L Ethereum
¢

Figure 2

e Make sure to enable “Show test networks” in the network list

3 MetaMask ~ chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#

Select a network
Additional networks @
l7[:’ Arbitrum One
4, Avalanche Network C-Chain
Base Mainnet

& Binance Smart Chain

or. OP Mainnet

@ Polygon Mainnet

° zkSync Era Mainnet

Show test networks

+ Add a custom network

Figure 3

e Connect to Ethereum’s Sepolia test network
The test networks are not listed by default. Click on Add custom network to add the
our custom network and fill out the following network configuration details for
sepolia:
Network Name: Sepolia test network
New RPC URL: https://sepolia.infura.io/v3/
Chain ID: 11155111
Currency Symbol: SepoliaETH
Block Explorer URL: https://sepolia.etherscan.io

e Connect to Polygon’s Amoy test network:
Fill in with following network configuration details to connect to the Amoy test
network:
Network Name: POLYGON AMOY TESTNET
New RPC URL: https://rpc-amoy.polygon.technology/
Chain ID: 80002
Currency Symbol: POL
Block Explorer URL: https://www.oklink.com/amoy

e Get test tokens from the Sepolia faucet

Once the network is connected, get the tokens from the Sepolia faucet. The tokens are
needed for confirming transactions in the blockchain. Copy and paste the wallet address
to receive 0.05 ETH tokens to the wallet. The faucet only provides 1 transaction every
24 hours.

(6] ‘doud.google.com:

Google Cloud Web3

Introducing Mantra Faucet: Get your drips of testnet tokens for free. Try it now!

Home
Ethereum Sepolia Faucet =n

Get free Sepolia ETH sent directly to your wallet. Brought to you by

Discover
Faucet
Events Ethereum Sepolia
Learn
Community
Startup Program e © i
Note: We urely le t

FAQ

What is a faucet?
How does the faucet work?

How man ken drij n | re ?
[0 Feedback ow many token drips can | request

Figure 4

e Qet test tokens from the Polygon faucet:
Exactly like the Sepolia faucet, copy and paste the wallet address to get 0.2 token. But
as we are doing rigorous testing, we need more tokens. We can apply for bulk tokens
sending a request to the polygon team. I received 100 test tokens from polygon support.

Confirm the following details

Token

Amount

Network Polygon PoS (Amoy)

Transfer to
0x2A6f226183f2dEbc68925d8323d545A036500a2b

Figure 5

e C(Create candidate profiles in the wallet:
Create multiple sample accounts in the MetaMask wallet to simulate voting. We will
require multiple accounts as only a single vote is allowed from a wallet address.

Select an account

Account1 0.322 SepoliaETH
Ox2A612...00a2b S) 0.322 SepoliaETH

Steve O SepoliaETH
Oxcé66d8...a54D4 S) O SepoliaETH

james O SepoliaETH
OxE6c6F...6ad18 S) O SepoliaETH

sam O SepoliaETH
Oxc4191...9f8EB S) O SepoliaETH

Hidden accounts

Figure 6

5 Proof and Verifier Generation

Install the prerequisites:
- Node.js (v14 or later): sudo apt install nodejs npm -y
- Npm: It comes with Node.js
- Git: sudo apt install git -y
- SnarkJS: A library to work with zk-SNARK proofs. npm install -g snarkjs

Following the above commands we can install all the prerequisites needed to run Circom.
The versions of the respective software's installed are given below.

noel@noel-VirtualBox: ~/Desktop/voting-platform/circom Q

$ nodejs -v

$ git -v

S npm -v

S
$ snarkjs -v
knarkjs@0.7.5

Copyright (C) 2018 0kims association
This program comes with ABSOLUTELY NO WARRANTY;
This is free software, and you are welcome to redistribute it
under certain conditions; see the COPYING file in the official
repo directory at https://github.com/iden3/snarkjs

snarkjs <full command> ... <options>
snarkjs <shortcut> ... <options>
ype snarkjs <command> --help to get more information for that command

ull Command Description

Figure 7

Now that we have the prerequisites, install Circom:

- Clone the repository: git clone https://github.com/iden3/circom.git
- Move into the directory: cd circom
- Build the Circom binary: cargo build —release

el noel@noel-VirtualBox: ~/Desktop/voting-platform/circom Q

$ circom --version

circom compiler 2.2.1

Figure 8

Ensure that all the prerequisites are installed by checking the versions
Now that we have all the tools, we can write the circuit and create our proof

5.1 Write the circuit: Create a file called vote.circom with the circuit logic

= vote.circom pragma circom 2.1.4;

// Voting circuit with two candidates: Kamala (1) and Trump (2)
template VoteProof() {
signal input candidate; // Candidate choice: 1 or 2
signal input voterSecret; // Secret number known only to the voter
signal output voteCommitment;

signal isCandidatel;
signal isCandidate2;

// To check if the candidate is 1
isCandidatel <== - (candidate - 1) * (candidate - 1);

// Check if the candidate is 2
isCandidate2 <== 1 - (candidate - 2) * (candidate - 2);

// Ensure that candidate is either 1 or 2
signal candidateIsValid <== isCandidatel + isCandidate2;
assert(candidateIsValid == 1);

// Create a commitment using the candidate choice and voter's secret
voteCommitment <== candidate + voterSecret;

}.

component main = VoteProof();

Figure 9

5.2 Compile the circuit:

noel@noel-VirtualBox: ~/Desktop/Test

- $ circom vote.circom --rics --wasm --sym
1

non-linear constraints: 2

linear constraints: 2

public inputs: 0

private inputs: 2

public outputs: 1
wires: 7
labels: 7

./vote.rics
./vote.sym
./vote_js/vote.wasm

s 1

Figure 10

5.3 Create an input file called input.json specifying the choice of candidate

5.4 Generate a witness of the input:

noel@noel-VirtualBox: ~/Desktop/Test

$ node generate witness.js vote.wasm input.json witness.wtns

S

Figure 11

5.5 Now we start with the trusted setup process. In this we generate power of Tau twice. Powers
of Tau is a cryptographic parameter generated to make the proof uncompromisable.

d $ node generate_witness.js vote.wasm input.json witness
snarkJS: Calculating First Challenge Hash
snarkJS: Calculate Initial Hash: tauGl
snarkJS: Calculate Initial Hash: tauG2
snarkJS: Calculate Initial Hash: alphaTauGl
snarkJS: Calculate Initial Hash: betaTauGl
snarkJS: Blank Contribution Hash:
786a02f7 42015903 c6c6fd85 2552d272
9124740 1584761 8a86e217 f71f5419
d25e1031 afee5853 13896444 934eb04b
903a685b 1448b755 d56f701a fe9be2ce
snarkJS: First Contribution Hash:
9e63a5f6 2b96538d aaed2372 481920d1
a40b9195 9ea38ef9 f5f6a303 3b886516
0710d067 c09d0961 5f928ea5 17bcdf49
3 $ snarkjs powersoftau contribute pot12_0000.ptau pot12_0001.ptau --name="First contribution" -v
randon text. (Entropy): dasdf
snarkJS: Calculating First Challenge Hash
snarkJS: Calculate Initial Hash: tauGl
snarkJS: Calculate Initial Hash: tauG2
snarkJS: Calculate Initial Hash: alphaTauGl
snarkJS: Calculate Initial Hash: betaTauG1l
snarkJS: processing: tauGl: 0/8191
snarkJS: processing: tauG2: 0/4096
snarkJS: processing: alphaTauGl: 0/4096
snarkJS: processing: betaTauGl: 0/4096
snarkJS: processing: betaTauG2: 0/1
snarkJS: Contribution Response Hash imported:
2¢7764dd f7c9a247 fc3aeddc bafdd49d
1511188 e391cfbe c52433b5 b117a9dc
8fc0882c 775badfe e5088b3e bedccf8b
13643ed3 9db5b53f 911e54f4 15bde6da
snarkJS: Next Challenge Hash:
bd90d2al 15074b67 3ccd2eee 91a574ca
b78edde® f3a7e18d 5b87a3dS 40019fSa
£304263b b106ca59 1a579ae5 9fbb670f
3868365a 6addbad1l 995;698d f56ecd26
: $

Figure 12

5.6 Export the verification key:

: $ snarkjs zkey export verificationkey vote 0001.zkey verification_key.json
snarkJS: EXPORT VERIFICATION KEY STARTED
snarkJS: > Detected protocol: groth16

snarkJS: EXPORT VERIFICATION KEY FINISHED

s 1

Figure 13

5.7 Generate Proof

$ snarkjs groth16 prove vote 0001.zkey witness.wtns proof.json public.json

s |

Figure 14

The proof was succesfully generated and stored in the circom folder
5.8 Verify the proof: Now that we have the proof, we can verify it

$ snarkjs groth16 verify verification key.json public.json proof.json

snarkJS: OK!

Figure 15

The OK means that the proof verifies that the choice of candidate is 1 i.e. Kamala

5.9 generate the solidity code for on chain verification

g snarkjs zkey export solidityverifier vote 0001.zkey voteverifier.so
snarkJsS: EXPORT VERIFICATION KEY STARTED

snarkJS: > Detected protocol: groth16
snarkJS: EXPORT VERIFICATION KEY FINISHED
Figure 16

5.10 Generate the proof text

$ snarkjs generatecall
["Oxoff3fe27374fb9®463764e8da2167d344f9d25cff969cea3bad2f87c3a2684e5 "0x174396867abf fc44849bf f
f6c4904a60a71fffObaf5999aefcaf083926f3adea"], [["0x19049934d96af49d199f84ba501aec1f895ca8ca610020
T4ef50be1f150eb1da", "0x0eMab98d938a56b82feab1652ecd3d151b086756e438a6a203¢c2f5f5deadasn7"], ["ox1

826b2b20bd14444107b7c61e8f1b07dd7fbac469353c9ba77f06e661f50bff9", "0x13db64e9175d86ale41bab8eS0e
1fd66361fb4c32ff4b3c2aa88604f4ec90f1a" 1], ["0x27f066858de2154ec5299d1d1f96741d63d7d984039c2beb334
a1637984f4bbe", "0x23cbcOb95fd7df1cfbO6ccB8550e5a796a640ba7b8fe0150d79ccB8e73ebdB0ede"], ["0x000000
0004d3"]

Figure 17

This proof and verifier codes can then be used for creating the zero-knowledge voting platform.

5.11 Remix smart contract deployment

To run the code, first compile the code, using the Remix compiler

SOLIDITY COMPILER
+ &)
0.8.26+commit.8a97fa7a

=~ Compile votezk.sol

Compile and Run
script

Voting (votezk.sol)

Run Remix Analysis

Figure 18

On the contract deployer, select “Injected Provider - MetaMask”™ to connect and deploy the
code with your wallet address

DEPLOY & RUN
TRANSACTIONS

Injected Provider - MetaMask

Injected Provider - MetaMask

Remix VM (Cancun)
Remix VM - Mainnet fork

WalletConnect

Custom - External Http Provider

Dev - Hardhat Provider
Dev - Foundry Provider
Customize this list...

evm version: cancun

Deploy

Figure 19

10

6 Self-Sovereign Identity Implementation

6.1 Build the Schema, sign and deploy it

id Privado.iD Explorer ~ Schema Builder ~ Query Builder

Schema builder

,1‘, Import Schema
Effortlessly create trusted and tamper-proof verifiable credential schemas,

revolutionizing trust and authentication.

Define attributes Preview A
Pri
¢ publish a sc
v [credentialSubject * “credentialSubject”: { [nonce:
D id uri “description”: “"Stores the data of the credential”,
“title": "Credential subject”,
() Full_name * string “properties”: {
e (gl
O Age * number do5it e R
“description™: “"Stores the DID of the subject that owns
[Placeofbirth string redential subject ID",
[blood_group * string
[Religion * string
: "Full name of the voter”,
1 Name®,
"type": "string"
b
“Age™: {
: "Age of the voter”,
Attribute properties Validate 2
b
“Placeofbirth”:
Name * “description™: "Place of birth of the voter”, v

Figure 20

6.2 Choose the category as KYC

Select category

Category *

[KYC J
Close Publish on IPFS

Figure 21

11

6.3 Import the deployed schema to issue credentials with it

6.4 Fill up the details and issue the credentials

E' ° Credential details
Noel
DID x8E86..1RJ3 Select schema type
VoterKYC J
E Schemas)
£3 Credentials Schema hash 4565f22de7cec7e4bc6ad152882b7d4e ()

A Connections

VoterKYC

2 lssuer state KYC details of a voter
@ Identities

Full Name

Noel Varghese Oommen

Full name of the voter
{§} Settings Age
® Documentation (54 23

Age of the voter

iD Privado.D pemo

Figure 22
6.5 Build the query to verify a voter credential

Verification query builder

A simple way for developers to design customized authentication

requirements based on someone's credentials.

Documentation Explore schemas

Define query

URL to JSON-LD Context *
ipfs:/QmX8tcronpAlYsJoeInQHU3fD7HdpxF1KsYnbHfh6SQkLs

The URL must remain publicly accessible because it will continue to be retrieved in the future

Schema type *

e

t VoterKYC J

Attribute field *

Full_name string

O

O Age double
Placeofbirth strin

O g

[blood_group string

(3 Religion string

Figure 23

12

6.6 On the query builder, select selective disclosure to only reveal required information of the
candidate

Query type *
Condition
‘ O) Selective disclosure

Credential issued

Figure 24

References

remix.ethereum.org. (n.d.). Remix - Ethereum IDE. [online] Available at:
https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version
=soljson-v0.8.26-++commit.8a97fa7a.is.

Iden3.i0. (2025). Circom / snarkjs - Iden3 Documentation. [online] Available at:
https://docs.iden3.io0/circom-snarkjs/ [Accessed 29 Jan. 2025].

Privado.id. (2024). Home | Privado ID. [online] Available at: https://www.privado.id/.

13

