

Configuration Manual

MSc Research Project
MSc Cybersecurity

Noel Varghese Oommen
Student ID: 23210567

School of Computing
National College of Ireland

Supervisor: Joel Aleburu

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Noel Varghese Oommen

Student ID:

23210567

Programme:

MSc Cybersecurity

Year:

2025

Module:

Practicum Part 2

Lecturer:

Joel Aleburu

Submission
Due Date:

29/01/2025

Project Title:

An Evaluation of Privacy Enhancing Technologies for Blockchain Based
Voting

Word Count:

1087 Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Noel

Date:

29/01/2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.
Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Noel Varghese Oommen
Student ID: 23210567

1 Introduction

This configuration manual details the software and hardware specifications and versions used
for setting up the experimental setup. Three separate experients were carried out for different
scenarios. The sections below explains the step by step process for implementing each of
them along with the hardware specifications, and the tools used for them.

2 Experimental Setup

This experiment was carried out on my personal laptop, having the following specifications:

 Laptop Model: HP Pavillion TPN-Q191
 Operating System: Windows 10 Home, Version 22H2, OS build: 19045.5131
 Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz
 RAM: 16GB
 System Type: 64-bit operating system, x64-based processor

Some of the testing's were carried out in a virtual machine with the following system
specifications:

 Hypervisor: Oracle Virtual Box Version 7.0.20 r163906 (Qt5.15.2)
 Operating System: Ubuntu 24.04.1 LTS (x64)
 RAM: 11GB
 Cores Allocated: 2
 Storage Allocated 90GB

3 Technologies and Software used for Implementation

 Virtual Box: Oracle Virtual Box Version 7.0.20 r163906 (Qt5.15.2)
 Remix IDE: An online Ethereum IDE for compiling and deploying solidity code

(remix.ethereum.org, n.d.).
 MetaMask Wallet: Installed as a browser plugin to interact with smart contracts.
 Circom: It is a compiler that can run circuits written in the Circom programing

language and helps in generating the proof and verifying it (Iden3.io, 2025)
 SnarkJS: The proof generator
 NodeJS: It is a java script run time environment
 PrivadoID Issuer: Self Sovereign Identity credential issuer (Privado.id, 2024).
 PrivadoID Wallet: Self Sovereign Identity credential wallet (Privado.id, 2024).

4 Common Steps for all three implementations

Although the experiment is done as three separate parts, there are a few steps that are
common for all of them. That are:

 Running Ubuntu Virtual Machine in the Windows 10 operating system:

2

Ubuntu was installed because Circom, the tool used for creating the zero knowledge
proofs is better optimized for the Linux operating system. Any flavour of Linux can
be used instead. I chose Ubuntu due to my familiarity with the OS. Circom can also
be executed on Windows by using Docker containers.

Figure 1

 Installing and creating a wallet on MetaMask:
A wallet address was created on the Ethereum blockchain and the secret key of the
wallet was securely stored.

Figure 2

3

 Make sure to enable “Show test networks” in the network list

Figure 3

 Connect to Ethereum’s Sepolia test network
The test networks are not listed by default. Click on Add custom network to add the
our custom network and fill out the following network configuration details for
sepolia:
Network Name: Sepolia test network
New RPC URL: https://sepolia.infura.io/v3/
Chain ID: 11155111
Currency Symbol: SepoliaETH
Block Explorer URL: https://sepolia.etherscan.io

 Connect to Polygon’s Amoy test network:
Fill in with following network configuration details to connect to the Amoy test
network:
Network Name: POLYGON AMOY TESTNET
New RPC URL: https://rpc-amoy.polygon.technology/
Chain ID: 80002
Currency Symbol: POL
Block Explorer URL: https://www.oklink.com/amoy

 Get test tokens from the Sepolia faucet

4

Once the network is connected, get the tokens from the Sepolia faucet. The tokens are
needed for confirming transactions in the blockchain. Copy and paste the wallet address
to receive 0.05 ETH tokens to the wallet. The faucet only provides 1 transaction every
24 hours.

Figure 4

 Get test tokens from the Polygon faucet:
Exactly like the Sepolia faucet, copy and paste the wallet address to get 0.2 token. But
as we are doing rigorous testing, we need more tokens. We can apply for bulk tokens
sending a request to the polygon team. I received 100 test tokens from polygon support.

Figure 5

5

 Create candidate profiles in the wallet:
Create multiple sample accounts in the MetaMask wallet to simulate voting. We will
require multiple accounts as only a single vote is allowed from a wallet address.

Figure 6

5 Proof and Verifier Generation

Install the prerequisites:

- Node.js (v14 or later): sudo apt install nodejs npm -y
- Npm: It comes with Node.js
- Git: sudo apt install git -y
- SnarkJS: A library to work with zk-SNARK proofs. npm install -g snarkjs

Following the above commands we can install all the prerequisites needed to run Circom.
The versions of the respective software's installed are given below.

6

Figure 7

Now that we have the prerequisites, install Circom:

- Clone the repository: git clone https://github.com/iden3/circom.git
- Move into the directory: cd circom
- Build the Circom binary: cargo build –release

Figure 8

Ensure that all the prerequisites are installed by checking the versions
Now that we have all the tools, we can write the circuit and create our proof

7

5.1 Write the circuit: Create a file called vote.circom with the circuit logic

Figure 9

5.2 Compile the circuit:

Figure 10

5.3 Create an input file called input.json specifying the choice of candidate

8

5.4 Generate a witness of the input:

Figure 11

5.5 Now we start with the trusted setup process. In this we generate power of Tau twice. Powers

of Tau is a cryptographic parameter generated to make the proof uncompromisable.

Figure 12

5.6 Export the verification key:

Figure 13

9

5.7 Generate Proof

Figure 14

The proof was succesfully generated and stored in the circom folder

5.8 Verify the proof: Now that we have the proof, we can verify it

Figure 15

The OK means that the proof verifies that the choice of candidate is 1 i.e. Kamala

5.9 generate the solidity code for on chain verification

Figure 16

5.10 Generate the proof text

Figure 17

This proof and verifier codes can then be used for creating the zero-knowledge voting platform.

10

5.11 Remix smart contract deployment

To run the code, first compile the code, using the Remix compiler

Figure 18

On the contract deployer, select “Injected Provider - MetaMask” to connect and deploy the
code with your wallet address

Figure 19

11

6 Self-Sovereign Identity Implementation

6.1 Build the Schema, sign and deploy it

Figure 20

6.2 Choose the category as KYC

Figure 21

12

6.3 Import the deployed schema to issue credentials with it

6.4 Fill up the details and issue the credentials

Figure 22

6.5 Build the query to verify a voter credential

Figure 23

13

6.6 On the query builder, select selective disclosure to only reveal required information of the
candidate

Figure 24

References

remix.ethereum.org. (n.d.). Remix - Ethereum IDE. [online] Available at:
https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version
=soljson-v0.8.26+commit.8a97fa7a.js.

Iden3.io. (2025). Circom / snarkjs - Iden3 Documentation. [online] Available at:
https://docs.iden3.io/circom-snarkjs/ [Accessed 29 Jan. 2025].

 Privado.id. (2024). Home | Privado ID. [online] Available at: https://www.privado.id/.

