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1 Introduction 
 
This manual defines the framework for the intrusion detection system based on machine 
learning. It describes its purpose and scope, including high false positives, real-time 
processing, and scalability across different vehicle models. 
 
2 Hardware Specifications 

• Processor: Intel Core i7. 
• Memory (RAM): 8GB minimum. 
• Storage: 512 GB minimum. 
• Peripherals: Input/output devices for monitoring and testing. 

 
3 Software Specifications 

• Operating System: Windows 11. 
• Programming Language: Python 3.8.10. 
• Libraries: pandas, numpy, scikit-learn, matplotlib, imbalanced-learn. 
• Development Environment: Jupyter Notebook. 

 
4 System Requirements 

4.1 Functional Requirements 
• Support for heterogeneous automotive datasets. 
• Ability to handle imbalanced datasets using advanced resampling techniques. 
• Feature engineering to enhance interpretability and accuracy. 
• Deployment of machine learning algorithms with high classification performance. 
• Output detailed metrics like confusion matrices and evaluation scores. 

4.2 Non-Functional Requirements 
• Real-time detection capability. 
• Scalability for large datasets. 
• Robustness to noisy or incomplete inputs. 
• Modular design for ease of maintenance. 
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5 Data Preparation 

5.1 Data Collection 

 

Figure 1: Importing Libraries and Dataset 

• Two datasets: attack-free and DoS-attack datasets with over 2.8 million combined 
entries. 

• Key features: 
• Timestamp: Floating-point representation of the time. 
• Identifier: Unique network message identifiers. 
• RTR and DLC: Indicators of data transmission characteristics. 
• Data: Hexadecimal strings encapsulating payloads. 

5.2 Preprocessing 

 

Figure 2: Missing Value Removal 

• Missing values replaced with a default placeholder payload (['00'] * 8). 
• Payload data transformed from hexadecimal to numerical lists. 
• Removed insignificant columns like RTR to reduce the computational burden. 
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5.3 Data Balancing 

 

Figure 3: Data Balancing 

• Used Synthetic Minority Over-sampling Technique (SMOTE) to handle the class 
imbalance. 

 
6 Feature Engineering 

6.1 Extracted Features 

 

Figure 4: Feature Extraction 

• Min Value: Minimum byte value in the payload. 
• Max Value: Maximum byte value in the payload. 
• Mean Value: Average byte value. 
• Standard Deviation: Variance in byte values. 



4 
 

 

6.2 Feature Selection 

 

Figure 5: Best Feature Selection 

• Utilized SelectKBest with mutual information to rank features. 
 
7 Model Development 

7.1 Machine Learning Models 

 

Figure 6: ML Models and Training 

• Random Forest Classifier: Ensemble method for robust classification. 
• Voting Classifier: Combines Random Forest and Logistic Regression for higher 

accuracy. 

7.2 Training Workflow 
• Splitting the dataset into 70% training and 30% testing sets. 
• Normalizing numerical features using StandardScaler. 
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8 Evaluation Metrics 

 

Figure 7: Model Performance Metrics 

• Accuracy: Ratio of correctly classified instances. 
• Precision: True positive predictions out of total predicted positives. 
• Recall: True positive predictions out of actual positives. 
• F1-Score: Harmonic mean of precision and recall. 
• Confusion matrices for detailed classification insights. 

 
9 Implementation Pipeline 

9.1 Steps 
• Data Ingestion: Load and normalize data. 
• Preprocessing: Handle missing values and transform data. 
• Feature Engineering: Extract statistical attributes. 
• Model Training: Apply Random Forest and Voting Classifier. 
• Evaluation: Measure performance using metrics and confusion matrices. 
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9.2 Code Modularization 
Functions: 

• load_data: Load datasets. 
• process_data_column: Convert payloads to numeric. 
• extract_features: Derive statistical features. 
• train_models: Train classifiers and optimize parameters. 
• evaluate_models: Calculate and visualize metrics. 

 
10 Results and Discussion 

10.1 Random Forest Classifier 
• Accuracy: 89.61% 
• Precision: 91.24% 
• Recall: 87.64% 
• F1-Score: 89.41% 

10.2 Voting Classifier 
• Accuracy: 76.16% 
• Precision: 88.84% 
• Recall: 59.86% 
• F1-Score: 71.53% 

10.3 Limitations 
• Feature scalability remains constrained by handcrafted engineering. 
• Computational efficiency challenges in real-time applications. 

 
11 Future Directions 

• Automated feature extraction using deep learning techniques like CNN. 
• Broaden attack scope to include spoofing and replay attacks. 
• Optimize models for deployment in resource-constrained environments using 

techniques like quantization or FPGA acceleration. 
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