

Configuration Manual

Practicum Part 2
Msc Cyber Security

Anusha Varghese
Student ID: 23217693

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Anusha Varghese

Student ID:

23217693

Programme:

Msc Cyber Security

Year:

2024 - 2025

Module:

Practicum Part 2

Lecturer:

Mr. Vikas Sahni

Submission Due
Date:

12 December 2024

Project Title:

Enhancing Vehicle Security: Intrusion Detection Using Machine
Learning

Word Count:

744 Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Anusha Varghese

Date:

12 December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Anusha Varghese
Student ID: 23217693

1 Introduction

This manual defines the framework for the intrusion detection system based on machine
learning. It describes its purpose and scope, including high false positives, real-time
processing, and scalability across different vehicle models.

2 Hardware Specifications

• Processor: Intel Core i7.
• Memory (RAM): 8GB minimum.
• Storage: 512 GB minimum.
• Peripherals: Input/output devices for monitoring and testing.

3 Software Specifications

• Operating System: Windows 11.
• Programming Language: Python 3.8.10.
• Libraries: pandas, numpy, scikit-learn, matplotlib, imbalanced-learn.
• Development Environment: Jupyter Notebook.

4 System Requirements

4.1 Functional Requirements
• Support for heterogeneous automotive datasets.
• Ability to handle imbalanced datasets using advanced resampling techniques.
• Feature engineering to enhance interpretability and accuracy.
• Deployment of machine learning algorithms with high classification performance.
• Output detailed metrics like confusion matrices and evaluation scores.

4.2 Non-Functional Requirements
• Real-time detection capability.
• Scalability for large datasets.
• Robustness to noisy or incomplete inputs.
• Modular design for ease of maintenance.

2

5 Data Preparation

5.1 Data Collection

Figure 1: Importing Libraries and Dataset

• Two datasets: attack-free and DoS-attack datasets with over 2.8 million combined
entries.

• Key features:
• Timestamp: Floating-point representation of the time.
• Identifier: Unique network message identifiers.
• RTR and DLC: Indicators of data transmission characteristics.
• Data: Hexadecimal strings encapsulating payloads.

5.2 Preprocessing

Figure 2: Missing Value Removal

• Missing values replaced with a default placeholder payload (['00'] * 8).
• Payload data transformed from hexadecimal to numerical lists.
• Removed insignificant columns like RTR to reduce the computational burden.

3

5.3 Data Balancing

Figure 3: Data Balancing

• Used Synthetic Minority Over-sampling Technique (SMOTE) to handle the class
imbalance.

6 Feature Engineering

6.1 Extracted Features

Figure 4: Feature Extraction

• Min Value: Minimum byte value in the payload.
• Max Value: Maximum byte value in the payload.
• Mean Value: Average byte value.
• Standard Deviation: Variance in byte values.

4

6.2 Feature Selection

Figure 5: Best Feature Selection

• Utilized SelectKBest with mutual information to rank features.

7 Model Development

7.1 Machine Learning Models

Figure 6: ML Models and Training

• Random Forest Classifier: Ensemble method for robust classification.
• Voting Classifier: Combines Random Forest and Logistic Regression for higher

accuracy.

7.2 Training Workflow
• Splitting the dataset into 70% training and 30% testing sets.
• Normalizing numerical features using StandardScaler.

5

8 Evaluation Metrics

Figure 7: Model Performance Metrics

• Accuracy: Ratio of correctly classified instances.
• Precision: True positive predictions out of total predicted positives.
• Recall: True positive predictions out of actual positives.
• F1-Score: Harmonic mean of precision and recall.
• Confusion matrices for detailed classification insights.

9 Implementation Pipeline

9.1 Steps
• Data Ingestion: Load and normalize data.
• Preprocessing: Handle missing values and transform data.
• Feature Engineering: Extract statistical attributes.
• Model Training: Apply Random Forest and Voting Classifier.
• Evaluation: Measure performance using metrics and confusion matrices.

6

9.2 Code Modularization
Functions:

• load_data: Load datasets.
• process_data_column: Convert payloads to numeric.
• extract_features: Derive statistical features.
• train_models: Train classifiers and optimize parameters.
• evaluate_models: Calculate and visualize metrics.

10 Results and Discussion

10.1 Random Forest Classifier
• Accuracy: 89.61%
• Precision: 91.24%
• Recall: 87.64%
• F1-Score: 89.41%

10.2 Voting Classifier
• Accuracy: 76.16%
• Precision: 88.84%
• Recall: 59.86%
• F1-Score: 71.53%

10.3 Limitations
• Feature scalability remains constrained by handcrafted engineering.
• Computational efficiency challenges in real-time applications.

11 Future Directions

• Automated feature extraction using deep learning techniques like CNN.
• Broaden attack scope to include spoofing and replay attacks.
• Optimize models for deployment in resource-constrained environments using

techniques like quantization or FPGA acceleration.

References

Makarfi, A.U., Rabie, K.M., Kaiwartya, O., Li, X. and Kharel, R., 2020, May. Physical layer
security in vehicular networks with reconfigurable intelligent surfaces. In 2020 IEEE 91st
vehicular technology conference (VTC2020-Spring) (pp. 1-6). IEEE.
Moulahi, T., Zidi, S., Alabdulatif, A. and Atiquzzaman, M., 2021. Comparative performance
evaluation of intrusion detection based on machine learning in in-vehicle controller area
network bus. IEEE Access, 9, pp.99595-99605.
Mourad, A., Tout, H., Wahab, O.A., Otrok, H. and Dbouk, T., 2020. Ad hoc vehicular fog
enabling cooperative low-latency intrusion detection. IEEE Internet of Things Journal, 8(2),
pp.829-843.
Narasimhan, H., Ravi, V. and Mohammad, N., 2021. Unsupervised deep learning approach
for in-vehicle intrusion detection system. IEEE Consumer Electronics Magazine, 12(1),
pp.103-108.
Pascale, F., Adinolfi, E.A., Coppola, S. and Santonicola, E., 2021. Cybersecurity in
automotive: An intrusion detection system in connected vehicles. Electronics, 10(15), p.1765.

7

Wang, K., Zhang, A., Sun, H. and Wang, B., 2022. Analysis of recent deep-learning-based
intrusion detection methods for in-vehicle network. IEEE Transactions on Intelligent
Transportation Systems, 24(2), pp.1843-1854.
Yang, Y., Duan, Z. and Tehranipoor, M., 2020. Identify a spoofing attack on an in-vehicle
CAN bus based on the deep features of an ECU fingerprint signal. Smart Cities, 3(1), pp.17-
30.

	1 Introduction
	2 Hardware Specifications
	3 Software Specifications
	4 System Requirements
	4.1 Functional Requirements
	4.2 Non-Functional Requirements

	5 Data Preparation
	5.1 Data Collection
	5.2 Preprocessing
	5.3 Data Balancing

	6 Feature Engineering
	6.1 Extracted Features
	6.2 Feature Selection

	7 Model Development
	7.1 Machine Learning Models
	7.2 Training Workflow

	8 Evaluation Metrics
	9 Implementation Pipeline
	9.1 Steps
	9.2 Code Modularization

	10 Results and Discussion
	10.1 Random Forest Classifier
	10.2 Voting Classifier
	10.3 Limitations

	11 Future Directions
	References

