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Abstract 
Today’s Connected vehicles open completely new dimensions in the risk of 

cyberattacks due to the integration of complex electronic control units and 
communication within the vehicle. This paper presents several different machine 
learning-based methods for enhancement of accuracy and detection efficiency for an 
intrusion detection system for improved vehicular security. First, in-vehicle network data 
was collected and pre-processed, and critical features were selected for intrusion 
detection. The ensemble learning methods employed, including Random Forest and 
Voting Classifier, enhanced detection accuracy and adaptability. The main challenges 
addressed in this paper were high false-positive rates, computational overhead, and real-
time processing in designing a scalable and adaptable IDS architecture. The proposed 
system was designed to be effective for different vehicle models and types of 
cyberattacks, enhancing security and reliability in modern vehicles. 

Keywords: Intrusion Detection, Vehicle Security, Machine Learning, Cybersecurity, 
In-Vehicle Networks, Random Forest, Real-time Detection, Ensemble Learning 

 

1 Introduction 

1.1 Background 
The increasing automotive connectivity has grown with the integration of more 

sophisticated Electronic Control Units (ECU) and internal vehicle communications, thereby 
increasing the compute functionality of modern vehicles considerably. However, this exposes 
them to several different forms of cyber-attacks. Additionally, as more vehicles connect to 
external networks, including the Internet, the landscape of vehicular cybersecurity threats has 
expanded. In this context, intrusion detection systems (IDS) have emerged as a key defense 
mechanism against cyber threats in vehicular networks (Wang, et al., 2022). Despite 
extensive research, most of the existing solutions for IDS in in-vehicle networks still suffer 
from several fundamental limitations, such as high false positives, inefficiency in real-time 
detection, and a lack of scalability over different models and types of attacks. This implies 
that ongoing research in increasingly sophisticated cyber-attacks calls for more robust and 
adaptive IDS frameworks that can help safeguard the security and privacy of modern 
vehicles. 
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1.2 Motivation 
It has become a critical requirement as the frequency of cyberattacks on vehicles has 
increased, and the most well-known incident is the hack of Hyundai cars to control them 
through exploited vulnerabilities. This poses severe consequences in terms of safety, privacy, 
and financial wellbeing. So far, IDS solutions have failed to keep pace with the dynamic 
nature of cyber threats, especially zero-day attacks and emerging attack vectors. Most of the 
existing IDS models are static, hence limiting versatility across different vehicle architectures 
and communication protocols (Moulahi, et al., 2021). Literature has significantly lagged 
behind in developing scalable, real-time, low-overhead IDS solutions, which is still in its 
embryonic stage. This research investigates how machine learning techniques, especially 
ensemble learning, can be used to develop better detection accuracy, adaptability, and 
scalability in IDS of vehicular networks. 

The efficiency of the IDS in vehicular networks is influenced by factors such as the 
nature and complexity of cyberattacks, real-time processing capability, and scalability across 
different vehicle models. In designing the machine learning models, intrusion detection 
accuracy has to be implemented along with computational efficiency so as not to impact 
vehicle performance significantly. Besides, IDS have to be designed to adapt to the 
constantly changing methods of attack with the modulus of long-term security in a never-
changing threat environment. The performance of the intrusion detection system it is greatly 
influenced by the selected machine learning algorithms, feature selection methods, and 
quality of data. 

1.3 Research Question 
How can real-time speed and minimal overhead be combined with an intrusion 

detection system's ability to efficiently identify and counteract cyberattacks on in-car 
networks? 

1.4 Research Objectives 
The research aims to address several core objectives to answer the above research question 
comprehensively: 

1. State of the Art: The paper reviews the state of the art in IDS for vehicular networks, 
considering machine learning techniques applied for intrusion detection. 

2. Implementation of Machine Learning Techniques: Use machine learning algorithms 
including Ensemble Learning: Random Forest and Voting Classifier to improve the 
detection rate of the IDS. 

3. Performance Evaluation of IDS: Check the performance of the system in terms of 
accuracy and real-time processing for two datasets. 

1.5 Contribution 
The major contribution this research provided is toward the provision of a robust, 

scalable IDS framework for vehicular networks, embedding machine learning techniques to 
enhance detection accuracy and adaptability. The system is designed for real-time execution 
with low computational overhead so that protection would not degrade the vehicle's 
performance. The research substrated insights into features and attack vectors that were 
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highly useful, important for vehicle security, and contributed much value to the scientific 
repository on vehicular cybersecurity. The other improvements that the research sought to 
address included scalability across models of vehicles and the capability for adaptation to 
new kinds of cyber-attacks. 

1.6 Structure of the Report 
The paper is structured as follows: after an in-depth review of state-of-the-art literature 

on intrusion detection systems and machine learning applications in vehicular networks, in 
second section the methodologies are discussed, henceforth presenting data collection, 
feature selection, and the machine learning algorithms themselves. The fifth and sixth 
sections describes the implementation and performance evaluation of the proposed IDS, 
which covers the performance metrics: accuracy, precision, recall, and computational 
overhead. The paper concludes by summarizing the findings, contributions, and potential 
directions for future research in vehicular cybersecurity. 
 
2 Related Work 

Connected and autonomous vehicle improvements have brought unsurpassed 
development in transportation with a great deal of cyber security threats, especially within in-
vehicle networks like the Controller Area Network bus (CAN). The CAN bus is a vehicle 
communication network that is robust and features microcontrollers and devices in the 
vehicle that can communicate with each other without the use of a host computer. 

The main focus of research, therefore, is placed on IDS based on machine learning and 
deep learning techniques in spotting such threats. This literature review describes the state-of-
the-art of ML and DL-based IDS for automotive security, identifies strengths and limitations 
of different approaches, explains challenges in real-time applications, and points to possible 
solutions with hybrid models. 

2.1 Machine Learning and Deep Learning in CAN Bus Security 
According to Almehdhar et al. (2024), several deep learning techniques have 

demonstrated high accuracies, such as autoencoders, GANs, and transformers in threat 
detection on CAN bus networks. However, these techniques are mainly restricted for real-
time applications due to their high computational overhead. This paper advocates shifting 
from the classical signature-based IDS to AI-driven anomaly detection systems and further 
proposes hybrid techniques that integrate deep learning with federated learning for better 
adaptability. In a similar vein, Narasimhan et al. (2021) argue that unsupervised deep 
learning models, like autoencoders combined with Gaussian Mixture Models, outperform 
prior techniques while still being too resource-intensive and hence inapplicable for real-time 
applications. 

Yang et al. (2020) and Aldhyani and Alkahtani (2022) target the cybersecurity 
vulnerabilities regarding the in-vehicle CAN bus. Yang et al. propose an RNN-LSTM model 
to detect spoofing attacks runtime using an ECU fingerprint signal. The proposed model 
shows very high computational efficiency running on FPGA platforms. On the other hand, 
Aldhyani and Alkahtani propose a hybrid model of CNN-LSTM for detecting several types 
of attacks on the CAN bus; the performance has been excellent, showing an accuracy of 
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97.30%. Both of these works stress deep learning to upgrade the security level of the CAN 
bus. Yang et al., however, focused on fingerprint signals, while Aldhyani and Alkahtani did 
work with an emphasis on message attack detection. 

Lin et al. (2022) presented a deep learning-based IDS for IVNs by using VGG16 and 
XGBoost classifiers, which attained detection accuracies of 97.82% and 99.99%, 
respectively, on the HCRL Car-Hacking dataset.1 The authors emphasize the detection of 
different DoS and spoofing threats in IVNs. Similarly, Hossain et al. (2022) utilize an LSTM-
based IDS to help in mitigating attacks against a CAN bus network. The authors report 
99.99% detection accuracy with their private dataset. Both papers pinpoint the effectiveness 
of deep learning in IVN security, giving considerable emphasis to improving threat detection 
in automotive networks that are continuously becoming complex. 

2.2 Hybrid Approaches for Intrusion Detection 
Hybrid IDS models address the current challenges with machine learning or deep 

learning models alone. Researchers Alsarhan et al. (2021) proposed a hybrid IDS based on 
rule-based filters, Bayesian learners, and Dempster-Shafer theory for intrusion detection in 
VANETs. This model runs with reduced false positives as the trust-based decisions, but it 
still suffers from the challenge of scalability in various vehicle models. Similarly, Zhang and 
Ma (2022) have developed a hybrid IDS that combines rule-based approaches with machine 
learning to reduce computational overhead to a minimum while gaining enhanced detection 
accuracy. 

Among the reviewed papers, Basavaraj and Tayeb (2022) proposed a lightweight IDS for 
invehicle networks, which can target the detection of attacks like reconnaissance, DoS, and 
Fuzzing against a vehicle's CAN bus. Their solution leveraged real-time CAN data, which 
showed very good performance with respect to accuracy and other metrics considered for 
evaluation. Bozdal et al. (2020) also dwell on the issues of security in CAN bus, stating that 
the lack of encryption and authentication exposes the protocol to a variety of cyberattacks. 
They give a notice call for urgent need in advanced IDS solutions. Dong et al. (2023) expand 
on earlier work, presenting an intrusion detection system with a multiple observation hidden 
Markov model in CAN bus anomaly detection. Their model provides a very significant 
performance improvement in the detection of several attack scenarios. Finally, Pascale et al. 
propose, in 2021, an IDS based on a Bayesian network. The proposed system aims at the 
cyber-attacks on the connected vehicles. The system embeds spatial and temporal message 
analysis hence has effective detection in a number of attack scenarios. On the other hand, it 
has low accuracy under specific conditions. Cumulatively, these papers raise awareness of 
the escalating demand to create advanced IDS models for the protection of vehicular 
communication systems against various growing cyber threats in both connected and 
autonomous vehicles. 

 
 

1  HCLR Car-Hacking dataset https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset  
 

https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset
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2.3 Real-Time Detection and Computational Challenges 
The main obstacle of deploying deep learning-based IDS in automotive networks is 

computational complexity. As Bangui and Buhnova (2021) mentioned, the employment of 
deep learning models significantly enhances vehicle network security, while their high 
demands in computation and energy make it challenging for real-time implementation. Cheng 
et al. (2022) propose STC-IDS, a vehicle intrusion detection system, specifically designed 
with spatial-temporal correlation and attention-based networks to enhance the accuracy of 
anomaly detection compared to predecessors. The multi-frame model assurance for real-time 
detection, but regarding limitation, it remains unknown attack patterns. In the same vein, 
Cheng et al. (2022) devise TCAN-IDS using temporal convolutional neural networks 
combined with global attention to detect intrusion in vehicular networks. Spatial-temporal 
details are captured, and false positives are reduced, at the cost of extremely high 
computational complexity that may impede large-scale real-time deployment. 

Bi et al. (2022) put forth the message and time transfer matrix-based intrusion detection 
method to break or mitigate computational and accuracy constraints in the ECUs. The 
proposed approach of the authors achieves high accuracy with optimized computational 
resources. It is further effective even in high-frequency attack injections and so may provide 
an enhancement to traditional approaches.  

Mourad et al. (2020) introduced a VEC fog-enabled scheme in 2021, whose main focus 
is on overcoming the intensive computational needs of traditional intrusion detection systems 
in intelligent vehicles. The idea behind this economic system is to offload intrusion detection 
tasks to neighborhood-federated vehicles for latency, energy consumption, and survivability 
enhancement. Their solution demonstrates effective performance within real-world vehicular 
fog environments.  

Ma et al. (2022) propose a lightweight neural network system that performs real-time 
intrusion detection in the CAN bus using a GRU-based architecture. The system leverages 
the power of invehicle embedded devices with open datasets for low-latency, high 
classification performance. The real-time performance and deployment efficiency of the 
system are demonstrated within the study and are highlighted as a strong solution for CAN 
intrusion detection in modern automotive. 

2.4 Enhancing Security in Vehicle Networks 
Several works show the potential of machine and deep learning in improving vehicle 

network security. Karthiga et al. (2022) have highlighted an IDS that combines ANFIS and 
CNN with 98.6% detection accuracy, especially for DoS attacks. A hybrid deep learning 
model combining LSTMs and GRU reached an accuracy of 99.5% for real-time DDoS 
detection. Bakhsh et al. (2023) proposed a deep learning IDS for IoT, showing 99.93% 
accuracy. Alladi et al. (2022) reviewed some blockchain applications that guarantee better 
decentralization and transparency. Makarfi et al. (2020) investigated RIS for enhancing the 
physical layer security. Zhang et al. (2021) proposed an ensemble learning algorithm in 6G 
vehicular IDS, which reduced false positives. 
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The key papers are summarized in the Table 1 below 
 

Paper Title Authors Focus Area 
Key 
Methods 

Research 
Gaps/Limit
ations 

Proposed 
Improveme
nts 
(Compared 
to Proposed 
Project) 

Deep Learning in 
the Fast Lane: A 
Survey on 
Advanced 
Intrusion 
Detection 
Systems for 
Intelligent 
Vehicle Networks 

Almehdh
ar et al. 
(2024) 

Deep 
learning 
methods for 
IVN 
security; 
Emphasis on 
CAN 
protocol 

Deep 
learning, 
anomaly-
based 
detection, 
federated 
learning, 
transformers 

High 
computation
al overhead 
in deep 
learning 
models 

Lightweight 
ensemble 
learning for 
real-time 
processing 

Unsupervised 
Deep Learning 
Approach for In-
Vehicle Intrusion 
Detection 

Narasim
han et al. 
(2021) 

Unsupervise
d deep 
learning for 
CAN 
intrusion 
detection 

Autoencoders
, Gaussian 
Mixture 
Model 
(GMM) 

Real-time 
application 
is limited 
due to 
computation
al 
complexity 

Focus on 
Random 
Forest and 
Voting 
Classifier for 
real-time 
detection 

Machine 
Learning-driven 
Optimization for 
Intrusion 
Detection in 
Smart Vehicular 
Networks 

Alsarhan 
et al. 
(2021) 

Hybrid IDS 
using rule-
based filters 
and 
Bayesian 
learners 

Rule-based 
filters, 
Bayesian 
learning, 
Dempster-
Shafer theory 

Scalability 
across 
different 
vehicle 
models not 
explored 

Continuous 
learning and 
scalable 
models for 
diverse 
vehicle 
models 

Recent Advances 
in Machine-
Learning Driven 
Intrusion 
Detection in 
Transportation: 
Survey 

Bangui 
& 
Buhnova 
(2021) 

Machine 
learning IDS 
in VANET 
and UAV-
aided 
networks 

Machine 
learning, 
anomaly 
detection, 
UAV-aided 
IDS 

Challenges 
in big data 
analysis and 
high 
computation
al 
complexity 

Focus on 
reducing 
false 
positives and 
enhancing 
real-time 
adaptability 

Table 1: Literature Review Table 
 

2.5 Research Gap and Difference  
The fundamental difference in this project with respect to existing research is that it 

focuses on lightweight models that are optimized for real-time detection. While the deep 
learning models of prior related studies emphasized high demands on computational 
resources, this particular project takes efficiency into consideration, hence being best suited 
for automotive systems that require real-time processing. This, if anything, tames the scaling 
problems of prior studies, such as Narasimhan et al. (2021) which narrowed down to attack 
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types or vehicle model varieties. In contrast, the present study enables the proposed method 
with more scalability across heterogeneous types of vehicles and attack vectors to come up 
with adaptable ensemble learning models. It also handles the generalisability issue, which 
Almehdhar et al. illustrated in 2024, by applying mutual information and select best for 
feature selection to enhance robustness across different datasets. This now provides major 
steps forward in reducing computational overhead, a common issue in deep learning-based 
systems, by using efficient machine learning models that keep memory and processing 
requirements low. 

This also introduces the possibility of improved attack adaptability based on a 
continuous learning system able to evolve with new threats. Ensemble learning can make the 
system more robust, since these benefits in combining accuracy and robustness do not come 
with a significant computational cost. There are still some challenges related to the 
management of ensemble complexity and the assurance of smooth model updates in strict 
real-time, resource-constrained contexts, an interesting point for future research work. 
 
3 Research Methodology 

3.1 Research Design 
This work employed a quantitative experimental design to ascertain whether machine 

learning algorithms can effectively identify attack-free datasets from DoS attack datasets. 
The experimental design allowed iterative model testing and fine-tuning of its parameters to 
deliver robust results. 

3.2 Data Sets 
The datasets used in this research were real-time automotive network data. Further, the 

data consisted of attack-free2 records and those labeled as DoS attacks3. The attack-free 
dataset contained over 2.2 million entries, while that of the DoS was over 650,000 entries. 

3.3 Preprocessing of Data 
The initial exploration showed the presence of inconsistencies, such as missing values 

and unprocessed formats; thus, cleaning and transformation were called for:  
• For missing values in the Data column of the DoS dataset, a default hexadecimal 

string was imputed that indicates null payloads. The columns of data were 
normalized to be compatible for processing.  

• For example, the Data column was made into lists of integers by hexadecimal 
decoding.  

 
 

2  Acttack_free_dataset 
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/AKBKujyHfjh202zzLpBcdb0/Attack_free_dataset.txt?rlkey=43n5
70cnodtq6yls139r4yvn7&e=1&st=vcb22fsi&dl=0  

 
3  DoS_attrack_dataset 
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/ADhDIC8LRFL8wHUexib3C3w?e=1&preview=DoS_attack_data
set.txt&rlkey=43n570cnodtq6yls139r4yvn7&st=iys945ng&dl=0  

 

https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/AKBKujyHfjh202zzLpBcdb0/Attack_free_dataset.txt?rlkey=43n570cnodtq6yls139r4yvn7&e=1&st=vcb22fsi&dl=0
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/AKBKujyHfjh202zzLpBcdb0/Attack_free_dataset.txt?rlkey=43n570cnodtq6yls139r4yvn7&e=1&st=vcb22fsi&dl=0
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/ADhDIC8LRFL8wHUexib3C3w?e=1&preview=DoS_attack_dataset.txt&rlkey=43n570cnodtq6yls139r4yvn7&st=iys945ng&dl=0
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/ADhDIC8LRFL8wHUexib3C3w?e=1&preview=DoS_attack_dataset.txt&rlkey=43n570cnodtq6yls139r4yvn7&st=iys945ng&dl=0
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Then, insignificant columns like RTR within the attack-free data were removed to save the 
computation cost and reduce noise. 

3.4 Exploratory Data Analysis 
EDA was performed to understand the distribution and relationship present in the data. 
Descriptive statistics were created for relevant features: timestamp and DLC. These provide 
the visual of the histogram distribution in both attack-free and DoS datasets with regard to 
such attributes, showing variations that may inform an approach toward modeling. Trends of 
missing data were analyzed and handled. 

3.5 Feature Engineering 
Feature engineering was done in the interest of both model explainability and improvement; 
the steps taken included: 

1. Transformation of Data Column: The values of Payload were transformed into 
numeric features. 

2. Feature Selection: Mutual information scores were among the statistical techniques 
used to rank the strengths of the engineered features. 

3.6 Data Balancing 
Class imbalance was dealt with in this dataset, with instances of attack-free significantly 
outweighing instances of DoS attack cases. This was handled using the Synthetic Minority 
Over-sampling Technique. 

3.7 Model Development 
Two machine learning classifiers were developed and evaluated: 

• Random Forest Classifier: This is one of the strongest ensemble learning algorithms 
using bagging, thus overfitting would be reduced to a minimum, and accuracy would 
be quite high. Class weights were adjusted to handle residual imbalances.  

• Voting Classifier: The hard voting ensemble is taking predictions from a Random 
Forest and Logistic Regression classifier. 

 
The model development process included: Splitting: Data is divided into 70% training and 
30% test subsets. Feature Scaling: The standardScaler technique was used for the 
normalization of the numerical features. 

3.8 Model Evaluation 
A classifier's performance was calculated based on the following performance metrics: 

• Accuracy: It is the ratio of correctly identified instances. 
• Precision: Fraction of the positive instances correctly predicted. 
• Recall: The percentage of actual positive instances detected. 
• F1-Score: Harmonic average of precision and recall. 
• Confusion Matrices: It displays the outcome of the prediction in terms of true 

positives, true negatives, false positives, and false negatives. 
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3.9 Ethical Issues 
The datasets used were anonymized in order to narrow down those that comply with the 
standards of privacy. Secondly, there is active monitoring for bias in model outputs through 
feature importance analysis on balanced dataset performance. High regard was given to 
transparency about any preprocessing and modeling done, to guarantee replicability. 

3.10 Limitation 
Despite preprocessing and feature engineering, some limitations remained. This synthetic 
data, created with SMOTE, is unlikely to exactly give a true distribution so far as realistic 
scenarios go, further deteriorating generalization. Feature selection was based on mutual 
information scores; as such, subtle but relevant attributes may have been excluded.  
 

4 Design Specification 

4.1 Overview of System Design 
This section describes the architectural and methodological framework used in the design 
specification for the detection of DoS attacks in automotive networks. Each subcomponent of 
the system is connected with others for the overall data ingestion, preprocessing, feature 
extraction, model training, and classification. These diverse components have to work 
together in cohesion to ensure valid and effective detection capability of malicious activities 
present in network traffic. 

4.2 System Requirements 
The following functional and non-functional requirements are addressed by the system: 
Functional Requirements: 

• Support for heterogeneous automotive data sets, including variable structure payloads. 
• Handles imbalanced datasets with the help of advanced resampling techniques. 
• Provide feature engineering and selection to enhance interpretability and accuracy. 
• Deployment of high classification-performing machine learning algorithms. 
• Output of the full metrics, including confusion matrices and performance scores. 

 
Non-functional Requirements: 

• High computational efficiency for real-time or near real-time detection.  
• Scalability to datasets with millions of entries.  
• Robustness to incomplete or noisy input.  
• Modularity for maintainability by design. 

4.3 Framework Architecture 
The key elements for the detection framework are as follows: 
1. Data Ingestion Layer: 

• It is responsible for loading datasets from storage and normalizing raw inputs for 
further processing. 

• Includes handling of missing or corrupted entries to get a clean dataset for analysis. 
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2. Preprocessing Module: 

• Cleans and transforms raw data by: 
• Addressing missing values with default placeholders. 
• Standardize and normalize numeric fields, such as Timestamp and DLC. 
• It encodes the Data field into numerical lists for computational processing. 

 
3. Feature Engineering Module: 

• Extract statistical features from payload data minimum, maximum, mean, and 
standard deviation. 

• Filter columns by variance and significance, removing RTR and other such irrelevant 
or redundant information. 

 
4. Data Balancing Module: 

• Uses the Synthetic Minority Over-sampling Technique (SMOTE) to handle class 
imbalances. 

• Generates artificial examples of minority class to match the distribution of the 
majority class. 

 
5. Model Training and Optimization Layer: 

• Implements machine learning algorithms, including: 
• Random Forest Classifier 
• Voting Classifier 

• Performs hyperparameter tuning for the modification and fine-tuning of algorithm 
performance. 

 
6. Evaluation and Reporting Layer: 

• It is used to evaluate the models using various metrics including accuracy, precision, 
recall, and F1-score. 

• Generates visualizations of the confusion matrices and feature importance rankings. 

4.4 Algorithmic Design 
A feature extraction mechanism-based detection is done through supervised learning 
algorithms. The process flow is as follows: 
1. Data Preparation: 

• Loading raw datasets and cleaning. 
• Encode payload data into numerical representations. 
• Balance classes of the dataset using SMOTE to ensure their equitable learning across 

categories. 
 
2. Feature Engineering: 

• Extract statistical features from these preprocessed payloads, which may improve 
model interpretability and predictive power. 
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3. Model Implementation: 

• Random Forest Classifier: 
 Generates multiple decision trees during the training process.  
 Aggregates outputs from individual trees to determine the final classification.  
 Handles imbalanced datasets by using class weights, which allow it to focus 

more on minority classes.  
• Voting Classifier:  

 This model combines the predictions of the classifiers Random Forest and 
Logistic Regression.  

 Uses hard voting to predict the majority class label.  
 
4. Performance Evaluation:  

• Split data into training and testing subsets for validation of models.  
• Normalize features using StandardScaler technique.  
• Evaluate predictions against actual labels for the model, presenting detailed metrics 

and visualizations. 

4.5 Systems Architecture Diagram 
The architecture embeds the components mentioned above into a smooth pipeline, starting 
from data intake to actionable classified output. This pipeline provides flexibility for different 
datasets and machine learning models in a deployable environment. 
 

 

Figure 1: System Architecture Diagram  

4.6 Design Considerations 
The proposed system design takes into consideration a number of challenges that normally 
characterize data to be analyzed, such as class imbalance, high data dimensionality, and 
noise. Machine learning model selection and preprocessing techniques are informed by 
scalability, efficiency, and accuracy considerations. This will enable the easy integration of 
new algorithms or features in a modular design.  
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4.7 Summary  
The methodologies, architecture, and technologies presented in this section are the backbone 
for designing and developing a DoS detection system. The architecture will make the system 
reliable, scalable, and accurate, thus laying a solid platform for practical implementations and 
industrial applications. 
 
5 Implementation 
This chapter elaborates on the implementation details of the procedure to be followed for 
detection using a machine-learning technique for DoS attacks in automotive networks. The 
whole implementation falls into various phases: data ingestion, preprocessing, feature 
engineering, the training of the model, and developing an evaluation framework. Each stage 
here is designed considering scalability, robustness, and precision. 

5.1 Data Handling 
Data Loading and Exploration  
Loading of both attack-free and Dos-attack representation datasets was done as the first step. 
Each dataset consisted of, though not limited to, the fields: timestamp, identifier, payload 
length, and raw hexadecimal payload. Data ingestion was performed by using Python's 
Panda's library in structured formats known as DataFrames, which thus enabled seamless 
manipulation of the data.  
Descriptive statistics and exploratory analyses were done to understand the distributions, 
correlations, and anomalies of the data. Missing values in the DoS dataset have been 
identified and treated accordingly to ensure the integrity of the data for further processing. 
 
Handling Missing Data  
The Data column was missing in the DoS dataset. These were replaced by a placeholder 
hexadecimal string indicating an empty payload. 

5.2 Preprocessing 
Data Transformation  
The raw payloads, stored in hexadecimal format, first needed to get transformed into 
numerical representations. Python's ast module was helpful to convert string representations 
into lists of integers. It was this transformation that prepared the data for numerical 
operations that were to follow for feature extraction. 
Data Cleaning  
The highly sparse columns-for example, the RTR column from the attack-free dataset-were 
removed to reduce the computational burden. This also reduces noise and thus could improve 
model performance. 
 
Dataset Balancing  
SMOTE-a technique used to balance the class imbalance in a dataset-was applied. This 
method generates synthetic examples for the minority class, namely DoS attacks, balancing 
the data so models can learn equitably across classes. 
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5.3 Feature Engineering 
Feature Extraction  
To extract meaningful attributes, statistical features were extracted from the numerical 
payload data: 

• Min Value: The minimum value of the payload. 
• Maximum Value: The highest value of payload. 
• Mean Value: The average of payload values. 
• Variance / Standard Deviation: A measure of dispersion in payload values. 

These features were representatives of the characteristics of the payload, thus allowing 
appropriate classification. 
 
Feature Selection  
The method of SelectKBest based on mutual information was used to review feature 
relevance. Scores were computed with the view of prioritizing features so that only the most 
significant attributes contributed toward the training of the model. 

5.4 Model Development 
Training and Testing Split  
The balanced dataset was split into a training set of 70% and a test set of 30% using 
train_test_split. This separation ensured that model evaluation would be fairly performed on 
data the model had not seen. 
 
Machine Learning Algorithms  
Two machine learning models are implemented and fine-tuned:  

• Random Forest Classifier: Another popular ensemble technique, training a lot of 
decision trees and combining outputs during predictions. The class_weight parameter 
was modified with small residual class imbalances to take into consideration getting 
equal model attention across the labels.  

• Voting Classifier: Basically, it includes the Random Forest and Logistic Regression 
classifiers into a model combination. As per the ensemble approach, both models 
complement each other with different strengths. It performed the hard vote to return 
the majority class prediction from within the output. 

5.5 Training the Model 
Training the Random Forest  
The Random Forest Classifier will be trained on a scaled feature set. Its two most important 
hyperparameters are optimized - the number of trees and depth - to reach an optimal spot 
where computation efficiency meets prediction accuracy. 
 
Training Voting Classifier 
The Vote Classifier combined the predictions of both the Random Forest and Logistic 
Regression models. This turned out to be tough since Logistic Regression contributes its 
linear decision boundary to the nonlinear capability of Random Forest. 
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5.6 Implementation Workflow 
Integrated Pipeline  
An integrated pipeline that automates this workflow was built: 

• Data Ingestion: It can load and structure different datasets automatically. 
• Preprocessing: Cleaning, transformation, and balancing performed sequentially in a 

chain. 
• Feature Engineering: Statistical feature extraction and selection. 
• Model Training: Classification by random forest and voting classifiers, followed by 

automated hyperparameter tuning. 
• Evaluation Framework: Metric output and confusion matrix on validation. 

5.7 Challenges Addressed  
• Dataset imbalance: One of the very important parts of the work in reducing the 

biases of the model predictions comes with balancing the datasets. Then, SMOTE 
proved efficient in synthesizing new samples for the minority class, which in turn will 
prevent the classifier from being biased toward the majority class. 

• High-Dimensionality: Feature extraction reduced the dimensionality of payload data 
whereby this allowed one to train without a loss of performance efficiently. 

• Noise in Data: Cleaning steps such as low variance column removal, and missing 
value treatments balanced the noise in the data.  

5.8 Summary  
Implementation means translating the conceptual model into an actual system that performs 
the detection of the DoS attack while cleaning and structuring data proper feature engineering 
is performed to train a generalizable model that will be able to adapt to real-world scenarios. 
This pipeline is more general and gives the grounds for the evaluation and deployment 
phases. 
 
6 Evaluation 
 
This section provides a detailed analysis of the experimental results related to intrusion 
detection on in-vehicle CAN bus data while under attack and attack-free conditions. 
Performance metrics and implications involving machine learning model performance are 
presented herein to identify anomalies in the CAN bus data caused by cyberattacks, 
especially involving DoS attacks. 

6.1 Data Distribution Analysis 
This section aims to understand the characteristics of the data sets used in this study. It 
performs statistical and graphical analyses on both attack-free and DoS attack data sets. 

6.1.1 Timestamp Distribution  
The timestamp distribution of the attack-free dataset showed an even trend, indicating that the 
data are transmitted on a regular periodic basis. On the contrary, the timestamp distribution of 



15 
 

 

the DoS attack dataset shows an uneven mode with bursts that signal the abnormal traffic 
behavior caused by the attack. The differences in timestamp distribution represent one 
potential characteristic for distinguishing between normal and attack. 

6.1.2 DLC (Data Length Code) Distribution  
The DLC values of the attack-free dataset were mainly concentrated on 8, which was 
attributed to the traditional practice of data transmission. In the DoS attack dataset, the DLC 
distribution also showed a dominance of 8, though with some abnormalities and lower values. 
These differences further pinpoint the impact of DoS attacks on network communication. 

 

Figure 2: Timestamp Distributions 

 

Figure 3: DLC Distributions 

6.2 Feature Engineering and Preprocessing 
Feature engineering was the most elementary step in transforming raw CAN bus data into a 
meaningful input technical tool to be used by the machine learning model. Some of the major 
features extracted include: 

• Min Data Value: Smallest byte value in the data frame. 
• max data value: Maximum byte value in the data frame. 
• Mean Data Value: The mean value at any byte position in the data frame. 
• Std Dev of Data (Std Data): Variance in the value of bytes. 
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Feature selection through mutual information ranked max_data, mean_data, and std_data in 
descending order of importance for the task of telling apart attack and non-attack situations, 
which confirmed our hypothesis that anomalies in data patterns are the most indicative of 
network anomalies. 
To handle class imbalance between attack-free and DoS attack samples, SMOTE was 
employed, preparing a balanced dataset of both classes with equal representation. This 
balanced dataset ensures unbiased model training and evaluation. 

 

Figure 2: SMOTE Applied 

6.3 Model Evaluation - Random Forest Classifier 
The Random Forest Classifier was chosen because it can handle complex, nonlinear 
relationships and is not seen to overfit on high-dimensional datasets easily. The model 
achieved the following performance: 

 

Figure 3: Random Forest Results 
The confusion matrix of this optimal RF classifier gives very good performances of the 
classifier with low values of false positives and false negatives. Similarly, these balanced 
precisions and recalls are indicative of better performance of the model in identifying the 
DoS attack without overestimation toward benign instances. 
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Figure 4: RF Confusion Matrix 

6.4 Model Evaluation - Voting Classifier 
A Voting Classifier was then used to combine the Random Forest with the Logistic 
Regression to take full advantage of their respective complementary strengths. However, this 
model gave a high precision of (88.84%), whereas the recall was (59.86%), which is quite a 
bit worse than the above Random Forest model, thus yielding: 

 

Figure 5: Voting Classifier Results 
The confusion matrix also showed a high rate of false negatives, meaning the model failed to 
detect any instance of an attack. That could suggest further optimization may be necessary for 
the ensemble methods to function effectively in a real-time CAN-bus environment.  

 

Figure 6: Voting Classifier Confusion Matrix 

6.5 Discussion 
These results are important for gaining insight into the performance and shortcomings of 
machine learning-based intrusion detection systems for CAN bus networks. Evaluations 
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revealed that the Random Forest Classifier outperformed the Voting Classifier in detecting 
Dos attacks with higher recall and F1-scores. This further builds on existing literature on how 
effective Random Forest is in modeling nonlinear relationships common within CAN bus 
traffic. Critical areas for further development were found in this study, mainly for a practical 
deployment in real scenarios. 

Class imbalance was dealt with the help of SMOTE. This resulted in the introduction of 
artificial data into the dataset that can potentially make the model even less generalized to 
real life. For this, possible alternatives could be either using ADASYN or instead weighted 
loss function. What badly performed was the performance of the Voting Classifier and it was 
mainly caused because of low recall, enlightening a number of weaknesses associated with 
combining such models, some of which could also have weighted voting as its remedy or 
using Gradient Boosting. 

The study placed a major focus on the study of DoS attacks; hence, generalization of 
results to other attacks like spoofing or replay attack is limited. In the future, Yang et al. 
propose extending IDS coverage for a wide variety of attack types through research. Besides, 
the high computational cost of Random Forest prevents its real-time deployment in resource-
constrained environments. The lightweight architectures and FPGA acceleration discussed by 
Ma et al. 2022 and Yang et al. 2020 could overcome these limitations. While the results align 
with state-of-the-art advancements, scalability, efficiency, and broader attack coverage 
remain open challenges that require a hybrid approach and real-time optimizations toward 
practical automotive IDS deployment. 
 

7 Conclusion and Future Work 
The efficiency of various machine learning algorithms was reviewed in this paper for 

improving intrusion detection systems in vehicular networks. It described intrusion detection, 
focusing on the issue of DoS attacks in the CAN bus system, and how to combine real-time 
speed and minimum overhead with the capability of IDS in the detection and neutralization of 
cyberattacks. 

Among those, the best performance was done by Random Forest. Its accuracy reached 
89.61%, while Recall attained 87.64% and the F1-score 89.41%. The good result here shows 
it can handle the non-linear variability typical of feature engineering for CAN bus traffic- 
Metric means: mean_data, standard: std_data or max: max_data- will improve. Statistic 
handcrafted features led to poorer adaptability against new threats in performances obtained 
using Voting Classifier; the task becomes worse. 

These findings reveal that machine learning-based IDS significantly enhances vehicular 
cybersecurity anomaly detection in real time. However, scalability issues, feature 
generalization, and computational efficiency keep them off the road to practical applications. 
Further emphasis on research was placed on the automatic extraction of features using deep 
learning, lightweight neural architecture for resource-constrained situations, and hybrid 
approaches for robustness against a wide range of attack types and zero-day threats. Such 
gaps, when addressed, would lead to significant advances in IDSs and wider adoption in 
automotive cybersecurity. 
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