

Enhancing Vehicle Security: Intrusion Detection
Using Machine Learning

Practicum Part 2
MSc Cyber Security

Anusha Varghese
Student ID: 23217693

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Anusha Varghese

Student ID:

23217693

Programme:

Msc Cyber Security

Year:

2024-2025

Module:

Practicum Part 2

Supervisor:

Mr. Vikas Sahni

Submission Due
Date:

12 December 2024

Project Title:

Enhancing Vehicle Security: Intrusion Detection Using Machine
Learning

Word Count:

6452 Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Anusha Varghese

Date:

12 December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Enhancing Vehicle Security: Intrusion Detection
Using Machine Learning

Anusha Varghese
23217693

Abstract
Today’s Connected vehicles open completely new dimensions in the risk of

cyberattacks due to the integration of complex electronic control units and
communication within the vehicle. This paper presents several different machine
learning-based methods for enhancement of accuracy and detection efficiency for an
intrusion detection system for improved vehicular security. First, in-vehicle network data
was collected and pre-processed, and critical features were selected for intrusion
detection. The ensemble learning methods employed, including Random Forest and
Voting Classifier, enhanced detection accuracy and adaptability. The main challenges
addressed in this paper were high false-positive rates, computational overhead, and real-
time processing in designing a scalable and adaptable IDS architecture. The proposed
system was designed to be effective for different vehicle models and types of
cyberattacks, enhancing security and reliability in modern vehicles.

Keywords: Intrusion Detection, Vehicle Security, Machine Learning, Cybersecurity,
In-Vehicle Networks, Random Forest, Real-time Detection, Ensemble Learning

1 Introduction

1.1 Background
The increasing automotive connectivity has grown with the integration of more

sophisticated Electronic Control Units (ECU) and internal vehicle communications, thereby
increasing the compute functionality of modern vehicles considerably. However, this exposes
them to several different forms of cyber-attacks. Additionally, as more vehicles connect to
external networks, including the Internet, the landscape of vehicular cybersecurity threats has
expanded. In this context, intrusion detection systems (IDS) have emerged as a key defense
mechanism against cyber threats in vehicular networks (Wang, et al., 2022). Despite
extensive research, most of the existing solutions for IDS in in-vehicle networks still suffer
from several fundamental limitations, such as high false positives, inefficiency in real-time
detection, and a lack of scalability over different models and types of attacks. This implies
that ongoing research in increasingly sophisticated cyber-attacks calls for more robust and
adaptive IDS frameworks that can help safeguard the security and privacy of modern
vehicles.

2

1.2 Motivation
It has become a critical requirement as the frequency of cyberattacks on vehicles has
increased, and the most well-known incident is the hack of Hyundai cars to control them
through exploited vulnerabilities. This poses severe consequences in terms of safety, privacy,
and financial wellbeing. So far, IDS solutions have failed to keep pace with the dynamic
nature of cyber threats, especially zero-day attacks and emerging attack vectors. Most of the
existing IDS models are static, hence limiting versatility across different vehicle architectures
and communication protocols (Moulahi, et al., 2021). Literature has significantly lagged
behind in developing scalable, real-time, low-overhead IDS solutions, which is still in its
embryonic stage. This research investigates how machine learning techniques, especially
ensemble learning, can be used to develop better detection accuracy, adaptability, and
scalability in IDS of vehicular networks.

The efficiency of the IDS in vehicular networks is influenced by factors such as the
nature and complexity of cyberattacks, real-time processing capability, and scalability across
different vehicle models. In designing the machine learning models, intrusion detection
accuracy has to be implemented along with computational efficiency so as not to impact
vehicle performance significantly. Besides, IDS have to be designed to adapt to the
constantly changing methods of attack with the modulus of long-term security in a never-
changing threat environment. The performance of the intrusion detection system it is greatly
influenced by the selected machine learning algorithms, feature selection methods, and
quality of data.

1.3 Research Question
How can real-time speed and minimal overhead be combined with an intrusion

detection system's ability to efficiently identify and counteract cyberattacks on in-car
networks?

1.4 Research Objectives
The research aims to address several core objectives to answer the above research question
comprehensively:

1. State of the Art: The paper reviews the state of the art in IDS for vehicular networks,
considering machine learning techniques applied for intrusion detection.

2. Implementation of Machine Learning Techniques: Use machine learning algorithms
including Ensemble Learning: Random Forest and Voting Classifier to improve the
detection rate of the IDS.

3. Performance Evaluation of IDS: Check the performance of the system in terms of
accuracy and real-time processing for two datasets.

1.5 Contribution
The major contribution this research provided is toward the provision of a robust,

scalable IDS framework for vehicular networks, embedding machine learning techniques to
enhance detection accuracy and adaptability. The system is designed for real-time execution
with low computational overhead so that protection would not degrade the vehicle's
performance. The research substrated insights into features and attack vectors that were

3

highly useful, important for vehicle security, and contributed much value to the scientific
repository on vehicular cybersecurity. The other improvements that the research sought to
address included scalability across models of vehicles and the capability for adaptation to
new kinds of cyber-attacks.

1.6 Structure of the Report
The paper is structured as follows: after an in-depth review of state-of-the-art literature

on intrusion detection systems and machine learning applications in vehicular networks, in
second section the methodologies are discussed, henceforth presenting data collection,
feature selection, and the machine learning algorithms themselves. The fifth and sixth
sections describes the implementation and performance evaluation of the proposed IDS,
which covers the performance metrics: accuracy, precision, recall, and computational
overhead. The paper concludes by summarizing the findings, contributions, and potential
directions for future research in vehicular cybersecurity.

2 Related Work

Connected and autonomous vehicle improvements have brought unsurpassed
development in transportation with a great deal of cyber security threats, especially within in-
vehicle networks like the Controller Area Network bus (CAN). The CAN bus is a vehicle
communication network that is robust and features microcontrollers and devices in the
vehicle that can communicate with each other without the use of a host computer.

The main focus of research, therefore, is placed on IDS based on machine learning and
deep learning techniques in spotting such threats. This literature review describes the state-of-
the-art of ML and DL-based IDS for automotive security, identifies strengths and limitations
of different approaches, explains challenges in real-time applications, and points to possible
solutions with hybrid models.

2.1 Machine Learning and Deep Learning in CAN Bus Security
According to Almehdhar et al. (2024), several deep learning techniques have

demonstrated high accuracies, such as autoencoders, GANs, and transformers in threat
detection on CAN bus networks. However, these techniques are mainly restricted for real-
time applications due to their high computational overhead. This paper advocates shifting
from the classical signature-based IDS to AI-driven anomaly detection systems and further
proposes hybrid techniques that integrate deep learning with federated learning for better
adaptability. In a similar vein, Narasimhan et al. (2021) argue that unsupervised deep
learning models, like autoencoders combined with Gaussian Mixture Models, outperform
prior techniques while still being too resource-intensive and hence inapplicable for real-time
applications.

Yang et al. (2020) and Aldhyani and Alkahtani (2022) target the cybersecurity
vulnerabilities regarding the in-vehicle CAN bus. Yang et al. propose an RNN-LSTM model
to detect spoofing attacks runtime using an ECU fingerprint signal. The proposed model
shows very high computational efficiency running on FPGA platforms. On the other hand,
Aldhyani and Alkahtani propose a hybrid model of CNN-LSTM for detecting several types
of attacks on the CAN bus; the performance has been excellent, showing an accuracy of

4

97.30%. Both of these works stress deep learning to upgrade the security level of the CAN
bus. Yang et al., however, focused on fingerprint signals, while Aldhyani and Alkahtani did
work with an emphasis on message attack detection.

Lin et al. (2022) presented a deep learning-based IDS for IVNs by using VGG16 and
XGBoost classifiers, which attained detection accuracies of 97.82% and 99.99%,
respectively, on the HCRL Car-Hacking dataset.1 The authors emphasize the detection of
different DoS and spoofing threats in IVNs. Similarly, Hossain et al. (2022) utilize an LSTM-
based IDS to help in mitigating attacks against a CAN bus network. The authors report
99.99% detection accuracy with their private dataset. Both papers pinpoint the effectiveness
of deep learning in IVN security, giving considerable emphasis to improving threat detection
in automotive networks that are continuously becoming complex.

2.2 Hybrid Approaches for Intrusion Detection
Hybrid IDS models address the current challenges with machine learning or deep

learning models alone. Researchers Alsarhan et al. (2021) proposed a hybrid IDS based on
rule-based filters, Bayesian learners, and Dempster-Shafer theory for intrusion detection in
VANETs. This model runs with reduced false positives as the trust-based decisions, but it
still suffers from the challenge of scalability in various vehicle models. Similarly, Zhang and
Ma (2022) have developed a hybrid IDS that combines rule-based approaches with machine
learning to reduce computational overhead to a minimum while gaining enhanced detection
accuracy.

Among the reviewed papers, Basavaraj and Tayeb (2022) proposed a lightweight IDS for
invehicle networks, which can target the detection of attacks like reconnaissance, DoS, and
Fuzzing against a vehicle's CAN bus. Their solution leveraged real-time CAN data, which
showed very good performance with respect to accuracy and other metrics considered for
evaluation. Bozdal et al. (2020) also dwell on the issues of security in CAN bus, stating that
the lack of encryption and authentication exposes the protocol to a variety of cyberattacks.
They give a notice call for urgent need in advanced IDS solutions. Dong et al. (2023) expand
on earlier work, presenting an intrusion detection system with a multiple observation hidden
Markov model in CAN bus anomaly detection. Their model provides a very significant
performance improvement in the detection of several attack scenarios. Finally, Pascale et al.
propose, in 2021, an IDS based on a Bayesian network. The proposed system aims at the
cyber-attacks on the connected vehicles. The system embeds spatial and temporal message
analysis hence has effective detection in a number of attack scenarios. On the other hand, it
has low accuracy under specific conditions. Cumulatively, these papers raise awareness of
the escalating demand to create advanced IDS models for the protection of vehicular
communication systems against various growing cyber threats in both connected and
autonomous vehicles.

1 HCLR Car-Hacking dataset https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

5

2.3 Real-Time Detection and Computational Challenges
The main obstacle of deploying deep learning-based IDS in automotive networks is

computational complexity. As Bangui and Buhnova (2021) mentioned, the employment of
deep learning models significantly enhances vehicle network security, while their high
demands in computation and energy make it challenging for real-time implementation. Cheng
et al. (2022) propose STC-IDS, a vehicle intrusion detection system, specifically designed
with spatial-temporal correlation and attention-based networks to enhance the accuracy of
anomaly detection compared to predecessors. The multi-frame model assurance for real-time
detection, but regarding limitation, it remains unknown attack patterns. In the same vein,
Cheng et al. (2022) devise TCAN-IDS using temporal convolutional neural networks
combined with global attention to detect intrusion in vehicular networks. Spatial-temporal
details are captured, and false positives are reduced, at the cost of extremely high
computational complexity that may impede large-scale real-time deployment.

Bi et al. (2022) put forth the message and time transfer matrix-based intrusion detection
method to break or mitigate computational and accuracy constraints in the ECUs. The
proposed approach of the authors achieves high accuracy with optimized computational
resources. It is further effective even in high-frequency attack injections and so may provide
an enhancement to traditional approaches.

Mourad et al. (2020) introduced a VEC fog-enabled scheme in 2021, whose main focus
is on overcoming the intensive computational needs of traditional intrusion detection systems
in intelligent vehicles. The idea behind this economic system is to offload intrusion detection
tasks to neighborhood-federated vehicles for latency, energy consumption, and survivability
enhancement. Their solution demonstrates effective performance within real-world vehicular
fog environments.

Ma et al. (2022) propose a lightweight neural network system that performs real-time
intrusion detection in the CAN bus using a GRU-based architecture. The system leverages
the power of invehicle embedded devices with open datasets for low-latency, high
classification performance. The real-time performance and deployment efficiency of the
system are demonstrated within the study and are highlighted as a strong solution for CAN
intrusion detection in modern automotive.

2.4 Enhancing Security in Vehicle Networks
Several works show the potential of machine and deep learning in improving vehicle

network security. Karthiga et al. (2022) have highlighted an IDS that combines ANFIS and
CNN with 98.6% detection accuracy, especially for DoS attacks. A hybrid deep learning
model combining LSTMs and GRU reached an accuracy of 99.5% for real-time DDoS
detection. Bakhsh et al. (2023) proposed a deep learning IDS for IoT, showing 99.93%
accuracy. Alladi et al. (2022) reviewed some blockchain applications that guarantee better
decentralization and transparency. Makarfi et al. (2020) investigated RIS for enhancing the
physical layer security. Zhang et al. (2021) proposed an ensemble learning algorithm in 6G
vehicular IDS, which reduced false positives.

6

The key papers are summarized in the Table 1 below

Paper Title Authors Focus Area
Key
Methods

Research
Gaps/Limit
ations

Proposed
Improveme
nts
(Compared
to Proposed
Project)

Deep Learning in
the Fast Lane: A
Survey on
Advanced
Intrusion
Detection
Systems for
Intelligent
Vehicle Networks

Almehdh
ar et al.
(2024)

Deep
learning
methods for
IVN
security;
Emphasis on
CAN
protocol

Deep
learning,
anomaly-
based
detection,
federated
learning,
transformers

High
computation
al overhead
in deep
learning
models

Lightweight
ensemble
learning for
real-time
processing

Unsupervised
Deep Learning
Approach for In-
Vehicle Intrusion
Detection

Narasim
han et al.
(2021)

Unsupervise
d deep
learning for
CAN
intrusion
detection

Autoencoders
, Gaussian
Mixture
Model
(GMM)

Real-time
application
is limited
due to
computation
al
complexity

Focus on
Random
Forest and
Voting
Classifier for
real-time
detection

Machine
Learning-driven
Optimization for
Intrusion
Detection in
Smart Vehicular
Networks

Alsarhan
et al.
(2021)

Hybrid IDS
using rule-
based filters
and
Bayesian
learners

Rule-based
filters,
Bayesian
learning,
Dempster-
Shafer theory

Scalability
across
different
vehicle
models not
explored

Continuous
learning and
scalable
models for
diverse
vehicle
models

Recent Advances
in Machine-
Learning Driven
Intrusion
Detection in
Transportation:
Survey

Bangui
&
Buhnova
(2021)

Machine
learning IDS
in VANET
and UAV-
aided
networks

Machine
learning,
anomaly
detection,
UAV-aided
IDS

Challenges
in big data
analysis and
high
computation
al
complexity

Focus on
reducing
false
positives and
enhancing
real-time
adaptability

Table 1: Literature Review Table

2.5 Research Gap and Difference
The fundamental difference in this project with respect to existing research is that it

focuses on lightweight models that are optimized for real-time detection. While the deep
learning models of prior related studies emphasized high demands on computational
resources, this particular project takes efficiency into consideration, hence being best suited
for automotive systems that require real-time processing. This, if anything, tames the scaling
problems of prior studies, such as Narasimhan et al. (2021) which narrowed down to attack

7

types or vehicle model varieties. In contrast, the present study enables the proposed method
with more scalability across heterogeneous types of vehicles and attack vectors to come up
with adaptable ensemble learning models. It also handles the generalisability issue, which
Almehdhar et al. illustrated in 2024, by applying mutual information and select best for
feature selection to enhance robustness across different datasets. This now provides major
steps forward in reducing computational overhead, a common issue in deep learning-based
systems, by using efficient machine learning models that keep memory and processing
requirements low.

This also introduces the possibility of improved attack adaptability based on a
continuous learning system able to evolve with new threats. Ensemble learning can make the
system more robust, since these benefits in combining accuracy and robustness do not come
with a significant computational cost. There are still some challenges related to the
management of ensemble complexity and the assurance of smooth model updates in strict
real-time, resource-constrained contexts, an interesting point for future research work.

3 Research Methodology

3.1 Research Design
This work employed a quantitative experimental design to ascertain whether machine

learning algorithms can effectively identify attack-free datasets from DoS attack datasets.
The experimental design allowed iterative model testing and fine-tuning of its parameters to
deliver robust results.

3.2 Data Sets
The datasets used in this research were real-time automotive network data. Further, the

data consisted of attack-free2 records and those labeled as DoS attacks3. The attack-free
dataset contained over 2.2 million entries, while that of the DoS was over 650,000 entries.

3.3 Preprocessing of Data
The initial exploration showed the presence of inconsistencies, such as missing values

and unprocessed formats; thus, cleaning and transformation were called for:
• For missing values in the Data column of the DoS dataset, a default hexadecimal

string was imputed that indicates null payloads. The columns of data were
normalized to be compatible for processing.

• For example, the Data column was made into lists of integers by hexadecimal
decoding.

2 Acttack_free_dataset
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/AKBKujyHfjh202zzLpBcdb0/Attack_free_dataset.txt?rlkey=43n5
70cnodtq6yls139r4yvn7&e=1&st=vcb22fsi&dl=0

3 DoS_attrack_dataset
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/ADhDIC8LRFL8wHUexib3C3w?e=1&preview=DoS_attack_data
set.txt&rlkey=43n570cnodtq6yls139r4yvn7&st=iys945ng&dl=0

https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/AKBKujyHfjh202zzLpBcdb0/Attack_free_dataset.txt?rlkey=43n570cnodtq6yls139r4yvn7&e=1&st=vcb22fsi&dl=0
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/AKBKujyHfjh202zzLpBcdb0/Attack_free_dataset.txt?rlkey=43n570cnodtq6yls139r4yvn7&e=1&st=vcb22fsi&dl=0
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/ADhDIC8LRFL8wHUexib3C3w?e=1&preview=DoS_attack_dataset.txt&rlkey=43n570cnodtq6yls139r4yvn7&st=iys945ng&dl=0
https://www.dropbox.com/scl/fo/8kll7yvbgogkp0vahowvm/ADhDIC8LRFL8wHUexib3C3w?e=1&preview=DoS_attack_dataset.txt&rlkey=43n570cnodtq6yls139r4yvn7&st=iys945ng&dl=0

8

Then, insignificant columns like RTR within the attack-free data were removed to save the
computation cost and reduce noise.

3.4 Exploratory Data Analysis
EDA was performed to understand the distribution and relationship present in the data.
Descriptive statistics were created for relevant features: timestamp and DLC. These provide
the visual of the histogram distribution in both attack-free and DoS datasets with regard to
such attributes, showing variations that may inform an approach toward modeling. Trends of
missing data were analyzed and handled.

3.5 Feature Engineering
Feature engineering was done in the interest of both model explainability and improvement;
the steps taken included:

1. Transformation of Data Column: The values of Payload were transformed into
numeric features.

2. Feature Selection: Mutual information scores were among the statistical techniques
used to rank the strengths of the engineered features.

3.6 Data Balancing
Class imbalance was dealt with in this dataset, with instances of attack-free significantly
outweighing instances of DoS attack cases. This was handled using the Synthetic Minority
Over-sampling Technique.

3.7 Model Development
Two machine learning classifiers were developed and evaluated:

• Random Forest Classifier: This is one of the strongest ensemble learning algorithms
using bagging, thus overfitting would be reduced to a minimum, and accuracy would
be quite high. Class weights were adjusted to handle residual imbalances.

• Voting Classifier: The hard voting ensemble is taking predictions from a Random
Forest and Logistic Regression classifier.

The model development process included: Splitting: Data is divided into 70% training and
30% test subsets. Feature Scaling: The standardScaler technique was used for the
normalization of the numerical features.

3.8 Model Evaluation
A classifier's performance was calculated based on the following performance metrics:

• Accuracy: It is the ratio of correctly identified instances.
• Precision: Fraction of the positive instances correctly predicted.
• Recall: The percentage of actual positive instances detected.
• F1-Score: Harmonic average of precision and recall.
• Confusion Matrices: It displays the outcome of the prediction in terms of true

positives, true negatives, false positives, and false negatives.

9

3.9 Ethical Issues
The datasets used were anonymized in order to narrow down those that comply with the
standards of privacy. Secondly, there is active monitoring for bias in model outputs through
feature importance analysis on balanced dataset performance. High regard was given to
transparency about any preprocessing and modeling done, to guarantee replicability.

3.10 Limitation
Despite preprocessing and feature engineering, some limitations remained. This synthetic
data, created with SMOTE, is unlikely to exactly give a true distribution so far as realistic
scenarios go, further deteriorating generalization. Feature selection was based on mutual
information scores; as such, subtle but relevant attributes may have been excluded.

4 Design Specification

4.1 Overview of System Design
This section describes the architectural and methodological framework used in the design
specification for the detection of DoS attacks in automotive networks. Each subcomponent of
the system is connected with others for the overall data ingestion, preprocessing, feature
extraction, model training, and classification. These diverse components have to work
together in cohesion to ensure valid and effective detection capability of malicious activities
present in network traffic.

4.2 System Requirements
The following functional and non-functional requirements are addressed by the system:
Functional Requirements:

• Support for heterogeneous automotive data sets, including variable structure payloads.
• Handles imbalanced datasets with the help of advanced resampling techniques.
• Provide feature engineering and selection to enhance interpretability and accuracy.
• Deployment of high classification-performing machine learning algorithms.
• Output of the full metrics, including confusion matrices and performance scores.

Non-functional Requirements:

• High computational efficiency for real-time or near real-time detection.
• Scalability to datasets with millions of entries.
• Robustness to incomplete or noisy input.
• Modularity for maintainability by design.

4.3 Framework Architecture
The key elements for the detection framework are as follows:
1. Data Ingestion Layer:

• It is responsible for loading datasets from storage and normalizing raw inputs for
further processing.

• Includes handling of missing or corrupted entries to get a clean dataset for analysis.

10

2. Preprocessing Module:

• Cleans and transforms raw data by:
• Addressing missing values with default placeholders.
• Standardize and normalize numeric fields, such as Timestamp and DLC.
• It encodes the Data field into numerical lists for computational processing.

3. Feature Engineering Module:

• Extract statistical features from payload data minimum, maximum, mean, and
standard deviation.

• Filter columns by variance and significance, removing RTR and other such irrelevant
or redundant information.

4. Data Balancing Module:

• Uses the Synthetic Minority Over-sampling Technique (SMOTE) to handle class
imbalances.

• Generates artificial examples of minority class to match the distribution of the
majority class.

5. Model Training and Optimization Layer:

• Implements machine learning algorithms, including:
• Random Forest Classifier
• Voting Classifier

• Performs hyperparameter tuning for the modification and fine-tuning of algorithm
performance.

6. Evaluation and Reporting Layer:

• It is used to evaluate the models using various metrics including accuracy, precision,
recall, and F1-score.

• Generates visualizations of the confusion matrices and feature importance rankings.

4.4 Algorithmic Design
A feature extraction mechanism-based detection is done through supervised learning
algorithms. The process flow is as follows:
1. Data Preparation:

• Loading raw datasets and cleaning.
• Encode payload data into numerical representations.
• Balance classes of the dataset using SMOTE to ensure their equitable learning across

categories.

2. Feature Engineering:

• Extract statistical features from these preprocessed payloads, which may improve
model interpretability and predictive power.

11

3. Model Implementation:

• Random Forest Classifier:
 Generates multiple decision trees during the training process.
 Aggregates outputs from individual trees to determine the final classification.
 Handles imbalanced datasets by using class weights, which allow it to focus

more on minority classes.
• Voting Classifier:

 This model combines the predictions of the classifiers Random Forest and
Logistic Regression.

 Uses hard voting to predict the majority class label.

4. Performance Evaluation:

• Split data into training and testing subsets for validation of models.
• Normalize features using StandardScaler technique.
• Evaluate predictions against actual labels for the model, presenting detailed metrics

and visualizations.

4.5 Systems Architecture Diagram
The architecture embeds the components mentioned above into a smooth pipeline, starting
from data intake to actionable classified output. This pipeline provides flexibility for different
datasets and machine learning models in a deployable environment.

Figure 1: System Architecture Diagram

4.6 Design Considerations
The proposed system design takes into consideration a number of challenges that normally
characterize data to be analyzed, such as class imbalance, high data dimensionality, and
noise. Machine learning model selection and preprocessing techniques are informed by
scalability, efficiency, and accuracy considerations. This will enable the easy integration of
new algorithms or features in a modular design.

12

4.7 Summary
The methodologies, architecture, and technologies presented in this section are the backbone
for designing and developing a DoS detection system. The architecture will make the system
reliable, scalable, and accurate, thus laying a solid platform for practical implementations and
industrial applications.

5 Implementation
This chapter elaborates on the implementation details of the procedure to be followed for
detection using a machine-learning technique for DoS attacks in automotive networks. The
whole implementation falls into various phases: data ingestion, preprocessing, feature
engineering, the training of the model, and developing an evaluation framework. Each stage
here is designed considering scalability, robustness, and precision.

5.1 Data Handling
Data Loading and Exploration
Loading of both attack-free and Dos-attack representation datasets was done as the first step.
Each dataset consisted of, though not limited to, the fields: timestamp, identifier, payload
length, and raw hexadecimal payload. Data ingestion was performed by using Python's
Panda's library in structured formats known as DataFrames, which thus enabled seamless
manipulation of the data.
Descriptive statistics and exploratory analyses were done to understand the distributions,
correlations, and anomalies of the data. Missing values in the DoS dataset have been
identified and treated accordingly to ensure the integrity of the data for further processing.

Handling Missing Data
The Data column was missing in the DoS dataset. These were replaced by a placeholder
hexadecimal string indicating an empty payload.

5.2 Preprocessing
Data Transformation
The raw payloads, stored in hexadecimal format, first needed to get transformed into
numerical representations. Python's ast module was helpful to convert string representations
into lists of integers. It was this transformation that prepared the data for numerical
operations that were to follow for feature extraction.
Data Cleaning
The highly sparse columns-for example, the RTR column from the attack-free dataset-were
removed to reduce the computational burden. This also reduces noise and thus could improve
model performance.

Dataset Balancing
SMOTE-a technique used to balance the class imbalance in a dataset-was applied. This
method generates synthetic examples for the minority class, namely DoS attacks, balancing
the data so models can learn equitably across classes.

13

5.3 Feature Engineering
Feature Extraction
To extract meaningful attributes, statistical features were extracted from the numerical
payload data:

• Min Value: The minimum value of the payload.
• Maximum Value: The highest value of payload.
• Mean Value: The average of payload values.
• Variance / Standard Deviation: A measure of dispersion in payload values.

These features were representatives of the characteristics of the payload, thus allowing
appropriate classification.

Feature Selection
The method of SelectKBest based on mutual information was used to review feature
relevance. Scores were computed with the view of prioritizing features so that only the most
significant attributes contributed toward the training of the model.

5.4 Model Development
Training and Testing Split
The balanced dataset was split into a training set of 70% and a test set of 30% using
train_test_split. This separation ensured that model evaluation would be fairly performed on
data the model had not seen.

Machine Learning Algorithms
Two machine learning models are implemented and fine-tuned:

• Random Forest Classifier: Another popular ensemble technique, training a lot of
decision trees and combining outputs during predictions. The class_weight parameter
was modified with small residual class imbalances to take into consideration getting
equal model attention across the labels.

• Voting Classifier: Basically, it includes the Random Forest and Logistic Regression
classifiers into a model combination. As per the ensemble approach, both models
complement each other with different strengths. It performed the hard vote to return
the majority class prediction from within the output.

5.5 Training the Model
Training the Random Forest
The Random Forest Classifier will be trained on a scaled feature set. Its two most important
hyperparameters are optimized - the number of trees and depth - to reach an optimal spot
where computation efficiency meets prediction accuracy.

Training Voting Classifier
The Vote Classifier combined the predictions of both the Random Forest and Logistic
Regression models. This turned out to be tough since Logistic Regression contributes its
linear decision boundary to the nonlinear capability of Random Forest.

14

5.6 Implementation Workflow
Integrated Pipeline
An integrated pipeline that automates this workflow was built:

• Data Ingestion: It can load and structure different datasets automatically.
• Preprocessing: Cleaning, transformation, and balancing performed sequentially in a

chain.
• Feature Engineering: Statistical feature extraction and selection.
• Model Training: Classification by random forest and voting classifiers, followed by

automated hyperparameter tuning.
• Evaluation Framework: Metric output and confusion matrix on validation.

5.7 Challenges Addressed
• Dataset imbalance: One of the very important parts of the work in reducing the

biases of the model predictions comes with balancing the datasets. Then, SMOTE
proved efficient in synthesizing new samples for the minority class, which in turn will
prevent the classifier from being biased toward the majority class.

• High-Dimensionality: Feature extraction reduced the dimensionality of payload data
whereby this allowed one to train without a loss of performance efficiently.

• Noise in Data: Cleaning steps such as low variance column removal, and missing
value treatments balanced the noise in the data.

5.8 Summary
Implementation means translating the conceptual model into an actual system that performs
the detection of the DoS attack while cleaning and structuring data proper feature engineering
is performed to train a generalizable model that will be able to adapt to real-world scenarios.
This pipeline is more general and gives the grounds for the evaluation and deployment
phases.

6 Evaluation

This section provides a detailed analysis of the experimental results related to intrusion
detection on in-vehicle CAN bus data while under attack and attack-free conditions.
Performance metrics and implications involving machine learning model performance are
presented herein to identify anomalies in the CAN bus data caused by cyberattacks,
especially involving DoS attacks.

6.1 Data Distribution Analysis
This section aims to understand the characteristics of the data sets used in this study. It
performs statistical and graphical analyses on both attack-free and DoS attack data sets.

6.1.1 Timestamp Distribution
The timestamp distribution of the attack-free dataset showed an even trend, indicating that the
data are transmitted on a regular periodic basis. On the contrary, the timestamp distribution of

15

the DoS attack dataset shows an uneven mode with bursts that signal the abnormal traffic
behavior caused by the attack. The differences in timestamp distribution represent one
potential characteristic for distinguishing between normal and attack.

6.1.2 DLC (Data Length Code) Distribution
The DLC values of the attack-free dataset were mainly concentrated on 8, which was
attributed to the traditional practice of data transmission. In the DoS attack dataset, the DLC
distribution also showed a dominance of 8, though with some abnormalities and lower values.
These differences further pinpoint the impact of DoS attacks on network communication.

Figure 2: Timestamp Distributions

Figure 3: DLC Distributions

6.2 Feature Engineering and Preprocessing
Feature engineering was the most elementary step in transforming raw CAN bus data into a
meaningful input technical tool to be used by the machine learning model. Some of the major
features extracted include:

• Min Data Value: Smallest byte value in the data frame.
• max data value: Maximum byte value in the data frame.
• Mean Data Value: The mean value at any byte position in the data frame.
• Std Dev of Data (Std Data): Variance in the value of bytes.

16

Feature selection through mutual information ranked max_data, mean_data, and std_data in
descending order of importance for the task of telling apart attack and non-attack situations,
which confirmed our hypothesis that anomalies in data patterns are the most indicative of
network anomalies.
To handle class imbalance between attack-free and DoS attack samples, SMOTE was
employed, preparing a balanced dataset of both classes with equal representation. This
balanced dataset ensures unbiased model training and evaluation.

Figure 2: SMOTE Applied

6.3 Model Evaluation - Random Forest Classifier
The Random Forest Classifier was chosen because it can handle complex, nonlinear
relationships and is not seen to overfit on high-dimensional datasets easily. The model
achieved the following performance:

Figure 3: Random Forest Results
The confusion matrix of this optimal RF classifier gives very good performances of the
classifier with low values of false positives and false negatives. Similarly, these balanced
precisions and recalls are indicative of better performance of the model in identifying the
DoS attack without overestimation toward benign instances.

17

Figure 4: RF Confusion Matrix

6.4 Model Evaluation - Voting Classifier
A Voting Classifier was then used to combine the Random Forest with the Logistic
Regression to take full advantage of their respective complementary strengths. However, this
model gave a high precision of (88.84%), whereas the recall was (59.86%), which is quite a
bit worse than the above Random Forest model, thus yielding:

Figure 5: Voting Classifier Results
The confusion matrix also showed a high rate of false negatives, meaning the model failed to
detect any instance of an attack. That could suggest further optimization may be necessary for
the ensemble methods to function effectively in a real-time CAN-bus environment.

Figure 6: Voting Classifier Confusion Matrix

6.5 Discussion
These results are important for gaining insight into the performance and shortcomings of
machine learning-based intrusion detection systems for CAN bus networks. Evaluations

18

revealed that the Random Forest Classifier outperformed the Voting Classifier in detecting
Dos attacks with higher recall and F1-scores. This further builds on existing literature on how
effective Random Forest is in modeling nonlinear relationships common within CAN bus
traffic. Critical areas for further development were found in this study, mainly for a practical
deployment in real scenarios.

Class imbalance was dealt with the help of SMOTE. This resulted in the introduction of
artificial data into the dataset that can potentially make the model even less generalized to
real life. For this, possible alternatives could be either using ADASYN or instead weighted
loss function. What badly performed was the performance of the Voting Classifier and it was
mainly caused because of low recall, enlightening a number of weaknesses associated with
combining such models, some of which could also have weighted voting as its remedy or
using Gradient Boosting.

The study placed a major focus on the study of DoS attacks; hence, generalization of
results to other attacks like spoofing or replay attack is limited. In the future, Yang et al.
propose extending IDS coverage for a wide variety of attack types through research. Besides,
the high computational cost of Random Forest prevents its real-time deployment in resource-
constrained environments. The lightweight architectures and FPGA acceleration discussed by
Ma et al. 2022 and Yang et al. 2020 could overcome these limitations. While the results align
with state-of-the-art advancements, scalability, efficiency, and broader attack coverage
remain open challenges that require a hybrid approach and real-time optimizations toward
practical automotive IDS deployment.

7 Conclusion and Future Work
The efficiency of various machine learning algorithms was reviewed in this paper for

improving intrusion detection systems in vehicular networks. It described intrusion detection,
focusing on the issue of DoS attacks in the CAN bus system, and how to combine real-time
speed and minimum overhead with the capability of IDS in the detection and neutralization of
cyberattacks.

Among those, the best performance was done by Random Forest. Its accuracy reached
89.61%, while Recall attained 87.64% and the F1-score 89.41%. The good result here shows
it can handle the non-linear variability typical of feature engineering for CAN bus traffic-
Metric means: mean_data, standard: std_data or max: max_data- will improve. Statistic
handcrafted features led to poorer adaptability against new threats in performances obtained
using Voting Classifier; the task becomes worse.

These findings reveal that machine learning-based IDS significantly enhances vehicular
cybersecurity anomaly detection in real time. However, scalability issues, feature
generalization, and computational efficiency keep them off the road to practical applications.
Further emphasis on research was placed on the automatic extraction of features using deep
learning, lightweight neural architecture for resource-constrained situations, and hybrid
approaches for robustness against a wide range of attack types and zero-day threats. Such
gaps, when addressed, would lead to significant advances in IDSs and wider adoption in
automotive cybersecurity.

19

References

Aldhyani, T.H. and Alkahtani, H., 2022. Attacks to automatous vehicles: A deep learning
algorithm for cybersecurity. Sensors, 22(1), p.360.
Alladi, T., Chamola, V., Sahu, N., Venkatesh, V., Goyal, A. and Guizani, M., 2022. A
comprehensive survey on the applications of blockchain for securing vehicular
networks. IEEE Communications Surveys & Tutorials, 24(2), pp.1212-1239.
Almehdhar, M., Albaseer, A., Khan, M.A., Abdallah, M., Menouar, H., Al-Kuwari, S.
and Al-Fuqaha, A., 2024. Deep learning in the fast lane: A survey on advanced intrusion
detection systems for intelligent vehicle networks. IEEE Open Journal of Vehicular
Technology.
Alsarhan, A., Al-Ghuwairi, A.R., Almalkawi, I.T., Alauthman, M. and Al-Dubai, A.,
2021. Machine learning-driven optimization for intrusion detection in smart vehicular
networks. Wireless Personal Communications, 117, pp.3129-3152.
Bakhsh, S.A., Khan, M.A., Ahmed, F., Alshehri, M.S., Ali, H. and Ahmad, J., 2023.
Enhancing IoT network security through deep learning-powered Intrusion Detection
System. Internet of Things, 24, p.100936.
Bangui, H. and Buhnova, B., 2021. Recent advances in machine-learning driven intrusion
detection in transportation: Survey. Procedia Computer Science, 184, pp.877-886.
Basavaraj, D. and Tayeb, S., 2022. Towards a lightweight intrusion detection framework
for in-vehicle networks. Journal of Sensor and Actuator Networks, 11(1), p.6.
Bi, Z., Xu, G., Xu, G., Tian, M., Jiang, R. and Zhang, S., 2022. Intrusion Detection
Method for In‐Vehicle CAN Bus Based on Message and Time Transfer Matrix. Security
and Communication Networks, 2022(1), p.2554280.
Bozdal, M., Samie, M., Aslam, S. and Jennions, I., 2020. Evaluation of can bus security
challenges. Sensors, 20(8), p.2364.
Cheng, P., Han, M., Li, A. and Zhang, F., 2022. STC‐IDS: Spatial–temporal correlation
feature analyzing based intrusion detection system for intelligent connected
vehicles. International Journal of Intelligent Systems, 37(11), pp.9532-9561.
Cheng, P., Xu, K., Li, S. and Han, M., 2022. TCAN-IDS: intrusion detection system for
internet of vehicle using temporal convolutional attention network. Symmetry, 14(2),
p.310.
Dong, C., Wu, H. and Li, Q., 2023. Multiple observation HMM-based CAN bus intrusion
detection system for in-vehicle network. IEEE Access, 11, pp.35639-35648.
Hossain, M.D., Inoue, H., Ochiai, H., Fall, D. and Kadobayashi, Y., 2020. LSTM-based
intrusion detection system for in-vehicle can bus communications. Ieee Access, 8,
pp.185489-185502.
Karthiga, B., Durairaj, D., Nawaz, N., Venkatasamy, T.K., Ramasamy, G. and
Hariharasudan, A., 2022. Intelligent intrusion detection system for VANET using
machine learning and deep learning approaches. Wireless Communications and Mobile
Computing, 2022(1), p.5069104.
Lin, H.C., Wang, P., Chao, K.M., Lin, W.H. and Chen, J.H., 2022. Using deep learning
networks to identify cyber attacks on intrusion detection for in-vehicle
networks. Electronics, 11(14), p.2180.

20

Ma, H., Cao, J., Mi, B., Huang, D., Liu, Y. and Li, S., 2022. A GRU‐Based Lightweight
System for CAN Intrusion Detection in Real Time. Security and Communication
Networks, 2022(1), p.5827056.
Makarfi, A.U., Rabie, K.M., Kaiwartya, O., Li, X. and Kharel, R., 2020, May. Physical
layer security in vehicular networks with reconfigurable intelligent surfaces. In 2020
IEEE 91st vehicular technology conference (VTC2020-Spring) (pp. 1-6). IEEE.
Moulahi, T., Zidi, S., Alabdulatif, A. and Atiquzzaman, M., 2021. Comparative
performance evaluation of intrusion detection based on machine learning in in-vehicle
controller area network bus. IEEE Access, 9, pp.99595-99605.
Mourad, A., Tout, H., Wahab, O.A., Otrok, H. and Dbouk, T., 2020. Ad hoc vehicular fog
enabling cooperative low-latency intrusion detection. IEEE Internet of Things
Journal, 8(2), pp.829-843.
Narasimhan, H., Ravi, V. and Mohammad, N., 2021. Unsupervised deep learning
approach for in-vehicle intrusion detection system. IEEE Consumer Electronics
Magazine, 12(1), pp.103-108.
Pascale, F., Adinolfi, E.A., Coppola, S. and Santonicola, E., 2021. Cybersecurity in
automotive: An intrusion detection system in connected vehicles. Electronics, 10(15),
p.1765.
Wang, K., Zhang, A., Sun, H. and Wang, B., 2022. Analysis of recent deep-learning-
based intrusion detection methods for in-vehicle network. IEEE Transactions on
Intelligent Transportation Systems, 24(2), pp.1843-1854.
Yang, Y., Duan, Z. and Tehranipoor, M., 2020. Identify a spoofing attack on an in-
vehicle CAN bus based on the deep features of an ECU fingerprint signal. Smart
Cities, 3(1), pp.17-30.
Zhang, L. and Ma, D., 2022. A hybrid approach toward efficient and accurate intrusion
detection for in-vehicle networks. IEEE Access, 10, pp.10852-10866.
Zhang, Z., Cao, Y., Cui, Z., Zhang, W. and Chen, J., 2021. A many-objective
optimization based intelligent intrusion detection algorithm for enhancing security of
vehicular networks in 6G. IEEE Transactions on Vehicular Technology, 70(6), pp.5234-
5243.

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Question
	1.4 Research Objectives
	1.5 Contribution
	1.6 Structure of the Report

	2 Related Work
	2.1 Machine Learning and Deep Learning in CAN Bus Security
	2.2 Hybrid Approaches for Intrusion Detection
	2.3 Real-Time Detection and Computational Challenges
	2.4 Enhancing Security in Vehicle Networks
	2.5 Research Gap and Difference

	3 Research Methodology
	3.1 Research Design
	3.2 Data Sets
	3.3 Preprocessing of Data
	3.4 Exploratory Data Analysis
	3.5 Feature Engineering
	3.6 Data Balancing
	3.7 Model Development
	3.8 Model Evaluation
	3.9 Ethical Issues
	3.10 Limitation

	4 Design Specification
	4.1 Overview of System Design
	4.2 System Requirements
	4.3 Framework Architecture
	4.4 Algorithmic Design
	4.5 Systems Architecture Diagram
	4.6 Design Considerations
	4.7 Summary

	5 Implementation
	5.1 Data Handling
	5.2 Preprocessing
	5.3 Feature Engineering
	5.4 Model Development
	5.5 Training the Model
	5.6 Implementation Workflow
	5.7 Challenges Addressed
	5.8 Summary

	6 Evaluation
	6.1 Data Distribution Analysis
	6.1.1 Timestamp Distribution
	6.1.2 DLC (Data Length Code) Distribution

	6.2 Feature Engineering and Preprocessing
	6.3 Model Evaluation - Random Forest Classifier
	6.4 Model Evaluation - Voting Classifier
	6.5 Discussion

	7 Conclusion and Future Work
	References

