
1

Configuration Manual

MSc Research Project

MSc Cybersecurity

Vaibhav Tupe
Student ID: X23162929

School of Computing

National College of Ireland

Supervisor: Niall Heffernan

2

National College of Ireland

MSc Project Submission

Sheet School of Computing

Student
Name:

Vaibhav Ramesh Tupe

Student ID: X23162929

Programme: MSc Cybersecurity Year: 2024-2025

Module: MSc Research Project

Lecturer: Niall Heffernan

Submission
Due Date: 12/12/2024

Project Title: Optimizing Deep Packet Inspection for Securing Remote Work
Communication using Machine Learning: Addressing Performance and
Privacy Concerns.

Word Count: 3079 Words. Page Count: 31 Pages.

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Vaibhav Ramesh Tupe

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

Configuration Manual
Optimizing Deep Packet Inspection for Securing

Remote work communication using Machine learning:

Addressing Performance and Privacy Concerns

Vaibhav Ramesh Tupe

Student ID: x23162929
1. Introduction

2. System Requirements and Libraries

3. Data Execution Explanation

3.1. Import the Libraries

3.2. About the Dataset

3.3. Basic Analysis

3.4. Data Cleaning

3.5. Label Normalization

3.6. EDA - Label Distribution

3.7. Flow-Based Features

3.8. Forward Packet Features

3.9. Backward Packet Features

3.10. Packet Feature Length

3.11. Flag Features

3.12. Subway flows

3.13. Windows and Active/Idle Features

3.14. Correlation Matrix

3.15. Data Balancing

3.16. Loading the Cleaned and Balanced dataset

3.17. Data Scaling

3.18. Data Modeling - SVM

3.19. Random Forest

3.20. XGBoost

3.21. Model

Comparison References

Appendix: Detailed Code Documentation

A.1 Library Setup and Configuration

A.2 Dataset Loading and Preparation

A.3 Data Cleaning

A.4 Exploratory Data Analysis (EDA)

A.5 Data Balancing

A.6 Model Training and Evaluation

A.7 Visual Outputs

4

1. Introduction
In this config guide, we explain how to configure and optimize a machine learning-

based system for deep packet inspection to secure remote work communication for both

individual and enterprise networks. This proposed system uses the advanced data analysis

techniques and three chosen classification techniques i.e. SVM, Random Forest, and XGBoost

to detect the malicious network traffic activities. These step-by- step instructions make sure

that the researchers following this guide can replicate the setup for themselves in effective

experimentation and implementation.

2. System Requirements and Libraries
To set up this proposed system we will need a machine with Python installed and

contain sufficient computational resources in order to process the large datasets. In this study

the key libraries such as NumPy, Pandas, Scikit-learn, and XGBoost will handle data

manipulation, machine learning, and visualization tasks while the tools like Matplotlib and

Seaborn will be able to generate insights and visualizations through plots. Moreover the

specialized libraries such as Imbalanced-learn will help balance this uneven dataset which we

chose. Make sure to have these dependencies installed for error free implementation.

3. Data Execution Explanation
3.1. Import the Libraries

Figure 1: This code sets up essential libraries for data processing, visualization, and

machine learning to ensure smooth workflow

5

Step 1: In this step, we first import various libraries essential for data processing and

model building. Libraries like os and warnings are used for managing paths and suppressing

warnings, while numpy and pandas handle numerical computations and data manipulation.

Visualization tools such as matplotlib and seaborn create insightful plots, and machine

learning libraries like scikit-learn and xgboost support the implementation of classification

algorithms. The imbalanced-learn library addresses class imbalance issues. This step sets up

the foundational environment for the project.

3.2. About the Dataset

Figure 2: This code loads and combines multiple CSV files from the CIC-IDS-2017 dataset into

a single DataFrame for analysis.

Step 2: This step focuses on loading the dataset. It involves specifying the dataset

folder path and using os.walk to iterate through its contents, processing only .csv files with

pd.read_csv(). These files are read into DataFrames, appended to a list, and concatenated into

a single large DataFrame using pd.concat(). The dataset is previewed using

display(CICIDS.head()) to ensure successful loading.

6

3.3. Basic Analysis

Figure 3: This code retrieves and displays the number of rows and columns in the combined

dataset.

Step 3: In this step, the number of rows and columns in the dataset is determined to

understand its structure. This basic analysis provides a quick overview of the dataset's

dimensions and scope.

Figure 4: This code lists and normalizes column names by removing spaces and special

characters, making them easier to work with.

7

Step 4: Column names in the dataset are normalized for consistency. The code

removes spaces and special characters while converting names to lowercase using methods

like strip(), replace(), and lower(). This ensures column names are easier to work with during

analysis and model building.

Component Description

CICIDS.columns.tolist() Lists all column names in the dataset.

strip().replace().lower()

Normalizes column names by removing spaces, special

characters, and converting to lowercase.

CICIDS.columns Updates the dataset with normalized column names.

print() Displays original and updated column names.

Figure 5: This code displays the data types of all columns in the dataset to identify

numeric, categorical, or other data types.

Step 5: Here in this step the data types of all columns are identified such that the

CICIDS.dtypes function will list the column types and categorize these as numeric,

categorical, or otherwise. This step will help the next preprocessing steps.

Figure 6: This code summarizes the dataset's structure, including column details, non-null

entries, and data types.

Step 6: This step shows the dataset's structure, including column details, non-null entries,

and data types, using CICIDS.info() and it helps in understanding the dataset's data quality.

Figure 7: This code provides a statistical summary of the numeric columns in the dataset,

showing key metrics like mean, standard deviation, and range.

8

Step 7: This step is a statistical summary of these numeric columns and it is generated using

CICIDS.describe(). Key metrics like count, mean, standard deviation, minimum and

maximum values are also shown.

Figure 8: This code identifies columns with null values and displays their counts in descending

order for easier analysis.

Step 8: This step shows these columns with null values and counts them and this code sorts

these columns in descending order of null counts and filters out columns with no missing

values.

Figure 9: This code checks for duplicate rows in the dataset and reports their count, if any

exist.

Step 9: The dataset is checked for duplicate rows using CICIDS.duplicated(). Duplicate

entries, if any, are counted and reported to assess the dataset's uniqueness and quality.

3.4. Data Cleaning

Figure 10: This code removes rows with null values and updates the dataset, reporting the

number of rows removed and the new shape.

Step 10: Rows containing null values are removed to ensure data consistency. The code

calculates the number of rows removed and updates the dataset's shape, reporting the changes

for transparency.

9

Figure 11: This code removes duplicate rows from the dataset, updating its shape and reporting

the number of duplicates removed.

Step 11: Duplicate rows are removed to enhance data quality. The code calculates the

number of duplicates removed and updates the dataset's shape, ensuring an accurate dataset.

Component Description

CICIDS.drop_duplicates(

)

Removes duplicate rows from the dataset.

CICIDS.shape[0] Retrieves the number of rows before and after duplicate

removal.

before_duplicate_remova l

- after_duplicate_removal

Calculates the number of rows removed.

print()

Displays the number of removed duplicates and the

updated dataset shape.

Figure 12: This code identifies and replaces infinite values in the dataset with NaN, then

removes rows containing these values to ensure data consistency.

Step 12: This step identifies and replaces infinite values with NaN, then removes rows

containing these values. This ensures numerical stability during analysis and modeling.

10

3.5. Label Normalization

Figure 13: This code standardizes the dataset labels into 'BENIGN' and 'MALICIOUS'

categories and displays their distribution.

Step 13: Dataset labels are standardized into 'BENIGN' and 'MALICIOUS' categories using

CICIDS['label'].apply(). The distribution of these labels is displayed to check class balance.

3.6. EDA - Label Distribution

Figure 14: This code visualizes the distribution of 'BENIGN' and 'MALICIOUS' labels in

the dataset using a bar plot.

Step 14: A bar plot visualizing the distribution of 'BENIGN' and 'MALICIOUS' labels is

created. This aids in understanding the prevalence of each label in the dataset.

11

3.7. Flow-Based Features

Figure 15: This code generates histograms to visualize the distribution of flow-based features in

the dataset.

Step 15: Histograms for flow-based features are generated to visualize their distributions.

The plots provide insights into the range and frequency of feature values.

12

3.8. Forward Packet Features

Figure 16: This code normalizes forward packet features using Min-Max Scaling and

visualizes their distributions using KDE plots for the first five features.

13

3.9. Backward Packet Features

Figure 17: This code creates box plots to visualize the distribution and outliers of backward

packet features in the dataset.

3.10. Packet Feature Length

14

Figure 18: This code generates a pairplot to visualize relationships and distributions among

packet length features in the dataset.

15

3.11. Flag Features

Figure 19: This code visualizes the total counts of flag features in the dataset using a bar plot.

3.12. Subway flows

16

Figure 20: This code creates scatter plots to visualize the relationships between subflow

forward and backward packet counts and byte counts.

Component Description

subflow_features List of subflow-related features for analysis.

CICIDS[subflow_feature

s].sample(frac=0.1)

Samples 10% of the dataset for faster computation.

sns.scatterplot()

Creates scatter plots for visualizing relationships between

subflow features.

x='subflow_fwd_packets'

, y='subflow_fwd_bytes'

Plots forward packet and byte relationships.

17

x='subflow_bwd_packets

', y='subflow_bwd_bytes'

Plots backward packet and byte relationships.

plt.title(), plt.xlabel(),

plt.ylabel()

Adds titles and axis labels to the scatter plots.

plt.show() Displays the scatter plots.

3.13. Windows and Active/Idle Features

Figure 21: This code generates histograms to visualize the distribution of window size, active,

and idle features in the dataset.

18

3.14. Correlation Matrix

Figure 22: This code generates a heatmap to visualize the correlation between numeric features

in the dataset.

19

3.15. Data Balancing

Figure 23: This code balances the dataset by under-sampling the majority class and over-

sampling the minority class using SMOTE.

3.16. Loading the Cleaned and Balanced dataset

Figure 24: This code loads the cleaned and balanced dataset from a CSV file and displays its

shape and a preview of the first few rows.

3.17. Data Scaling

Figure 25: This code splits the balanced dataset into training and testing sets, scales the

features, and verifies the shapes of the resulting datasets.

3.18. Data Modeling - SVM

20

Figure 26: This code trains a Linear Support Vector Classifier, evaluates its performance with a

classification report, and visualizes the confusion matrix.

Step 16: A Linear Support Vector Classifier is trained, evaluated, and its performance

metrics are displayed. The confusion matrix is visualized for a detailed assessment.

21

3.19. Random Forest

Figure 27: This code trains a Random Forest Classifier, evaluates its performance using a

classification report, and visualizes the confusion matrix.

Step 17: A Random Forest Classifier is trained and evaluated. Its performance metrics and

confusion matrix provide insights into model effectiveness.

22

3.20. XGBoost

Figure 28: This code trains a Random Forest Classifier, evaluates its performance using a

classification report, and visualizes the confusion matrix.

Step 18: An XGBoost Classifier is trained and evaluated similarly. This step highlights the

model's suitability for the task.

23

3.21. Model Comparison

Figure 29: This code predicts labels for a random sample of test data using LinearSVC, Random

Forest, and XGBoost models, displaying the actual and predicted labels with features.

Step 19: A comparison of predictions from LinearSVC, Random Forest, and XGBoost

models is presented. Actual and predicted labels are displayed for selected samples,

showcasing model performance.

24

3.22. DPI Inclusion

Figure 30: Configuration and Packet Capturing with Tshark

Step 1: Configuration and Packet Capturing

In this step, the system configuration is set up, and network traffic packets are captured using

Tshark:

● Configuration Variables: Key parameters such as INTERFACE (network interface),

CAPTURE_DURATION (duration of capture), and PCAP_FILE (output file name

for captured packets) are defined.

● Packet Capturing Function: The capture_packets function initiates Tshark to

capture network traffic. Optional parameters for duration and count can refine the

capture process. Captured packets are saved in the specified PCAP file.

25

Figure 31: Feature Extraction and Data

Preprocessing Step 2: Feature Extraction and Data Preprocessing

This step focuses on extracting relevant features from the PCAP file and

cleaning/preprocessing the dataset:

● Feature Extraction: The extract_features function uses Tshark to extract specified

features, such as frame.time_epoch, ip.src, and frame.len. The extracted data is saved

to a CSV file for further processing.

● Data Cleaning: The preprocess_data function cleans the dataset by removing

null values and duplicates. Categorical features (ip.src, ip.dst, etc.) are dropped

to simplify the analysis.

● Feature Scaling: Numerical features like frame.len and frame.time_epoch are

scaled using StandardScaler to ensure consistent data ranges for modeling.

26

 Figure 32: Anomaly Detection and Visualization

Step 3: Anomaly Detection and Visualization

In this final step, anomalies are detected using a pre-trained XGBoost model, and the results

are visualized:

● Loading the Model: The load_xgboost_model function loads the trained XGBoost

model from a

.joblib file. Model parameters are displayed for verification.

● Anomaly Detection: The detect_anomalies_with_XGBoost function uses the

model to classify data points as normal (1) or anomalous (-1).

● Visualization: The visualize_anomalies function creates multiple plots:

○ Time Series Plot: Highlights anomalies over time.

○ Distribution Plot: Shows the density of packet lengths for normal and

anomalous traffic.

○ Anomaly Counts: Displays the number of anomalies detected per hour.

Generated plots are saved as PNG files for documentation and analysis.

27

References
1. NumPy Documentation: NumPy is a library for numerical computing with

support for multi- dimensional arrays and matrices. Available at:

https://numpy.org/doc/ .

2. Pandas Documentation: Pandas provides tools for data manipulation and analysis.

Available at: https://pandas.pydata.org/pandas-docs/stable/ .

3. Matplotlib Documentation: Matplotlib offers plotting capabilities for data

visualization. Available at: https://matplotlib.org/stable/contents.html.

4. Seaborn Documentation: Seaborn simplifies statistical data visualization based on

Matplotlib. Available at: https://seaborn.pydata.org/ .

5. Scikit-learn Documentation: Scikit-learn provides machine learning tools for

predictive analysis. Available at: https://scikit-learn.org/stable/documentation.html .

6. XGBoost Documentation: XGBoost is a scalable and flexible gradient boosting

library. Available at: https://xgboost.readthedocs.io/en/stable .

7. Imbalanced-learn Documentation: A library for dealing with imbalanced datasets

in machine learning. Available at: https://imbalanced-learn.org/stable/ .

8. CICIDS2017 Dataset: Canadian Institute for Cybersecurity Intrusion Detection

Dataset (2017). Available at: https://www.unb.ca/cic/datasets/ids-2017.html .

Appendix: Detailed Code Documentation
This appendix provides detailed explanations of the code, including the functionality of key

components, datasets, and outputs. It complements the configuration manual by offering

insights for researchers who wish to understand the implementation in depth.

A.1 Setup and Configuration

The following table clearly highlights the complete step by step guide on how to reproduce the code:

Step

No.
Action Commands/Guides

1

Install Chocolatey package manager
(Windows only).

Open PowerShell as Administrator and run:

Set-ExecutionPolicy Bypass -Scope Process -Force;

[System.Net.ServicePointManager]::SecurityProtocol =
[System.Net.ServicePointManager]::SecurityProtocol -

bor 3072;

iex ((New-Object

System.Net.WebClient).DownloadString('https://commu
nity.chocolatey.org/install.ps1'))

2

Install Python using Chocolatey with

custom installation (ensure Tcl/Tk and

IDLE are checked).

Run choco install python in an Administrator

PowerShell.

During installation, select "Customize installation" and
check Tcl/Tk and IDLE.

https://numpy.org/doc/
https://pandas.pydata.org/pandas-docs/stable/
https://matplotlib.org/stable/contents.html
https://seaborn.pydata.org/
https://scikit-learn.org/stable/documentation.html
https://xgboost.readthedocs.io/en/stable
https://imbalanced-learn.org/stable/
https://www.unb.ca/cic/datasets/ids-2017.html

28

3

Install necessary Python libraries like

NumPy, Pandas, Scikit-learn, XGBoost,
and Imbalanced-Learn.

Run pip install numpy pandas scikit-learn xgboost

imbalanced-learn.

4

Set up the nDPI library and tools like

Wireshark or Tshark for packet

inspection.

Follow nDPI setup guide; use apt-get install tshark for

packet capture.

5
Load the CICIDS 2017/2018 dataset

into a DataFrame using Pandas.

Use pd.read_csv() to load CSV files into a single

DataFrame.

6

Perform data cleaning: remove

duplicates, handle missing/infinite

values, and standardize column names.

Use df.drop_duplicates() and df.replace([np.inf, -np.inf],

np.nan).dropna() to handle duplicates and infinite values.

Normalize column names with df.columns.str.replace().

7

Apply data balancing techniques:
RandomUnderSampler for majority

class and SMOTE for minority class.

Use RandomUnderSampler and SMOTE from

imbalanced-learn.

8

Use the nDPI library to extract protocol-

specific metadata such as packet size,

timing, and flow details.

Configure nDPI to analyze headers and metadata; refer

to nDPI documentation.

9

Perform feature selection and scaling

using techniques like correlation
analysis and MinMaxScaler.

Use correlation matrix (df.corr()) and scale features with

MinMaxScaler().fit_transform().

10
Split the dataset into training and testing
subsets while maintaining class

distribution.

Use train_test_split(X, y, test_size=0.3, stratify=y) from

scikit-learn.

11

Train machine learning models

(Random Forest, SVM, XGBoost) on

the preprocessed dataset.

Use RandomForestClassifier, SVC, and XGBClassifier

from respective libraries.

 12

Evaluate models using metrics like

accuracy, precision, recall, and F1-

score.

Use classification_report() and confusion_matrix() from

scikit-learn.

 13

Integrate the trained model with the

DPI framework using Python scripts
and joblib/pickle.

Use joblib.dump() or pickle.dump() to save models for

deployment.

 14

Analyze encrypted metadata using

keyword-based DPI to detect threats

while preserving privacy.

Use nDPI's protocol analysis tools to inspect metadata.

 15

Test system efficiency i.e. measure

latency, throughput, and resource
utilization under high traffic.

Use htop for resource monitoring and tshark for packet

analysis.

29

A.2 Dataset Loading and Preparation

This project uses the CIC-IDS-2017 dataset for deep packet inspection.

1. The os.walk function iterates through the data/ folder.

2. All .csv files are loaded into individual DataFrames using pd.read_csv().

3. These DataFrames are concatenated into a single dataset.

A.3 Data Cleaning

Cleaning includes handling null values, duplicates, and infinite values.

Identifies columns with null values.

Removes rows containing null

values.

Checks for and removes duplicate rows.

Replaces infinite values with NaN and removes them.

A.4 Exploratory Data Analysis (EDA)

Visualizes the distribution of benign and malicious labels.

30

Displays histograms for numeric features.

Highlights correlations between features.

A.5 Data Balancing

Balances the dataset by oversampling the minority class.

A.6 Model Training and Evaluation

Support Vector Classifier (SVC)

Random Forest

XGBoost

31

A.7 Visual Outputs

Confusion Matrix

Feature Importance (Random Forest)

A.8 Troubleshooting Guide

Ensure all libraries in requirements.txt are installed.

Check that the dataset files are in the data/ directory.

Verify that the dataset is cleaned and properly balanced before training.

	National College of Ireland
	1. Introduction
	2. System Requirements and Libraries
	3. Data Execution Explanation
	3.1. Import the Libraries
	Figure 1: This code sets up essential libraries for data processing, visualization, and machine learning to ensure smooth workflow

	3.2. About the Dataset
	Figure 2: This code loads and combines multiple CSV files from the CIC-IDS-2017 dataset into a single DataFrame for analysis.

	3.3. Basic Analysis
	Figure 3: This code retrieves and displays the number of rows and columns in the combined dataset.
	Figure 4: This code lists and normalizes column names by removing spaces and special characters, making them easier to work with.
	Figure 5: This code displays the data types of all columns in the dataset to identify numeric, categorical, or other data types.
	Figure 6: This code summarizes the dataset's structure, including column details, non-null entries, and data types.
	Figure 7: This code provides a statistical summary of the numeric columns in the dataset, showing key metrics like mean, standard deviation, and range.
	Figure 8: This code identifies columns with null values and displays their counts in descending order for easier analysis.
	Figure 9: This code checks for duplicate rows in the dataset and reports their count, if any exist.

	3.4. Data Cleaning
	Figure 10: This code removes rows with null values and updates the dataset, reporting the number of rows removed and the new shape.
	Figure 11: This code removes duplicate rows from the dataset, updating its shape and reporting the number of duplicates removed.
	Figure 12: This code identifies and replaces infinite values in the dataset with NaN, then removes rows containing these values to ensure data consistency.

	3.5. Label Normalization
	Figure 13: This code standardizes the dataset labels into 'BENIGN' and 'MALICIOUS' categories and displays their distribution.

	3.6. EDA - Label Distribution
	Figure 14: This code visualizes the distribution of 'BENIGN' and 'MALICIOUS' labels in the dataset using a bar plot.

	3.7. Flow-Based Features
	Figure 15: This code generates histograms to visualize the distribution of flow-based features in the dataset.

	3.8. Forward Packet Features
	3.9. Backward Packet Features
	3.10. Packet Feature Length
	3.11. Flag Features
	3.12. Subway flows
	3.13. Windows and Active/Idle Features
	3.14. Correlation Matrix
	3.15. Data Balancing
	3.16. Loading the Cleaned and Balanced dataset
	3.17. Data Scaling
	3.18. Data Modeling - SVM
	Figure 26: This code trains a Linear Support Vector Classifier, evaluates its performance with a classification report, and visualizes the confusion matrix.

	3.19. Random Forest
	Figure 27: This code trains a Random Forest Classifier, evaluates its performance using a classification report, and visualizes the confusion matrix.

	3.20. XGBoost
	Figure 28: This code trains a Random Forest Classifier, evaluates its performance using a classification report, and visualizes the confusion matrix.

	3.21. Model Comparison
	Figure 29: This code predicts labels for a random sample of test data using LinearSVC, Random Forest, and XGBoost models, displaying the actual and predicted labels with features.

	3.22. DPI Inclusion

	References
	Appendix: Detailed Code Documentation
	A.1 Setup and Configuration
	A.2 Dataset Loading and Preparation
	A.3 Data Cleaning
	A.4 Exploratory Data Analysis (EDA)
	A.5 Data Balancing
	A.6 Model Training and Evaluation
	A.7 Visual Outputs
	A.8 Troubleshooting Guide

