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1. Introduction 
In this config guide, we explain how to configure and optimize a machine learning-

based system for deep packet inspection to secure remote work communication for both 

individual and enterprise networks. This proposed system uses the advanced data analysis 

techniques and three chosen classification techniques i.e. SVM, Random Forest, and XGBoost 

to detect the malicious network traffic activities. These step-by- step instructions make sure 

that the researchers following this guide can replicate the setup for themselves in effective 

experimentation and implementation. 

 

2. System Requirements and Libraries 
To set up this proposed system we will need a machine with Python installed and 

contain sufficient computational resources in order to process the large datasets. In this study 

the key libraries such as NumPy, Pandas, Scikit-learn, and XGBoost will handle data 

manipulation, machine learning, and visualization tasks while the tools like Matplotlib and 

Seaborn will be able to generate insights and visualizations through plots. Moreover the 

specialized libraries such as Imbalanced-learn will help balance this uneven dataset which we 

chose. Make sure to have these dependencies installed for error free implementation. 

 

3. Data Execution Explanation 
3.1. Import the Libraries 

 

 
 

Figure 1: This code sets up essential libraries for data processing, visualization, and 

machine learning to ensure smooth workflow 
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Step 1: In this step, we first import various libraries essential for data processing and 

model building. Libraries like os and warnings are used for managing paths and suppressing 

warnings, while numpy and pandas handle numerical computations and data manipulation. 

Visualization tools such as matplotlib and seaborn create insightful plots, and machine 

learning libraries like scikit-learn and xgboost support the implementation of classification 

algorithms. The imbalanced-learn library addresses class imbalance issues. This step sets up 

the foundational environment for the project. 

 

3.2. About the Dataset 
 

 
 

Figure 2: This code loads and combines multiple CSV files from the CIC-IDS-2017 dataset into 

a single DataFrame for analysis. 

 

Step 2: This step focuses on loading the dataset. It involves specifying the dataset 

folder path and using os.walk to iterate through its contents, processing only .csv files with 

pd.read_csv(). These files are read into DataFrames, appended to a list, and concatenated into 

a single large DataFrame using pd.concat(). The dataset is previewed using 

display(CICIDS.head()) to ensure successful loading.            
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3.3. Basic Analysis 
 

Figure 3: This code retrieves and displays the number of rows and columns in the combined 

dataset. 

Step 3: In this step, the number of rows and columns in the dataset is determined to 

understand its structure. This basic analysis provides a quick overview of the dataset's 

dimensions and scope. 

 

Figure 4: This code lists and normalizes column names by removing spaces and special 

characters, making them easier to work with.
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Step 4: Column names in the dataset are normalized for consistency. The code 

removes spaces and special characters while converting names to lowercase using methods 

like strip(), replace(), and lower(). This ensures column names are easier to work with during 

analysis and model building. 

 

Component Description 

CICIDS.columns.tolist() Lists all column names in the dataset. 

 

strip().replace().lower() 

Normalizes column names by removing spaces, special 

characters, and converting to lowercase. 

CICIDS.columns Updates the dataset with normalized column names. 

print() Displays original and updated column names. 

 

 

Figure 5: This code displays the data types of all columns in the dataset to identify 

numeric, categorical, or other data types. 

 

Step 5: Here in this step the data types of all columns are identified such that the 

CICIDS.dtypes function will list the column types and categorize these as numeric, 

categorical, or otherwise. This step will help the next preprocessing steps. 

 

Figure 6: This code summarizes the dataset's structure, including column details, non-null 

entries, and data types. 

Step 6: This step shows the dataset's structure, including column details, non-null entries, 

and data types, using CICIDS.info() and it helps in understanding the dataset's data quality. 

 

Figure 7: This code provides a statistical summary of the numeric columns in the dataset, 

showing key metrics like mean, standard deviation, and range.
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Step 7: This step is a statistical summary of these numeric columns and it is generated using 

CICIDS.describe(). Key metrics like count, mean, standard deviation, minimum and 

maximum values are also shown. 

 

Figure 8: This code identifies columns with null values and displays their counts in descending 

order for easier analysis. 

 

Step 8: This step shows these columns with null values and counts them and this code sorts 

these columns in descending order of null counts and filters out columns with no missing 

values. 

 

Figure 9: This code checks for duplicate rows in the dataset and reports their count, if any 

exist. 

 

Step 9: The dataset is checked for duplicate rows using CICIDS.duplicated(). Duplicate 

entries, if any, are counted and reported to assess the dataset's uniqueness and quality.            

  

3.4. Data Cleaning 
 

Figure 10: This code removes rows with null values and updates the dataset, reporting the 

number of rows removed and the new shape. 

Step 10: Rows containing null values are removed to ensure data consistency. The code 

calculates the number of rows removed and updates the dataset's shape, reporting the changes 

for transparency. 
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Figure 11: This code removes duplicate rows from the dataset, updating its shape and reporting 

the number of duplicates removed. 

 

 

Step 11: Duplicate rows are removed to enhance data quality. The code calculates the 

number of duplicates removed and updates the dataset's shape, ensuring an accurate dataset. 

 

Component Description 

CICIDS.drop_duplicates( 

) 

 

Removes duplicate rows from the dataset. 

CICIDS.shape[0] Retrieves the number of rows before and after duplicate 

removal. 

before_duplicate_remova l 

- after_duplicate_removal 

 

 

Calculates the number of rows removed. 

 

print() 

Displays the number of removed duplicates and the 

updated dataset shape. 

  

 

 

Figure 12: This code identifies and replaces infinite values in the dataset with NaN, then 

removes rows containing these values to ensure data consistency. 

 

Step 12: This step identifies and replaces infinite values with NaN, then removes rows 

containing these values. This ensures numerical stability during analysis and modeling. 
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3.5. Label Normalization 
 

Figure 13: This code standardizes the dataset labels into 'BENIGN' and 'MALICIOUS' 

categories and displays their distribution. 

Step 13: Dataset labels are standardized into 'BENIGN' and 'MALICIOUS' categories using 

CICIDS['label'].apply(). The distribution of these labels is displayed to check class balance. 

 

3.6. EDA - Label Distribution 
 

Figure 14: This code visualizes the distribution of 'BENIGN' and 'MALICIOUS' labels in 

the dataset using a bar plot. 

Step 14: A bar plot visualizing the distribution of 'BENIGN' and 'MALICIOUS' labels is 

created. This aids in understanding the prevalence of each label in the dataset.
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3.7. Flow-Based Features 
 

Figure 15: This code generates histograms to visualize the distribution of flow-based features in 

the dataset. 

 

Step 15: Histograms for flow-based features are generated to visualize their distributions. 

The plots provide insights into the range and frequency of feature values.
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3.8. Forward Packet Features 
 

 

Figure 16: This code normalizes forward packet features using Min-Max Scaling and 

visualizes their distributions using KDE plots for the first five features.
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3.9. Backward Packet Features 
 

Figure 17: This code creates box plots to visualize the distribution and outliers of backward 

packet features in the dataset. 

 

 

 

3.10. Packet Feature Length 



14 
 

 

Figure 18: This code generates a pairplot to visualize relationships and distributions among 

packet length features in the dataset.
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3.11. Flag Features 
 

Figure 19: This code visualizes the total counts of flag features in the dataset using a bar plot. 

 

3.12. Subway flows 
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Figure 20: This code creates scatter plots to visualize the relationships between subflow 

forward and backward packet counts and byte counts. 

 

 

 

Component Description 

subflow_features List of subflow-related features for analysis. 

CICIDS[subflow_feature 

s].sample(frac=0.1) 

 

Samples 10% of the dataset for faster computation. 

 

sns.scatterplot() 

Creates scatter plots for visualizing relationships between 

subflow features. 

x='subflow_fwd_packets' 

, y='subflow_fwd_bytes' 
 

Plots forward packet and byte relationships. 
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x='subflow_bwd_packets 

', y='subflow_bwd_bytes' 
 

Plots backward packet and byte relationships. 

plt.title(), plt.xlabel(), 

plt.ylabel() 
 

Adds titles and axis labels to the scatter plots. 

plt.show() Displays the scatter plots. 

   

 

3.13. Windows and Active/Idle Features 
 

Figure 21: This code generates histograms to visualize the distribution of window size, active, 

and idle features in the dataset.
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3.14. Correlation Matrix 
 

Figure 22: This code generates a heatmap to visualize the correlation between numeric features 

in the dataset.
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3.15. Data Balancing 
 

Figure 23: This code balances the dataset by under-sampling the majority class and over-

sampling the minority class using SMOTE. 

 

3.16. Loading the Cleaned and Balanced dataset 
 

Figure 24: This code loads the cleaned and balanced dataset from a CSV file and displays its 

shape and a preview of the first few rows. 

 

3.17. Data Scaling 
 

Figure 25: This code splits the balanced dataset into training and testing sets, scales the 

features, and verifies the shapes of the resulting datasets. 

 

3.18. Data Modeling - SVM 
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Figure 26: This code trains a Linear Support Vector Classifier, evaluates its performance with a 

classification report, and visualizes the confusion matrix. 

 

Step 16: A Linear Support Vector Classifier is trained, evaluated, and its performance 

metrics are displayed. The confusion matrix is visualized for a detailed assessment.
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3.19. Random Forest 
 

 

Figure 27: This code trains a Random Forest Classifier, evaluates its performance using a 

classification report, and visualizes the confusion matrix. 

 

Step 17: A Random Forest Classifier is trained and evaluated. Its performance metrics and 

confusion matrix provide insights into model effectiveness.
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3.20. XGBoost 
 

 

Figure 28: This code trains a Random Forest Classifier, evaluates its performance using a 

classification report, and visualizes the confusion matrix. 

 

Step 18: An XGBoost Classifier is trained and evaluated similarly. This step highlights the 

model's suitability for the task.
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3.21. Model Comparison 

 

Figure 29: This code predicts labels for a random sample of test data using LinearSVC, Random 

Forest, and XGBoost models, displaying the actual and predicted labels with features. 

 

Step 19: A comparison of predictions from LinearSVC, Random Forest, and XGBoost 

models is presented. Actual and predicted labels are displayed for selected samples, 

showcasing model performance.
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3.22. DPI Inclusion 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Figure 30: Configuration and Packet Capturing with Tshark 

Step 1: Configuration and Packet Capturing 

In this step, the system configuration is set up, and network traffic packets are captured using 

Tshark: 

 

● Configuration Variables: Key parameters such as INTERFACE (network interface), 

CAPTURE_DURATION (duration of capture), and PCAP_FILE (output file name 

for captured packets) are defined. 

● Packet Capturing Function: The capture_packets function initiates Tshark to 

capture network traffic. Optional parameters for duration and count can refine the 

capture process. Captured packets are saved in the specified PCAP file.
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Figure 31: Feature Extraction and Data 

Preprocessing Step 2: Feature Extraction and Data Preprocessing 

This step focuses on extracting relevant features from the PCAP file and 

cleaning/preprocessing the dataset: 

● Feature Extraction: The extract_features function uses Tshark to extract specified 

features, such as frame.time_epoch, ip.src, and frame.len. The extracted data is saved 

to a CSV file for further processing. 

● Data Cleaning: The preprocess_data function cleans the dataset by removing 

null values and duplicates. Categorical features (ip.src, ip.dst, etc.) are dropped 

to simplify the analysis. 

● Feature Scaling: Numerical features like frame.len and frame.time_epoch are 

scaled using StandardScaler to ensure consistent data ranges for modeling.



26 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

                             Figure 32: Anomaly Detection and Visualization    

Step 3: Anomaly Detection and Visualization 

In this final step, anomalies are detected using a pre-trained XGBoost model, and the results 

are visualized: 

● Loading the Model: The load_xgboost_model function loads the trained XGBoost 

model from a 

.joblib file. Model parameters are displayed for verification. 

● Anomaly Detection: The detect_anomalies_with_XGBoost function uses the 

model to classify data points as normal (1) or anomalous (-1). 

● Visualization: The visualize_anomalies function creates multiple plots: 

○ Time Series Plot: Highlights anomalies over time. 

○ Distribution Plot: Shows the density of packet lengths for normal and 

anomalous traffic. 

○ Anomaly Counts: Displays the number of anomalies detected per hour. 

Generated plots are saved as PNG files for documentation and analysis.
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Appendix: Detailed Code Documentation 
This appendix provides detailed explanations of the code, including the functionality of key 

components, datasets, and outputs. It complements the configuration manual by offering 

insights for researchers who wish to understand the implementation in depth. 

 

A.1 Setup and Configuration
 

The following table clearly highlights the complete step by step guide on how to reproduce the code: 

 

Step 

No. 
Action Commands/Guides 

 
 

 

1 

 
 

 

Install Chocolatey package manager 
(Windows only). 

Open PowerShell as Administrator and run: 

Set-ExecutionPolicy Bypass -Scope Process -Force; 

[System.Net.ServicePointManager]::SecurityProtocol = 
[System.Net.ServicePointManager]::SecurityProtocol - 

bor 3072; 

iex ((New-Object 

System.Net.WebClient).DownloadString('https://commu 
nity.chocolatey.org/install.ps1')) 

 

2 

Install Python using Chocolatey with 

custom installation (ensure Tcl/Tk and 

IDLE are checked). 

Run choco install python in an Administrator 

PowerShell. 

During installation, select "Customize installation" and 
check Tcl/Tk and IDLE. 

https://numpy.org/doc/
https://pandas.pydata.org/pandas-docs/stable/
https://matplotlib.org/stable/contents.html
https://seaborn.pydata.org/
https://scikit-learn.org/stable/documentation.html
https://xgboost.readthedocs.io/en/stable
https://imbalanced-learn.org/stable/
https://www.unb.ca/cic/datasets/ids-2017.html
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3 

Install necessary Python libraries like 

NumPy, Pandas, Scikit-learn, XGBoost, 
and Imbalanced-Learn. 

Run pip install numpy pandas scikit-learn xgboost 

imbalanced-learn. 

 

4 

Set up the nDPI library and tools like 

Wireshark or Tshark for packet 

inspection. 

Follow nDPI setup guide; use apt-get install tshark for 

packet capture. 

5 
Load the CICIDS 2017/2018 dataset 

into a DataFrame using Pandas. 

Use pd.read_csv() to load CSV files into a single 

DataFrame. 

 

6 

Perform data cleaning: remove 

duplicates, handle missing/infinite 

values, and standardize column names. 

Use df.drop_duplicates() and df.replace([np.inf, -np.inf], 

np.nan).dropna() to handle duplicates and infinite values. 

Normalize column names with df.columns.str.replace(). 

 

7 

Apply data balancing techniques: 
RandomUnderSampler for majority 

class and SMOTE for minority class. 

Use RandomUnderSampler and SMOTE from 

imbalanced-learn. 

 

8 

Use the nDPI library to extract protocol- 

specific metadata such as packet size, 

timing, and flow details. 

Configure nDPI to analyze headers and metadata; refer 

to nDPI documentation. 

 

9 

Perform feature selection and scaling 

using techniques like correlation 
analysis and MinMaxScaler. 

Use correlation matrix (df.corr()) and scale features with 

MinMaxScaler().fit_transform(). 

 

10 
Split the dataset into training and testing 
subsets while maintaining class 

distribution. 

Use train_test_split(X, y, test_size=0.3, stratify=y) from 

scikit-learn. 

 

11 

Train machine learning models 

(Random Forest, SVM, XGBoost) on 

the preprocessed dataset. 

 

Use RandomForestClassifier, SVC, and XGBClassifier 

from respective libraries. 

 

  12 

 

Evaluate models using metrics like 

accuracy, precision, recall, and F1-

score. 

Use classification_report() and confusion_matrix() from 

scikit-learn. 

 

  13 

Integrate the trained model with the 

DPI framework using Python scripts 
and joblib/pickle. 

Use joblib.dump() or pickle.dump() to save models for 

deployment. 

  

  14 

Analyze encrypted metadata using 

keyword-based DPI to detect threats 

while preserving privacy. 

Use nDPI's protocol analysis tools to inspect metadata. 

 

  15 

Test system efficiency i.e. measure 

latency, throughput, and resource 
utilization under high traffic. 

Use htop for resource monitoring and tshark for packet 

analysis. 
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A.2 Dataset Loading and Preparation 

This project uses the CIC-IDS-2017 dataset for deep packet inspection. 

 

1. The os.walk function iterates through the data/ folder. 

2. All .csv files are loaded into individual DataFrames using pd.read_csv(). 

3. These DataFrames are concatenated into a single dataset. 

 

A.3 Data Cleaning 

Cleaning includes handling null values, duplicates, and infinite values. 

Identifies columns with null values. 

Removes rows containing null 

values. 

 

Checks for and removes duplicate rows. 
 

 

Replaces infinite values with NaN and removes them. 

 

A.4 Exploratory Data Analysis (EDA) 
 

Visualizes the distribution of benign and malicious labels. 
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Displays histograms for numeric features. 

 

Highlights correlations between features. 

 

A.5 Data Balancing 
 

Balances the dataset by oversampling the minority class. 

 

A.6 Model Training and Evaluation 
 

Support Vector Classifier (SVC) 

 

 

Random Forest 

 

XGBoost 
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A.7 Visual Outputs 
 

Confusion Matrix 

 

Feature Importance (Random Forest) 

 

A.8 Troubleshooting Guide 

Ensure all libraries in requirements.txt are installed. 

Check that the dataset files are in the data/ directory. 

Verify that the dataset is cleaned and properly balanced before training. 
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