

Lightweight Cryptography in Embedded

IOT Systems

MSc Research Project

MSCCYBE_JANO23_O

Kamal Bassiouny Kamal Tawfik

Student ID: x22189661

School of Computing

National College of Ireland

Supervisor: Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Kamal Bassiouny Kamal Tawfik

Student ID:

X22189661

Programme:

MSCCYBE_JANO23_O

Year:

2023

Module:

MSc Research Project

Supervisor:

Ross Spelman

Submission Due

Date:

12/08/2024

Project Title:

Lightweight Cryptography in Embedded IOT Systems

Word Count:

5381 Page Count: 13

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Kamal Tawfik

Date:

11/8/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Lightweight Cryptography in Embedded IOT Systems

Kamal Bassiouny Kamal Tawfik

x22189661

Abstract

Internet of things (IOT) is a hot topic, and applications are increasing every day, IOT

has been involved now in sport, healthcare, automotive, smart homes and etc. it depends

on o creating a wide range of network that contains nodes(things) that are connected

together to gateway and share data through internet. That nodes or things can by

monitored, controlled, send and receive data through internet from anywhere. And with

that huge increase of IOT application, securing that date became a challenge for the

security researchers, on how to achieve the security of the data with complying with IOT

limitation in terms of resources such as power consumption, processing speed, memory

and etc. the researcher are trying to find the most optimized cryptographic method that

enable developer to encrypt data in IOT restrict environments with a good balance of

security and resources consumption.

Research has been studying different types and algorithms, and Market already has

used some algorithm, maybe optimizing exist general one to IOT environment such AES

and other tried to develop special designed algorithm for IOT environment such as

PRESENT, SIMON, ChaCha, SIMON, KTANTAN etc. each method tries to meet the

IOT constraints and achieve the security and go towards perfect secrecy.

In this research project I will try to do a comparison between most common used

Light weight cryptography methods to find out the best recommendation and practices to

reduce the overhead execution time, memory consumption and cost when using with

Embedded system. The paper states advantage and drawbacks of each method in the

study. That would help decision maker and engineers to choose the best method and

apply the finding so that they can have a secure system with lower resource

consumption. In this paper I looked into three different methods which are the most used

based on research Papers in previous work and standards, AES, PRESENT, and ChaCha.

The methodology of the comparison is based on two resources of data First, the

Literal review of previous research papers, and the data collected on real code execution

on ESP32 MCU which is very popular MCU used in IOT applications.

The result shows that there is a trade-off between security and resource usage.

Overall, you can chive more security, but you would need high computing power to

overcome processing overhead for example AES algorithms. You can still achieve some

good balance if you use SIMON algorithms, but you need to consider its limitation

implementation of plain text size

Keywords: IOT, lightweight Cryptography, Microcontroller, Software,

Hardware.

1 Introduction
The rapid increase of IOT devices across different fields, from simple home Automation

to full smart cities, Medical, automotive and etc. these devices, are developed and designed

2

for specific purposes or function for example a device to collect environment data from a

room and apply controls based on that. typical products can be the smart air conditioner or

smart security camera. that is why they’re fail under embedded systems devices. The semi-

conductor company turning to reduce the size and cost of such device to be more embedded

into more applications. Also, the software developer tries to reduce the software development

overhead such as processing time, memory consumption of these applications. The big

challenge is how to secure the data collected or transferred by IOT devices to be secure

enough against cyber security attack such as MAN in middle attack without increasing the

resource overhead physical or software. The security developer has been trying to find a more

optimized light wight cryptography that has a good balance between achieve good encryption

level and meet resource limitations. So that, can be used with such devices to enhance the

security and encryption of the data that will be shared among the devices (things) with

consider the resource limitations so it can enhance the security without adding more overhead

such as memory consumption, processing time, cost, board size and etc.

To understand why Lightweight cryptography is important in today’s worlds. you

should know that installed IOT devices around the world is estimated to be 75.44 billion in

2025 and number is expected to increase each year.

Main MCU in IOT device can vary from be 8-bit to 32-bit microcontroller with 1kb to

hundreds of Kbytes of RAM, 1 MHz can be typica processing frequency, and such MCU can

be the main processing unit for a node connected in IOT network. The traditional

cryptographic method won’t fit with such systems.

The primary focus for the developer is to secure such devices that will transfer and

hold vulnerable data without effecting the efficiency of the devices and meet embedded IOT

constrained resources.

Lightweight cryptography is a cryptographic algorithm used to encrypt data that is used in

limited resource system and constrained environments such as: IOT, sensors, Radio

frequency applications RFID, or any embedded system projects that has limited resources.

It achieves efficiency of end-to-end communication in order to achieve end to end security

for limited resources applications such as battery driven devices where you keen about low

power consumptions. It also has small memory footprint which is a very key point in IOT or

embedded system applications, so it requires less RAM, Less Power supply, less computing

resource and processing time.

My research focuses on the main problem of the trade-off between security of IOT device in

respect to cryptography method to move towards perfect secrecy and the limitation of IOT

devices. The research states why normal general cryptography methods can’t be used

withing IOT devices. The paper compares and analysis few of the commonly used

lightweight cryptography methods and how they meet or don’t meet IOT limitations.

The comparison and data analysis are based on two methods: review of previous research

papers, and the practical implementation of the cryptography methods on IOT MCU EXP32

which is very common in IOT applications.

At the end this paper should answer the research question how to achieve lightweight

cryptography for IOT device. The methodology of the research is to evaluate the performance

of the selected Lightweight Cryptographic methods (AES, PRESENT, ChaCha, SIMON and

KTANTAN) in terms of Execution time, memory usage and computational overhead. Also

3

gives the recommendation of how to achieve the cryptographic methods with lower resources

based on the result of the research.

However, the second path, implementing the Methods and record the data, is limited by

resource and available libraries. Open-source libraries are used as a base of that method and

due to this some libraries are not complete and maybe data gathered are affected by the open-

source implementation.

The following section is the Related Work which provides a detailed review of

previous research papers that explain the existing lightweight cryptography and its

Application of IOT and highlighting the advantage and limitation of each method.

Section 3 is the methodology which describe ethe experimental setup and the

implementation of Selected Lightweight cryptography algorithm on ESP32 microcontroller.

The benchmarking results are described in section 4 to show the data collected from the

ESP32 microcontroller showing the comparison between the applied cryptographic method in

terms of execution time, memory usage and overall efficiency. Also summarize the key

finding of the study and offers the recommendation based on the data and also provide the

direction of the future work. At the end, section 5 provides the conclusion and future work.

2 Related Work

2.1 IOT devices Growth and need for data encryption

The huge increase of IOT devices has introduces big changing on how to secure such

devices with the limitation of resource-constrained environments. The IOT devices may hold

very critical data such as home devices measurements in smart homes or can hold critical

information and sensitive data on the person itself in healthcare applications. Typical

applications where a device is designed and developed to measure body measurements such

as temperature, heart rate, pressure, sleeping time and other body data and other sensitive the

measurement to the Doctors with the person personal information such as name, date of birth,

address, and other sensitive data. With the connectivity of billions of IOT devices holding,

transmitting and receiving sensitive data. It is crucial to encrypt such data and try to achieve

the perfect secrecy against IOT typical threats.

However, IOT devices work in limited constrained environments compared to general

purpose computer in terms of processing power, memory capacity and battery lifetime. This

limited environment makes it impractical to use traditional cryptographic algorithm on such

devices [1].

Lightweight cryptography tries to resolve the challenging of IOT devices security by

providing more optimized method in order to achieve the security and meet the IOT

environment criteria. The primary objective for the developer and researcher is to maintain an

adequate level of security while minimizing the algorithm footprint in terms if memory

usage. Processing cycles, and power consumption [2].

In 2003 a study made by Cisco Internet Business Solutions Group (IBSG) to measure

how many devices are connected through internet [2] [3], taking into consideration the human

population. The study shown that there were 500 million devices connected to the internet

when human population was 6.3 billion. In 2010, this number increased to be 12.5 billion

when human population was 6.8 billion. They predicted the number to be 50 billion by 2020.

4

Fig.1: Year Vs world population and connected devices

Statista [4], which is a research website focused on publishing statics data, has published

research regarding the number IOT connection worldwide from 2022 to 2023and the forecast

for 2024. As you can see in figures only in IOT, there is currently 13.8 billion connections

and number expected to increase with linear rate to achieve 39.6 billion connections by 2033.

Fig 2: Number of IOT connections per year

Therefore, a well security design is required to achieve the security while moving

towards automation and make everything connected to the internet. Encrypting the shared

data is important key in achieving the security of IOT devices. Cryptography of the data in

IOT, ensures the confidentiality, integrity and authenticity id data in IOT network, enabling

secure communication and protect the devices from cyber attacker or security threats.

2.2 Limitation of IOT environments and need of lightweight cryptography

As we discussed that growth of IOT devices in today’s world makes it crucial to

encrypt the shared and transferred data between the IOT devices and connections. However,

IOT devices work in constrained environments resulting with limitation need to be taken into

consideration while developing a cryptography method that can be used in IOT applications.

And from that we had the lightweight concept that makes new cryptography method that has

lighter footprint. In this section let’s discuss some of these limitations.

5

Resource Constrains: this is the most challenge in IOT devices, as it consists of low

power micro controller (MCU) as the main processing unit, not like normal pc or laptops

which have huge processing power. The low production cost is main feature of IOT and when

going to use low-cost sensors and controllers that means they come with minimal footprints

in terms of processing power or memory capacity. Also, power consumption is a crucial

element as IOT devices designed to have long battery life to be embedded in long life

applications such as wearable medical devices like smart watches [1][2].

Different flavours if IOT devices: IOT is used in wide range of applications such as

smart homes, healthcare, Automotive, agriculture and etc. therefore, you can find different as

a result of the range of application and each one has its own characteristics. So, what

algorithm works in IOT automotive application won’t fit in Smart home applications due too

difference in standards, market, costumer behaviour, devices used and etc.

Scalability challenges: as mentioned above, IOT is rapidly increasing over time. The

innovation of new technology in IOT field is rapidly changing, that add more challenge to

update the algorithm and manage key distribution. Regular cryptography methods are not

designed to be regularly update with high range or change so maybe new method or update is

required to meet these criteria.

Power consumption: the IOT devices need to be energy efficient, for example EI

Electronics, which is Irish electronics company for alarm sensors, designs and develops low

power alarm sensor that do GAS sensor and alarm sensor, and their main target and

promotion is energy efficiency and low power consumption. You don’t have electric socket

or huge batter, but you can find the device has only 5 voltage battery as main power supply,

hence you need to design the cryptographic method to use minimum power as much as

possible.

Real time processing: due too the criticality of IOT applications, it requires real time

processing which means all tasks and sensor need to be time specified and meet deadline

criteria in respect to time. For example, IOT devices use watchdog timer to keep trace of all

function and kill any stuck function to not affect system behaviour and other tasks. A

lightweight cryptography algorithm that uses standard processing time and meet real time

requirements of embedded IOT is mandatory when designing the algorithm. That is why

some markets use hardware crypto rather than software. for example, Hardware security

module (HSM) in Automotive is highly used as a standalone encryption and decryption unit.

Privacy concern: the IOT devices share sensitive data which require applying

confidentiality. Attacker can use different threat vector to obtain the sensitive information.

Cryptography must take into consideration the security of such sensitive data. When thinking

of reducing resource usage, power consumption and minimum footprint, the developer must

not reduce the security and must meet the security requirements in order to achieve

confidentiality.

2.3 Current algorithm

Much research has been made into designing Lightweight cryptography methods that

can achieve encryption and meet IOT device limitations.

The optimization of cryptographic algorithm to meet the IOT environment limitation either

hardware based, or software based.

Hardware optimized Based Cryptography

In this option, the algorithm uses the advantage of hardware, so the optimization is

more based on optimizing the hardware and some sometimes design detected hardware to do

the encryption for example using FPGA, Field Programable Gate Array, like the case in

automotive HSM.

6

Also, options in hardware that when designing the algorithm is to design it based on

the available hardware so it is developed, and flashed to run on specific hardware that will

give the algorithm the limitation requirements. And you need to adapt the algorithm if you

change the hardware. For example, PRESENT which is a block cipher algorithm that is

designed to use minimum gate equivalent. SIMON and Speck are developed by NSA, and

they are families of block cipher.

Such algorithms are highly efficient in terms of processing power and execution time.

However, they require specific hardware requirements which may lead to higher cost, higher

hardware complexity, and increase board size which sometimes make it not suitable for some

applications.

Software Based Cryptography

Software optimized algorithms focus more on software side. It takes the current

general Cryptographic method and try to optimize the software to meet the IOT

environmental requirements. Lightweight version of Advanced Encryption Standard (AES) is

perfect example of such algorithms. It is optimized to use less memory, less processing time.

 However, it reduces the security level of the algorithm so there is a trade-off between

the optimization achieved and the overall security of the system. For example, lightweight

version of AES tends to reduce the complexity and instruct sets of the algorithm in order to

use lower memory and RAM consumption, and with lower instruction set you can increase

the speed of the encryption.

Symmetric vs Asymmetric Cryptography

The cryptography algorithms in general might fail either into Symmetric key, or asymmetric

key encryption.

Symmetric key is where same key is used in encryption and decryption. It is the one

preferred in IOT application due to its efficiency and no ned to transmit key, so it is simpler

as you have only one key that is prestored in all nodes and no ned for key calculations or

transmission over the channel.

However Asymmetric key, where different keys are used on both sides, offer of key

management and provide signature and more security over Symmetric key algorithm.

Example Elliptic Curve Cryptography (ECC), but Asymmetric methods use intensive

resources and researchers are trying to do more optimization but still can’t compete with

Symmetric key algorithms in terms of resource consumption, hence Symmetric key

algorithms such as AES, SIMON are more preferred in IOT applications.

3 Research Methodology

In this section I will try to evaluate and compare the performance of selected lightweight

cryptography algorithm AES, PRESENT, Chacha, SIMON and KTANTAN. The comparison

is to base on their usage in encrypting data in Internet of things (IOT) applications with its

limited resources and constrains regarding power consumption, memory, processing time.

The study is important to see how much security can achieved while provide optimized usage

of the IOT device resources.

The experiment is based on implementing the selected cryptographic algorithm on IOT

devices. One of the most common IOT device is ESP32. ESP32 is a very common micro

controller used in IOT applications.

The implementation of the encryption method will be based on the exist open-source

libraries. However, some Libraries are not found so a simple implementation might be used.

The idea is not to implement a new algorithm but more to compare the most common used

7

Algorithm in the IOT encryption and get a recommendation of how we can do more

optimization in terms of processing time, power consumption, memory usage, and other

resources if possible.

3.1 Development environment setup

The development environment setup is a very important part of the experiment as it shows

which environment and constrains or limitation while doing the test and show the accuracy of

the collected data. Also, it’s how if there was a variation or difference between the

experiment and real case scenario.

In this section I will go through how I setup the environment and describe each element of

the experiment.

3.1.1 Visual studio setup

Visual studio code is a software code editor used with software development. it is the

selected one for being the primary integrated development environment (IDE) as it has good

support for C/C++ development with a lot of extensions that can be adapted and included

based on the project needs.

Installation: Visual studio code can be downloaded and installed from the official Vs Code

website [7].

Extension installation: The “ESP-IDF” extension was installed within VS code extensions

marketplace. The extension provides integration environment for IOT development on ESP32

by Expressif and enable development, debugging, monitoring and collecting data from the

device [8].

Figure 3: ESP-IDF with Visual studio code

Configuration of ESP-IDF: the ESP-IDF extension for VS code requires initial setup and

configuration usually is done by following the setup and configuration wizard. I used the

blink led example configuration s my basic configuration and built the crypto libraries over

that configuration. Configuration Manual should have all configuration setup.

 ESP32 Hardware
ESP32 Microcontroller is a very common in IOT applications. It is a system on a chip (SOC)

that combines WI-FI and Bluetooth connectivity with sufficient processing capabilities to

handle lightweight cryptographic operations. ESP32 has many options, I have used Esp32

Dev KitNodeMCU Wroom-32 and it comes with following features:

- 2.4 GHz dual-mode WI-FI

- TSMC Bluetooth chip

- 40nm low-power technology

- Dual high performance Xtensa 32-bit LX6 CPU cores

- Digital input and output pins

8

- Peripherals pins

Figure 4: ESP32 Dev kit Cv4 Pinout

3.1.2 Selection of Cryptographic algorithms

I tried to select the most common algorithm used in IOT applications. Some of the

algorithm has open-source library and that is used on the implementation. Others couldn’t

find open-source libraries and sometimes it complexes to implement. So, for the complex

ones was more review of the algorithm and maybe simple implementation of the basic

elements to show how ESP32 will take to process and that might give indication of the

footprint of the application itself.

AES (Advanced Encryption Standard): AES is a well know encryption algorithm

and has many usages in computer security. Despite being more heavy weight algorithms but

many IOT application has taken the advantage of AES by developing simpler version of AES

to be used in IOT applications as a lightweight Cryptography algorithm. I used standard AES

library comes with ESP-IDF extension with ESP environment on VS code.

PRESENT: PRESENT is the most common cryptography method. It is a block

cipher developed by orange labs Ruhr University and technical University of Denmark. It is

considered to be ultrahigh algorithm for extremely resource-constrained environment such as

RFID, IOT devices. Its low footprint makes it identical choice for IOT application in the most

cases.

Andrey Bogdanov et al has published first Ultra-Lightweight Block Cipher

PRESENT [8] that can be suitable for IOT devices and resources constrained environment.

It is based on SP-network and consists of 31 rounds, it encrypts 64-bit blocks with a key with

a length of 80 or 128 bits [8]. I have chosen to test based on open-source library on Github

[7]. Integrate the source and header file into my project and apply the encryption to measure

the execution time of the algorithm.

PRESENT should be 2.5 smaller than AES and has lower power consumption. However, on

the other hand it provides less security than AES.

ChaCha: is a stream cipher .it a lightweight method focuses on optimization in the

software point of view to provide a good balance between security and performance [9].

9

SIMON: it is a lightweight cryptography method that is developed by National

Security Agency (NSA) in June 2013. Its hardware is optimized to be integrated within IOT

environments [6][10].

3.2 Implementation and Benchmarking strategy

I have used the advantage of already developed example of ESP32 by Espressif IDF

extension with VS code. I used Blink Led example and add encryption APIs over it and also

implement a simple benchmarking algorithm by calling each encryption method with

different key size and different plain text sizes to measure the processing time and memory

consumption for each function call.

I have implemented the code algorithms for the following:

AES: implemented using mbedTLS library.

PRESENT: I used open-source lib from GitHub. The algorithm us limited to a block size of 8

bytes Due to limitation of test environment.

ChaCha20: implementation is based on open-source GitHub library and the key size was 32

bytes, and padding is used in case ok keys smaller than 32 bytes.

Simon: the implementation is taken from GitHub and adapted to be used with ESP32

framework.

3.2.1 Benchmarking strategy

A benchmarking framework was developed to test the performance of each

encryption algorithm.

The main concept is to try test different key size, if possible, with same plain text, and

also test different plain text size with same key size for each encryption method and measure

the execution time for each test case.

The test cases can be categorized to:

Vary the key size: Each algorithm was tested with key sizes of 16, 24, and 32 bytes (if

possible).

Vary the plaintext size: Tests were executed with plaintext sizes of 8, 16, and 32 bytes.

The measure variable is the Measure execution time. The ESP32’s built-in high-

resolution timer was used to measure the execution time of each encryption operation,

providing microsecond-level precision. Tera Term is used to, monitor the serial data

generated by ESP32 and log the data into log file, any serial monitor can do the task.

The framework was implemented in C and integrated into the ESP-IDF environment.

The benchmark results were output to the serial console, allowing for easy collection and

analysis of data.

3.2.2 Test Steps:

The following steps summarize the test procedure of the experiment:

Initialization: The ESP32 was initialized, and each encryption algorithm was prepared by

setting up the necessary key, plaintext, and algorithm-specific parameters.

Execution: For each combination of key size and plaintext size, the encryption algorithm was

executed, and the time taken for the operation was recorded.

Output: After each encryption operation, the resulting ciphertext and the execution time

were output to the serial console for logging.

Repetition: This process was repeated for each algorithm, with different key sizes and

plaintext lengths, ensuring comprehensive coverage of possible test cases.

10

3.2.3 Limitations

Despite implementing the algorithms but there were limitation comes from code

limitation or test environment limitations. Those limitations are:

PRESENT Cipher: The algorithm's limitation to 8-byte blocks restricted its use to very

small plaintexts. Larger plaintexts had to be executed, limiting the result range and data

analysis and comparison to another algorithm.

ChaCha20 Key Size: ChaCha20's requirement for a 32-byte key meant that smaller keys had

to be padded, and this might not be the case for example test cases were done to use 16- and

24-bits key, so they all treated as 32 bit key.

Simon Cipher: Although Simon supports a variety of block sizes, the implementation was

limited to testing 16-byte plaintexts due to the block size constraints.

Hardware Constraints: The ESP32's computational limits and lack of hardware acceleration

for some algorithms could impact Result and discussion as the result may vary if applied

same experiment in different hardware platform.

4 Result and discussion

Test Case Encryption
Algorithm

Key Size
(Bytes)

Plaintext
Size (Bytes)

Execution
Time
(microseconds)

Source of
Code

1 AES 16 8 26,471 mbedTLS
library

2 PRESENT 10 (80-bit) 8 6,080 Custom,
GitHub

3 ChaCha20 16 8 26,735 Custom,
GitHub

4 Simon 16 8 5,500 Custom,
GitHub

5 AES 16 16 48,698 mbedTLS
library

6 PRESENT 10 (80-bit) 16 (limited
to 8 bytes)

15,890 Custom,
GitHub

7 ChaCha20 16 16 48,958 Custom,
GitHub

8 Simon 16 16 10,800 Custom,
GitHub

9 AES 16 32 93,142 mbedTLS
library

10 PRESENT 10 (80-bit) 32 (limited
to 8 bytes)

15,890 Custom,
GitHub

11 ChaCha20 16 32 93,402 Custom,
GitHub

12 Simon 16 16 10,800 Custom,
GitHub

13 AES 24 8 26,476 mbedTLS
library

14 ChaCha20 24 8 26,736 Custom,
GitHub

15 Simon 24 8 5,600 Custom,
GitHub

16 AES 24 16 48,697 mbedTLS
library

17 ChaCha20 24 16 48,958 Custom,
GitHub

11

18 Simon 24 16 11,000 Custom,
GitHub

19 AES 24 32 96,006 mbedTLS
library

20 ChaCha20 24 32 96,267 Custom,
GitHub

21 Simon 24 16 11,000 Custom,
GitHub

22 AES 32 8 27,256 mbedTLS
library

23 ChaCha20 32 8 27,518 Custom,
GitHub

24 Simon 32 8 5,700 Custom,
GitHub

25 AES 32 16 50,173 mbedTLS
library

26 ChaCha20 32 16 50,433 Custom,
GitHub

27 Simon 32 16 11,200 Custom,
GitHub

28 AES 32 32 96,006 mbedTLS
library

29 ChaCha20 32 32 96,267 Custom,
GitHub

30 Simon 32 16 11,200 Custom,
GitHub

Table 1: Test results

Table 1 shows the summery of test result of the test cases. by looking to the table, we can see that Simon
Encryption has faster execution times compared to AES and ChaCha20, especially with smaller plaintext sizes.
Also, as the limitation Simon is Limited to a maximum plaintext size of 16 bytes due to its block size
constraints.

PRESENT Encryption has the fastest execution times for 8-byte plaintexts but cannot handle larger plaintext
sizes effectively due to block size limitations. AES and ChaCha20 Both show consistent and predictable scaling
with increasing plaintext sizes.
The result shows the following consideration and key points when choosing Lightweight cryptography method
from the selected methods:

Algorithm Pros Cons Best Use Case Security

Level

Recommendatio

n

PRESEN

T

- Extremely

fast for small,

fixed-size

data blocks

(8 bytes)

- Low

computationa

l overhead

- Limited to

8-byte blocks

- Not suitable

for larger

plaintext

sizes

- Ideal for very

small, fixed-size

data (e.g., RFID

tags, sensor

data)

Low to

Moderat

e

Recommended

for applications

with very small,

consistent data

sizes and tight

resource

constraints

Simon - Efficient

with low

computationa

l footprint

- Good

performance

across

- Limited to

16-byte

plaintext in

the tested

configuration

- Suitable for

low-power,

embedded

systems with

small and

consistent data

sizes (e.g., IoT

Moderat

e

Strong

candidate for

low-power

and

resource-

constrained

environment

12

different key

and plaintext

sizes

devices, smart

cards)

s with small

data sizes

AES -

Standardized

and widely

used

- Strong

security

guarantees

- Flexible

with key and

data sizes

- Higher

computationa

l overhead

compared to

PRESENT

and Simon

- Applications

where security

is paramount

and

computational

overhead is

acceptable (e.g.,

secure

communications

, data storage)

High

Recommended

for high-

security

applications

where

computational

cost is

acceptable

ChaCha2

0

- Fast and

secure

- Flexible in

key sizes

- Easier to

implement

securely than

AES in some

environment

- Requires

padding for

smaller key

sizes

- Secure

streaming,

mobile

applications, or

where

performance is

critical and high

security is

needed

High

Recommended

for

performance-

critical

applications

with high

security

requirements

Table 2: test observation and recommendations

my recommendation based on the test is that Simon is a very good choice for having a

good balance between security and efficiency. However, it restricts the developer to use

small plain text if 8-16 bytes. If your objective is more into secure the system, you should

consider Chacha or AES choice. for more security, in case the hardware and resource Is

enough to handle processing overhead, so AES is better choice to achieve better level of

security.

5 Conclusion and Future Work

The research studied the importance of having lightweight cryptography and stating the

limitation of IOT devices which shows the important of developing a lightweight

cryptography algorithm.

Part two of the research was based on practical implementation of selected exist algorithm

and analysis and compare the performance if each selected algorithm with different key or

plain text sizes.

The selected methods were PRESENT, SIMON, AES and Chacha. The

implementation developed and tested on ESP32 platform which is a common Micro

controller for IOT applications. The objective of the test is to compare the execution time for

each encryption and try to find the best option to balance between security and efficiency.

The results showed that: Simon showed fast execution time with limitation of small

plaintexts (8-16 bytes). It is highly efficient, making it an excellent choice for low-power,

resource-constrained environments where data sizes are small and consistent. However, its

security level is moderate, and its applicability is limited to smaller plaintext sizes. While

PRESENT has the quickest execution times for 8-byte plaintexts, making it suitable for very

13

small, fixed-size data encryption, such as in RFID tags or sensor data. However, it struggles

with larger data sizes due to its fixed block size of 8 bytes, which significantly limits its

scalability and range of applications.

AES and ChaCha20 provided solid level of security. AES is a great choice for

achieving best security, but it comes with a higher computational overhead. ChaCha20 offers

similar security benefits with slightly better performance in some scenarios.

The future work might be including more algorithm in the study such as Speck,

KTANTAN for more inclusion. Also include more test scenarios and use more powerful
microcontroller to apply more tests and make the full benefits of the algorithm.
The study didn’t take into consideration the decryption process which is a very key point
when comparing between cryptographic algorithms, future work shall include the encryption
process to compare how secure each application. Also, how long or how many cycles need to
be taken to decrypt the data for each algorithm.

References

[1] Okello, W.J., Liu, Q., Siddiqui, F.A. and Zhang, C., 2017, July. A survey of the current

state of lightweight cryptography for the Internet of things. In 2017 International Conference

on Computer, Information and Telecommunication Systems (CITS) (pp. 292-296). IEEE.

[2] Dutta, I.K., Ghosh, B. and Bayoumi, M., 2019, January. Lightweight cryptography for

internet of insecure things: A survey. In 2019 IEEE 9th Annual Computing and

Communication Workshop and Conference (CCWC) (pp. 0475-0481). IEEE.

[3] Soumyalatha, S.G.H., 2016, May. Study of IoT: understanding IoT architecture,

applications, issues and challenges. In 1st International Conference on Innovations in

Computing & Net-working (ICICN16), CSE, RRCE. International Journal of Advanced

Networking & Applications (Vol. 478).

[4] https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[5] https://www.eielectronics.ie/

[6] Wetzels, J. and Bokslag, W., 2015. Simple SIMON: FPGA implementations of the

SIMON 64/128 Block Cipher. arXiv preprint arXiv:1507.06368.

[7] https://github.com/Pepton21/present-cipher

[8] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.,

Seurin, Y. and Vikkelsoe, C., 2007. PRESENT: An ultra-lightweight block cipher. In

Cryptographic Hardware and Embedded Systems-CHES 2007: 9th International Workshop,

Vienna, Austria, September 10-13, 2007. Proceedings 9 (pp. 450-466). Springer Berlin

Heidelberg.

[9] https://github.com/983/ChaCha20

[10] https://github.com/983/ChaCha20

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.eielectronics.ie/
https://github.com/Pepton21/present-cipher
https://github.com/983/ChaCha20

