
Talluri Tarun Kumar

X23231262

System Requirement

System Requirements:

• Hardware that is used for testing: Quad-core CPU, NVIDIA GPU (GTX 1050+),

• 8GB RAM in the prescribed system (16GB recommended),

• 20GB storage recommended while lesser can also work.

• Software: Python 3.8+, TensorFlow, PyTorch, Librosa, Scikit-learn, XGBoost, LightGBM,

NumPy, Pandas, Matplotlib, Seaborn,

• TQDM.

• Environment: Jupyter Notebook or Google Colab (recommended for GPU/TPU).

The code establishes all required libraries to execute work on deep learning audio projects. The

code provides options for dealing with files in addition to audio processing through Librosa

along with data representation using Matplotlib. The codebase includes modules to compute

statistical values including skewness and kurtosis together with options to divide data into

training sections and perform embellishment processing via TensorFlow and Keras modules.

Users build neural networks by employing dense layers together with convolution2d layers and

lstm layers when using keras in their development. This framework delivers an integrated

configuration which enables complete audio handling and model training capabilities.

Using the kagglehub library this code retrieves datasets from the Kaggle platform. Kaggle's

dataset can be located through its path "abdallamohamed312/in-the-wild-audio-deepfake".

When the dataset finishes its download the program saves its local storage path in a variable

named path. The code displays your dataset location for convenient storage access.

Using the kagglehub library this code retrieves datasets from the Kaggle platform. Kaggle's

dataset can be located through its path "abdallamohamed312/in-the-wild-audio-deepfake".

When the dataset finishes its download the program saves its local storage path in a variable

named path. The code displays your dataset location for convenient storage access.

The snippet defines extract_features which utilizes librosa to extract fundamental audio

features from audio files. The multimodal combination returns various audio features by

computing chroma_stft, RMS energy, spectral centroid, rolloff, zero-crossing rate and mean

20 MFCCs (Mel-frequency cepstral coefficients) values. Multiple audio features merge into a

single array which is delivered for additional investigation.

The snippet imports the tqdm library, which is used to display progress bars in loops or tasks.

It helps track the progress of time-consuming operations, like processing multiple audio files.

The process_directory function handles a group of .wav files while extract_features produces

features from individual files which receive real or fake label assignment. This process utilizes

tqdm to display progress for its file iteration while featuring extract_features for returning

extracted feature data.

The snippet takes features from authentic and counterfeit directories which it merges into a list.

A DataFrame structure emerges from the data where column names identify feature identifiers

and labels specify data values. A final step saves the created DataFrame to features.csv before

displaying an extraction confirmation message.

The snippet uses sample to shuffle the dataset for random row restructuring while also resetting

its index positions. The system saves shuffled data to the original CSV file before displaying

ten DataFrame rows via head.

A null value checker in the code works through summing the output from the isnull() function.

The DataFrame's complete data profile becomes more visible because this process identifies

anyAbsent data points.

The snippet uses LabelEncoder to transform dataset labels (applying "real" to 0 and "fake" to

1) before separation into X and y arrays. The data gets separated into distinct arrays which

contain features (X) and labels (y) after this point.

The StandardScaler transforms feature data (X) into a range where values have 0 mean and 1

standard deviation for performance optimization. The data from the standardization process

rests in X_scaled.

This second snippet divides the dataset between training and testing collections through

train_test_split functions that assign 80% training sample and leave 20% for testing. Models

require categorical data so the program converts labels using to_categorical for compatibility.

Logistic regression applies its analytical methods to both dataset training and evaluation phase

in the third section. The training phase processes data from the training data before generating

test predictions which trigger the evaluation of accuracy and precision levels while displaying

the confusion matrix report.

A Random Forest Classifier receives training during the fourth snippet of code. The model

assessment employs accuracy precision and confusion matrix metrics for evaluation. A

confusion matrix heatmap visualization follows the plot for increased understanding.

For the fifth model, a linear-kernel Support Vector Machine (SVM) undergoes training and

assessment. The implementation produces performance estimations through confusion

matrices while also calculating similar statistical measurements.

The sixth section develops and trains an LSTM model to process sequential information. The

sequential processing layers of LSTM and Dense guide the model which is evaluated by

metrics alongside a confusion matrix.

The seventh snippet constructs a CNN model which receives training data from the reformatted

information. The model architecture features Conv1D, MaxPooling1D, Flatten and Dense

layers. Researchers computed the model's accuracy rate and precision together with a confusion

matrix display.

The eighth section demonstrates the use of an XGBoost classifier which receives similar

evaluation conditions. This component evaluates metrics while presenting the confusion matrix

information through a heatmap visualization.

All the models analyzed (including logistic regression and random forest and SVM and LSTM

and CNN and XGBoost) receive a summary assessment via tabulations which facilitate

accuracy and precision measurement comparison with the tabulate library.

CASE2:- FOR DATASET

This snippet mounts Google Drive to Colab, allowing access to files stored on the drive. The

drive.mount('/content/drive') command connects the drive to the Colab environment, making

it accessible at the specified path.

The %cd command changes the working directory to a specific folder in the Google Drive.

Here, it navigates to the deepfake/for-rerecorded folder for accessing the dataset and other files.

This snippet defines paths for the training, testing, and validation datasets. These paths point

to their respective directories in the mounted Google Drive. It organizes the data structure for

easy access.

The extract_features function extracts audio features like MFCCs, chroma, mel spectrogram,

and spectral contrast using Librosa. The load_dataset function processes real and fake audio

files in the specified directory, extracts their features, assigns labels (0 for real, 1 for fake), and

returns them as NumPy arrays for training, testing, and validation.

A CNN model definition and training occurs in this section by utilizing Conv1D and

MaxPooling1D and Dense layers. The model implementation combines binary cross-entropy

loss with accuracy metric for training completion. The trained model operates on extracted

features through which it validates the data contained within the validation dataset.

The snippet develops an LSTM model which sequences two stacked LSTM blocks then adds

subsequent Dense implementations and Dropout functionality. An LSTM-based model

processes sequential information during training using training data while validating

performance through validation set evaluation.

This code uses a combination of CNN and LSTM layers which runs within a single model

structure. Both Conv1D layers extract spatial features from data and LSTM layers process the

occurrence order of data points. Both training and validation processes employ the same

procedure on the datasets provided.

This code section enforce usage of Scikit-learn Random Forest Classifier. The model receives

training from the training dataset then performs validation checks on the validation set to

display accuracy results through the score.

This command installs every needed Python library together with PyTorch and TensorFlow

and Librosa and TQDM in order to get the project environment ready to run.

Using pip this snippet implements library upgrades for TensorFlow and TensorFlow Hub and

TensorFlow IO to their most recent versions. Builder and deployment functionality for

TensorFlow models depends on these libraries.

The evaluate_model function measures accuracy through algorithms and creates a

classification report along with a confusion matrix for any given model. The evaluation toolkit

is applied to assess CNN, LSTM, CNN-LSTM and Random Forest models against the test

dataset.

The plot_confusion_matrix function draws visualization of predictions generated by many

models including CNN and LSTM through a confusion matrix. A Seaborn heat map enables

clear visualization of the data. Each model obtains predicted values which go through

visualization steps.

XGboost installation and import procedures occur simultaneously with classifier training that

follows evaluation through evaluate_model by displaying confusion matrix visualization. This

code block shows how XGBoost operates within the framework.

The training of the Logistic Regression model occurred through Scikit-learn. The modeling

performance is analyzed through accuracy matrices alongside confusion matrices using

evaluate_model and plot_confusion_matrix.

This snippet installs and imports LightGBM, trains a LightGBM model for binary

classification, evaluates its performance, and plots the confusion matrix for results

visualization.

Pandas is used to create a DataFrame summarizing accuracy and precision scores for all

models. The DataFrame is sorted by accuracy to easily identify the best-performing model.

The trained CNN-LSTM model is saved to a file (best_model.pkl) using the pickle library. This

allows the model to be reloaded and used for predictions later without retraining.

This snippet processes a single audio file by extracting features, reshaping the input, and using

the saved model to predict whether the audio is real or fake. It handles errors gracefully with

try-except.

This snippet allows users to upload an audio file in Colab, processes it, and predicts whether

it's real or fake using the saved model. It provides detailed feedback about the uploaded file

and prediction results.

References:

1. Tiwari, A., Dave, R. and Vanamala, M., 2023, April. Leveraging deep learning approaches for

deepfake detection: A review. In Proceedings of the 2023 7th International Conference on Intelligent

Systems, Metaheuristics & Swarm Intelligence (pp. 12-19).

2. Yu, X., Wang, Y., Chen, Y., Tao, Z., Xi, D., Song, S. and Niu, S., 2024. Fake Artificial Intelligence

Generated Contents (FAIGC): A Survey of Theories, Detection Methods, and Opportunities. arXiv

preprint arXiv:2405.00711.

3. Zhang, G., Gao, M., Li, Q., Zhai, W. and Jeon, G., 2024. Multi-Modal Generative DeepFake

Detection via Visual-Language Pretraining with Gate Fusion for Cognitive Computation. Cognitive

Computation, pp.1-14.

4. Bösch, M. and Divon, T., 2024. The sound of disinformation: TikTok, computational propaganda,

and the invasion of Ukraine. New Media & Society, 26(9), pp.5081-5106.

5. Agnew, W., Barnett, J., Chu, A., Hong, R., Feffer, M., Netzorg, R., Jiang, H.H., Awumey, E. and

Das, S., 2024. Sound Check: Auditing Audio Datasets. arXiv preprint arXiv:2410.13114.

6. Nailwal, S., Singhal, S., Singh, N.T. and Raza, A., 2023, November. Deepfake Detection: A Multi-

Algorithmic and Multi-Modal Approach for Robust Detection and Analysis. In 2023 International

Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and

Telecommunication Engineering (RMKMATE) (pp. 1-8). IEEE.

7. Triantafyllopoulos, A., Schuller, B.W., İymen, G., Sezgin, M., He, X., Yang, Z., Tzirakis, P., Liu, S.,

Mertes, S., André, E. and Fu, R., 2023. An overview of affective speech synthesis and conversion in

the deep learning era. Proceedings of the IEEE, 111(10), pp.1355-1381.

8. Opdahl, A.L., Tessem, B., Dang-Nguyen, D.T., Motta, E., Setty, V., Throndsen, E., Tverberg, A. and

Trattner, C., 2023. Trustworthy journalism through AI. Data & Knowledge Engineering, 146, p.102182.

9. Guo, S., Wang, Y., Zhang, N., Su, Z., Luan, T.H., Tian, Z. and Shen, X., 2024. A Survey on Semantic

Communication Networks: Architecture, Security, and Privacy. arXiv preprint arXiv:2405.01221.

10. Ganga, B., Lata, B.T. and Venugopal, K.R., 2024. Object detection and crowd analysis using deep

learning techniques: Comprehensive review and future directions. Neurocomputing, p.127932.

11. Khalid, F., Javed, A., Malik, K.M. and Irtaza, A., 2024. ExplaNET: A Descriptive Framework for

Detecting Deepfakes With Interpretable Prototypes. IEEE Transactions on Biometrics, Behavior, and

Identity Science.

12. Li, K., Lu, X., Akagi, M. and Unoki, M., 2023. Contributions of Jitter and Shimmer in the Voice

for Fake Audio Detection. IEEE Access.

13. Kumar, N. and Kundu, A., 2024. Cyber Security Focused Deepfake Detection System Using Big

Data. SN Computer Science, 5(6), p.752.

14. Raza, M.A., Malik, K.M. and Haq, I.U., 2023. Holisticdfd: Infusing spatiotemporal transformer

embeddings for deepfake detection. Information Sciences, 645, p.119352.

15. Kumar, N. and Kundu, A., 2024. Cyber Security Focused Deepfake Detection System Using Big

Data. SN Computer Science, 5(6), p.752.

