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System Requirement 

System Requirements: 

• Hardware that is used for testing: Quad-core CPU, NVIDIA GPU (GTX 1050+),  

• 8GB RAM in the prescribed system (16GB recommended),  

• 20GB storage recommended while lesser can also work. 

• Software: Python 3.8+, TensorFlow, PyTorch, Librosa, Scikit-learn, XGBoost, LightGBM, 

NumPy, Pandas, Matplotlib, Seaborn,  

• TQDM. 

• Environment: Jupyter Notebook or Google Colab (recommended for GPU/TPU). 

 

The code establishes all required libraries to execute work on deep learning audio projects. The 

code provides options for dealing with files in addition to audio processing through Librosa 

along with data representation using Matplotlib. The codebase includes modules to compute 

statistical values including skewness and kurtosis together with options to divide data into 

training sections and perform embellishment processing via TensorFlow and Keras modules. 

Users build neural networks by employing dense layers together with convolution2d layers and 

lstm layers when using keras in their development. This framework delivers an integrated 

configuration which enables complete audio handling and model training capabilities. 

 

Using the kagglehub library this code retrieves datasets from the Kaggle platform. Kaggle's 

dataset can be located through its path "abdallamohamed312/in-the-wild-audio-deepfake". 

When the dataset finishes its download the program saves its local storage path in a variable 

named path. The code displays your dataset location for convenient storage access. 



 

Using the kagglehub library this code retrieves datasets from the Kaggle platform. Kaggle's 

dataset can be located through its path "abdallamohamed312/in-the-wild-audio-deepfake". 

When the dataset finishes its download the program saves its local storage path in a variable 

named path. The code displays your dataset location for convenient storage access. 

 

The snippet defines extract_features which utilizes librosa to extract fundamental audio 

features from audio files. The multimodal combination returns various audio features by 

computing chroma_stft, RMS energy, spectral centroid, rolloff, zero-crossing rate and mean 

20 MFCCs (Mel-frequency cepstral coefficients) values. Multiple audio features merge into a 

single array which is delivered for additional investigation. 

 

The snippet imports the tqdm library, which is used to display progress bars in loops or tasks. 

It helps track the progress of time-consuming operations, like processing multiple audio files. 

 

The process_directory function handles a group of .wav files while extract_features produces 

features from individual files which receive real or fake label assignment. This process utilizes 



tqdm to display progress for its file iteration while featuring extract_features for returning 

extracted feature data. 

 

 

The snippet takes features from authentic and counterfeit directories which it merges into a list. 

A DataFrame structure emerges from the data where column names identify feature identifiers 

and labels specify data values. A final step saves the created DataFrame to features.csv before 

displaying an extraction confirmation message. 

 

The snippet uses sample to shuffle the dataset for random row restructuring while also resetting 

its index positions. The system saves shuffled data to the original CSV file before displaying 

ten DataFrame rows via head. 

 

A null value checker in the code works through summing the output from the isnull() function. 

The DataFrame's complete data profile becomes more visible because this process identifies 

anyAbsent data points. 

 

The snippet uses LabelEncoder to transform dataset labels (applying "real" to 0 and "fake" to 

1) before separation into X and y arrays. The data gets separated into distinct arrays which 

contain features (X) and labels (y) after this point. 



 

The StandardScaler transforms feature data (X) into a range where values have 0 mean and 1 

standard deviation for performance optimization. The data from the standardization process 

rests in X_scaled. 

 

This second snippet divides the dataset between training and testing collections through 

train_test_split functions that assign 80% training sample and leave 20% for testing. Models 

require categorical data so the program converts labels using to_categorical for compatibility. 

 

Logistic regression applies its analytical methods to both dataset training and evaluation phase 

in the third section. The training phase processes data from the training data before generating 

test predictions which trigger the evaluation of accuracy and precision levels while displaying 

the confusion matrix report. 

 



A Random Forest Classifier receives training during the fourth snippet of code. The model 

assessment employs accuracy precision and confusion matrix metrics for evaluation. A 

confusion matrix heatmap visualization follows the plot for increased understanding. 

 

 

For the fifth model, a linear-kernel Support Vector Machine (SVM) undergoes training and 

assessment. The implementation produces performance estimations through confusion 

matrices while also calculating similar statistical measurements. 

 

The sixth section develops and trains an LSTM model to process sequential information. The 

sequential processing layers of LSTM and Dense guide the model which is evaluated by 

metrics alongside a confusion matrix. 

 



 

The seventh snippet constructs a CNN model which receives training data from the reformatted 

information. The model architecture features Conv1D, MaxPooling1D, Flatten and Dense 

layers. Researchers computed the model's accuracy rate and precision together with a confusion 

matrix display. 

 

The eighth section demonstrates the use of an XGBoost classifier which receives similar 

evaluation conditions. This component evaluates metrics while presenting the confusion matrix 

information through a heatmap visualization. 



 

All the models analyzed (including logistic regression and random forest and SVM and LSTM 

and CNN and XGBoost) receive a summary assessment via tabulations which facilitate 

accuracy and precision measurement comparison with the tabulate library. 

CASE2:- FOR DATASET  

 

This snippet mounts Google Drive to Colab, allowing access to files stored on the drive. The 

drive.mount('/content/drive') command connects the drive to the Colab environment, making 

it accessible at the specified path. 

 

The %cd command changes the working directory to a specific folder in the Google Drive. 

Here, it navigates to the deepfake/for-rerecorded folder for accessing the dataset and other files. 

 

This snippet defines paths for the training, testing, and validation datasets. These paths point 

to their respective directories in the mounted Google Drive. It organizes the data structure for 

easy access. 



 

The extract_features function extracts audio features like MFCCs, chroma, mel spectrogram, 

and spectral contrast using Librosa. The load_dataset function processes real and fake audio 

files in the specified directory, extracts their features, assigns labels (0 for real, 1 for fake), and 

returns them as NumPy arrays for training, testing, and validation. 

 

A CNN model definition and training occurs in this section by utilizing Conv1D and 

MaxPooling1D and Dense layers. The model implementation combines binary cross-entropy 



loss with accuracy metric for training completion. The trained model operates on extracted 

features through which it validates the data contained within the validation dataset. 

 

 

The snippet develops an LSTM model which sequences two stacked LSTM blocks then adds 

subsequent Dense implementations and Dropout functionality. An LSTM-based model 

processes sequential information during training using training data while validating 

performance through validation set evaluation. 

 

This code uses a combination of CNN and LSTM layers which runs within a single model 

structure. Both Conv1D layers extract spatial features from data and LSTM layers process the 

occurrence order of data points. Both training and validation processes employ the same 

procedure on the datasets provided. 

 

This code section enforce usage of Scikit-learn Random Forest Classifier. The model receives 

training from the training dataset then performs validation checks on the validation set to 

display accuracy results through the score. 

 

 



 

This command installs every needed Python library together with PyTorch and TensorFlow 

and Librosa and TQDM in order to get the project environment ready to run. 

 

Using pip this snippet implements library upgrades for TensorFlow and TensorFlow Hub and 

TensorFlow IO to their most recent versions. Builder and deployment functionality for 

TensorFlow models depends on these libraries. 

 

The evaluate_model function measures accuracy through algorithms and creates a 

classification report along with a confusion matrix for any given model. The evaluation toolkit 

is applied to assess CNN, LSTM, CNN-LSTM and Random Forest models against the test 

dataset. 

 



 

The plot_confusion_matrix function draws visualization of predictions generated by many 

models including CNN and LSTM through a confusion matrix. A Seaborn heat map enables 

clear visualization of the data. Each model obtains predicted values which go through 

visualization steps. 

 

 

XGboost installation and import procedures occur simultaneously with classifier training that 

follows evaluation through evaluate_model by displaying confusion matrix visualization. This 

code block shows how XGBoost operates within the framework. 

 



 

The training of the Logistic Regression model occurred through Scikit-learn. The modeling 

performance is analyzed through accuracy matrices alongside confusion matrices using 

evaluate_model and plot_confusion_matrix. 

 

This snippet installs and imports LightGBM, trains a LightGBM model for binary 

classification, evaluates its performance, and plots the confusion matrix for results 

visualization. 

 



Pandas is used to create a DataFrame summarizing accuracy and precision scores for all 

models. The DataFrame is sorted by accuracy to easily identify the best-performing model. 

 

The trained CNN-LSTM model is saved to a file (best_model.pkl) using the pickle library. This 

allows the model to be reloaded and used for predictions later without retraining. 

 

This snippet processes a single audio file by extracting features, reshaping the input, and using 

the saved model to predict whether the audio is real or fake. It handles errors gracefully with 

try-except. 

 



 

This snippet allows users to upload an audio file in Colab, processes it, and predicts whether 

it's real or fake using the saved model. It provides detailed feedback about the uploaded file 

and prediction results. 
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