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Abstract 
Deepfake audio is a severe danger to digital communication since the AI used to create fakes can imitate 

voices and intonations at a high level of accuracy. This research fits the current gaps in the detection 

framework focusing on signal processing and deep learning as a preferred, more efficient methodology. 

Moreover, Mel-Frequency Cepstral Coefficients (MFCCs) and performance metrics (jitter and 

shimmer) having been incorporated into convolutional (CNN) and recurrent (LSTM) neural network 

would help the framework detect both the temporal and spectral changes in power audio. The study 

compares multiple models across various datasets: XGBoost outperforms others with clean audio 

database of ‘In-the-Wild’, 99.20% accuracy; CNN+LSTM on noisy audio database: Fake-or-Real, 69% 

precision. In improving the detection performance, preprocessing and integration of different modalities 

contribute well toward scalability and generalization on other novel deepfake generation algorithms. 

Realization in near real-time through an API recognizes the practical relevance of the application of the 

framework. This work lays the groundwork for adaptive, scalable audio deepfake detection systems that 

are necessary in emerging trust and secure societies. 

Research Questions 
RQ1: How can signal processing techniques be optimized to extract features that effectively distinguish 

genuine audio from deepfake audio? 

RQ2: What deep learning architectures are most effective for capturing temporal and spectral 

characteristics of manipulated audio signals? 

RQ3: How can the proposed framework ensure generalization across different deepfake generation 

techniques and unseen datasets? 

Objective  

The objective of this research is thus to design a strong and adaptive framework for detecting 

audio-based deepfakes using signal processing integrated deep learning framework. The main 

goals are to achieve the best feature extraction with MFCCs, jitter, shimmer to get close 

acoustic differences, to develop better deep learning architectures like CNNs, LSTMs, and 

combined models to increase detection rates and to produce a generalized solution when tested 

on different datasets and the different approaches to creating deepfakes;  limiting the 

construction of a real-time API that will protect online communication services. 
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Chapter 1: Introduction 
Due to the progressive development of artificial intelligence there are both colorful innovations and, 

unfortunately, great threats, for example deepfakes. Being one of the most advanced forms of 

application AI deep fake can manipulate audio, video, and image to counterfeit personalities. The threat 

is particularly most apparent with audio-based deepfakes whose sound capabilities are precise that 

distinguishing them from original content is difficult especially for casual users.  

 

Figure 1: An example of the deepfake. This can be found with the audio and the video (Source: 

NewScientist) 

Link to a real time scam video: Mukesh Ambani deep fake video with voice over 

Considering this situation, the identification of such falsifications has emerged as one of the increasing 

needs in the modern informational environment. Here’s an overview of this study’s approach, 

emphasizing the current challenges and solutions: 

• Exponential Growth in AI Manipulation: Since basic tools of AI are available, deepfakes are now 

easier to produce – a problem for security on all forms of media (Li et al., 2023; Kumar & Kundu, 

2024). 

https://www.youtube.com/watch?v=vOtpI-HdCwc


• Unique Risks of Audio Deepfakes: While compared to image deepfakes, speech fakes are much 

more dangerous due to their ability to copy not only voices, but also tones, intonations, per 

Centowski, and many other things, which are more difficult to notice (Raza et al., 2023). 

• Real-World Consequences: From fake ID usage for phone con jobs to social engineering and ID 

theft the effects cover all the way from monetary scams to the undermining of credibility in virtual 

interactions. 

With respect to metrics derived from time intervals between signal samples like jitter and shimmer 

which are characteristic of instability in synthetic audio, one is able to make very fine discriminations 

between vocal artifacts. Even these flowless variations of the pitch and tone of any material enrich the 

expressions of their forgery (Almestekawy et al., 2024; Li et al., 2023). 

 

Figure 2: Example of different sampling in case of deep audio fakes detection (Almestekawy et al., 

2024) 

1.1 Research Problem 
The recent appearance of audio deepfakes has put a new security threat in front of social networks and 

web-services. Deepfake audio can be used to mimic the voices of people, to disseminate fake news, or 

to perpetrate identity theft jeopardizing the credibility of the existing modes of digital communication. 

Current detection algorithms provide low generalization capabilities across the diverse deepfake 

generation approaches and do not consider the improvement of methods in fake audio construction. The 

main research issue is embedded in how and what kind of architecture can be made to have high TPR, 

low FPR, be simultaneously scalable and flexible enough to accommodate increasing volumes of audio 

deepfakes. Deep learning is combined with signal processing to contain temporal and frequency 

information of the sound; this enhances the signal’s reliability and sensibility to detection (Khalid et 

al., 2024). The integration of spatial representations (deep learning features) and temporal variations 

(signal processing metrics) allow even the finest manipulations to be detected at even greater levels of 

efficiency (Kumar & Kundu, 2024). 

1.2 Motivation 
The problem of audio deepfakes is quickly growing, and its consequences are prospective threats to 

privacy, businesses, and society as a whole. It has also resulted to so many incidences of fraud and 

identify theft thus making such technologies vulnerable in need of detection methods that are reliable. 

This research is motivated by the need to defend digital communication platforms from threats such as 

jamming through the use of current developments in signal processing and; deep learning. Their 

integration shall lead to a construction of a enhanced detection procedure that can identify even 

increasingly minor manipulations in audio, to protect the safety of social media and web platforms. 



1.3 Research Background 

In the last few years, scientists tried to review a number of methods to identify the deepfakes audios 

where feature sets such as MFCC and spectro-temporal analysis comprehended. Research has also 

explored employing deep learning models as CNNs and RNNs for analysing temporal and spectral cues 

that exist in synthesised sound [3]. However, these methods present a low generalization to newly 

developed deepfake generation methods or unprecedented methods. Despite the development of various 

signal processing methods and state of the art machine learning algorithms rather than applying both 

approaches provide a promising way for improving detection accuracy and making it less sensitive to 

noise [2]. 

1.4 Research Solution 
In this research, a security application that combines signal processing and deep learning frameworks 

to overcome the drawbacks of existing audio deepfake detection is proposed. The solution employs the 

state-of-the-art feature extraction methods, MFCC and spectral contrast, along with transformers and 

convolutional models’ deep learning. As a temporal and spectral analysis, the framework should be able 

to detect manipulations which are deepfake audio inherently possesses. The solution also employs 

rigorous preprocessing and hyperparameters tuning techniques for better scalability in a different pre-

processing environment and sets of real-life scenarios. 

Chapter 2: Literature Review 

2.1 A security application for social media and web platforms to identify the sound 

based deepfakes using signal processing infused deep learning framework 
Due to the technology development in deep learning, synthetic media which is also referred to as 

deepfake has risen tremendously. Whereas original risks were focused on the video deepfakes, which 

modify the visual content, new kinds of deepfake attacks, audio deepfakes, are being considered as 

potentially malicious kinds of deepfakes at the moment. Voice clones, which refer to spoofing using 

the respective AI to create realistic audio voices associated with real people, apply various ramifications 

of phishing, fraud, and identity theft. These audios can be used by bad actors to mimic someone’s voice, 

evade voice authentication, or manipulate people or firms in a range of personal or business settings 

(Tiwari et al., 2023). 

2.2 The Growing Threat of Audio Deepfakes 
Much of the work in deepfake detection has thus far been on videos, but audio deepfake is even more 

dangerous because it can convincingly fool both human and artificial intelligence. As an example, the 

real-time attackers can mimic the voice of the CEO or some other authoritative personnel to perform 

fictitious transactions, which has been observed in specific research works. This underlines the 

importance of the improved detection methods more focused on the audio deepfakes as the future 

research study conducted by (Agnew et al., in 2024). Unlike modifying of the messages in visual media, 

detecting the audio deepfakes one needs to analyze not only the content of the speech but also the 

acoustic aspect of the message, so the detection is harder. 

One major problem is that audio deepfakes can easily defeat current voice authentication solutions that 

are commonly deployed for banking, calling center and security applications. Previous techniques of 

vocal recognition involve aspects like elevation, tone, and rhythm by basically mimicking the exact 

pattern through use of AI trained on large audio platforms (Triantafyllopoulos et al., 2023). Such 

elaborated models hint at the necessity of increasing the security level and developing the detection 

method researches and ways (Yu et al., 2024). 



2.3 Deepfake Detection Techniques 
A lot of research has been done on the deep fake detection techniques where authors have used CNN 

with random forest approaches. Among them, the one that combines CNNs with Recurrent Neural 

Networks (RNN) for temporal inconsistencies in videos and audios turned out to give better detection 

ratios. In this method, it is shown that temporal features—the variations in audio or video data across 

time—have significant importance in detecting deepfakes. Through analysing these disparities, the 

model will be able to differentiate the authentic media content from the forged content better than 

conventional methods proposed by (Nailwal et al., 2023). 

Subsequent studies have extended the entropy-based costing in more detail especially when combined 

with CNNs and RNNs. The entropy based methods calculate the level of disorder or randomness of a 

system and thus, in case of deepfake detection they give an estimate of the extent of manipulation done. 

Several researchers have revealed that through using entropy based methods, one and the same results 

can be achieved when using benchmark data sets, thought provoking researchers to consider the other 

options as possible for increased general use in real situations (Yu et al., 2024). 

Besides temporal analysis and entropy-based methods, other signal processing including Mel-frequency 

cepstral coefficients (MFCC), chroma short-time Fourier transform (STFT), and spectral contrast, have 

also been integrated with machine learning models for detecting audio deepfakes. MFCCs use short 

frames of audio data and are speaker specific; chroma STFT and spectral contrast give information 

about harmonic content and pitch shifts in the audio signal. When combined with deep learning 

approaches, such as CNNs and random forests, these signal processing features appear to hold much 

potential for identifying highly complex audio manipulations (Zhang et al., 2024). 

 

Figure 3: An explanation of how the features extraction process help in the deep fake detection (Zhang 

et al., 2024) 

[7]Taxonomy of deep emotional speech synthesis approaches. Approaches can be primarily 

differentiated according to the following ways: (a) How many steps of the synthesis they incorporate, 

which is in term determined by their input and output, accordingly categorised as end-to-end (E2E), 

text-toemotional-features (TTEF), or emotional voice conversion (EVC) methods. (b) How control is 

achieved, as well as the level of granularity that this control can achieve. (c) For EVC methods, on 

whether they use parallel or non-parallel data. (d) For non-parallel data EVC methods, based on whether 

they rely on disentangling speech components or directly mapping features to capture the target 

emotion, as all parallel data methods use the latter form of conversion; TTEF methods instead primarily 

fall under the style-transfer category 

2.4 Challenges in Multimodal Deepfake Detection 
Unlike previous works that rely on the unimodal deepfake detection, whether based on images or text, 

the growth of the multimodal deepfakes will serve as a potent challenge. Multimedia deepfakes contain 

some components of two different forms of media; video and audio or video and text or audio and text 



making them harder to identify. One of the chief challenges germane to fusion of information from 

different modalities is how to cross-reference information in one modality puts in another to point out 

disparities (Zhang et al., 2024). 

One of the approaches developed toward solving this problem is the Consistency-Checking Network 

(CCN). This is like human decision-making because CCN breaks-down incoming stimuli into different 

modalities, and then compares the stimuli for their consistency. For instance, when a deepfake video 

has sound, the CCN will check whether the speaker’s lips align with the words spoken, tiny irregularities 

that signify that deepfake is at play (Tiwari et al., 2023). 

Likewise, HAMMER which has hierarchical multimodal manipulation reasoning transformer has been 

put forward to assess the interaction between the modalities. The modeling capability of HAMMER 

enables it to understand relations between various media types and is a better depiction of the 

manipulation used. This approach assists to meet increased complexity of deep fake work especially 

when they gets to be multimodal deep fakes (Nailwal et al., 2023). 

2.5 The Role of Social Media Platforms 
There are six types of disinformation that have been identified to exist in TikTok, these ones include; 

low volume disinformation, satire/parody, manipulated content and lastly fake content. It was 

concluded that recommendation algorithm of the platform based on the “For You” page helps to 

increase the circulation of the content related to the conflict areas, such as Ukraine, which may involve 

the fake or misleading information. This amplification may be especially ill-suited when deepfakes are 

present, given that the platform is centered around trends and audio-based engagement (Bösch and 

Divon, 2024). 

2.6 Future Directions for Deepfake Detection 
The creation of deepfake increases the complexity of generation methods, and therefore, strenghtens 

the need to come up with improved detection methods. Thus, without question, future work can easily 

get ahead on identification and subsequent eradication of deepfake effectively, additional studying 

needs to consider deepfake technologies as complex entities that must be defeated using versatile, 

efficient and scalable solutions. This entails designing detectors that are robust to both the unimodal 

and multimodal deepfakes and the ability of the detection algorithms to respond to such new forms of 

manipulation from (Ganga et al., 2024). 

The common goal for countering deepfakes will require a combined effort of working researchers, 

policymakers, and social media platforms apart from developments in technology. This paper has 

indicated some of the potential harms that are likely to arise from synthetic media including identity 

theft, political manipulation, scams, and cyberbullying (Opdahl et al., 2023). 

2.7 Research on detecting sound based deepfakes using signal processing infused deep 

learning framework 
The paper by (Khalid et al., 2024) presents ExplaNET, a framework to improve deepfake detection 

models interpretability through interpretable prototypes of manipulated facial features. This approach 

also enables the model to indicate some features in the manipulated images while doing so in a more 

comprehensible and recognizable manner to users. In this way ExplaNET robust improves user trust, a 

key component for the application of these systems in real-world scenarios.  

In the audio domain Li et al. (2023) consider two pitch-contour within-phoneme variations as primary 

for detecting deepfakes: “jitter” and “shimmer.” The authors of the work state that due to significant 

differences of these voice characteristics in real and synthetic audio they can be used as markers of 

audio manipulation. Combined with jitter and shimmer, other acoustic measures raise the level of true 

synthetic audio distinction in their method. This methodology underlines the actual need to mask the 



differences between exact audio features in fighting deepfake audio, especially in the applications that 

need actual and precise detection (Li et al., 2023). 

Deepfake detection system proposed by (Kumar and Kundu, 2024) based on big data techniques 

primarily to focus on cybersecurity and is scalable for social media platforms. Their system uses these 

two categories of algorithms whereby the big data frameworks are used on large amounts of media 

contents to enable accurate live monitoring and threat detection which is crucial to social media 

applications. This approach solves for scalability, another issue that arises in high-throughput 

environments whereby, more data requires a faster rate of processing in order to maintain cybersecurity 

and platform sustainability. 

In this study, Raza et al. (2023) introduce HolisticDFD, a deepfake detection model based on ST-

Transformer where spatiotemporal features in videos are learned using transformer embeddings. By 

doing this, their model can identify manipulations related to frames that consist of a video, providing a 

holistic detection of deepfake videos. It becomes apparent that this method does a good job of 

incorporating the image-based features with temporal variations and constraints, a problem of static 

image models that seldom consider manipulations over time. I have shown that HolisticDFD’s 

spatiotemporal nature leads to a better estimation of content at deeper levels and a better identification 

of deep fake videos (Raza, Malik, & Haq, 2023). 

Almestekawy et al. (2024) extend the discussion of video-based detection by integrating spatiotemporal 

texture analysis technique with deep learning. Their proposed method designed specifically for 

deepfake detection in videos’ is founded on the concept of texture analysis over the frames of the 

original videos and the CNNs to extract deep features within those frames. The fusion of spatiotemporal 

texture and deep learning feature provides the model with a good and balanced feature which enables 

the model to detect if a video is real or a deepfake. They found that combining spatiotemporal dynamics 

with the spatial features’ extraction enhances the model’s capacity to detect slight manipulations in 

videos, and therefore they suggested that the current conventional spatial and temporal methods are 

inadequate (Almestekawy, Zayed, & Taha, 2024). 

2.8 Research Gap 
Despite significant advancements in deepfake detection, the focus has primarily been on video-based 

deepfakes, leaving audio-based deepfakes relatively underexplored. This is concerning given the 

increasing sophistication and malicious potential of audio manipulations, such as voice cloning, which 

can bypass voice authentication systems and enable identity theft, fraud, and phishing attacks. Current 

approaches to detecting audio deepfakes often struggle with the complexities of analyzing acoustic 

features and temporal variations inherent in audio signals. Additionally, the rise of multimodal 

deepfakes, which combine multiple forms of media like audio, video, and text, introduces further 

challenges, as most existing models are unimodal and fail to address the interdependencies between 

different modalities. Scalability remains another critical issue, particularly in real-time applications on 

platforms like social media, where the high volume of data demands faster and more efficient 

processing. Furthermore, the interpretability of existing detection models is limited, reducing user trust 

and their practical applicability. Finally, the rapid evolution of deepfake generation techniques 

continues to outpace current detection capabilities, necessitating the development of robust and 

adaptable frameworks. 

2.9 Research Contribution 
This research addresses critical gaps in audio deepfake detection by proposing a novel signal 

processing-infused deep learning framework. Advanced techniques like Mel-Frequency Cepstral 

Coefficients (MFCCs) and acoustic markers such as jitter and shimmer are combined with deep learning 

architectures to capture subtle temporal and spectral manipulations in audio. For example, jitter, a 

measure of pitch variability, is calculated as: 



𝐽𝑖𝑡𝑡𝑒𝑟 =  
1

𝑁 − 1
 ∑

|𝑇𝑖+1 − 𝑇𝑖|

𝑇𝑖

𝑁−1

𝑖=1

 

where 𝑇𝑖 is the fundamental period in frame i. This helps identify synthetic alterations in audio signals. 

To address the complexity of multimodal deepfakes, a Consistency-Checking Network (CCN) is 

introduced, ensuring alignment between modalities such as audio and video. The system minimizes 

inconsistency through a loss function: 

𝐿𝐶𝐶𝑁 = ||𝐸𝑎 − 𝐸𝑣||
2

2
 

where Ea and Ev represent audio and video embeddings, respectively. By incorporating scalable 

architectures and interpretable models, this framework enhances detection accuracy and real-time 

applicability, particularly in high-throughput environments like social media platforms. 

Chapter 3: Methodology 
This work utilizes the two already existing datasets called ‘In-the-Wild’ and Fake-or-Real (FoR) in 

creating a more reliable and encyclopedical framework of detecting fake audio deepfakes. Each dataset 

has its own difficulties and features and the features, which are specific for the dataset, allow testing 

machine learning and deep learning models under different circumstances, clean audio samples and re-

recorded distorted audio. The following are the process of the methodology; preparation and 

preprocessing of the dataset, creating the model, evaluating the performance of the model and the 

deployment of the model. 

3.1 Dataset Descriptions 
3.1.1 ‘In-the-Wild’ Dataset 
This dataset contains 20.8 hours of real audio and 17.2 hours of fake audio, with a total of 19,963 real 

files and 11,816 fake files. The audio samples, derived from social media and video-sharing platforms, 

represent diverse real-world conditions. On average, each speaker has 23 minutes of real and 18 minutes 

of fake audio. This dataset is ideal for evaluating models in scenarios mimicking real-world deployment 

environments. 

  
 

Figure 4: In the Wild Dataset example 

 

3.1.2 Fake-or-Real (FoR) Dataset 
The ‘for-rerec’ subset of the FoR dataset is used in this study. It comprises audio samples processed 

through voice channels (e.g., phone calls), introducing distortions and noise that simulate real-world 

challenges. This dataset offers 195K audio samples, split across categories of real and fake speech 

synthesized using advanced text-to-speech (TTS) models like Deep Voice 3 and Google Wavenet. It 

includes unique subsets such as re-recorded and normalized audio, allowing the study to train models 

for robust detection. 



 
 

Figure 5: FoR Dataset example 

 

3.2 Data Preprocessing 
3.2.1 Feature Extraction 

 

Figure 6: Features Extraction from the sound signals process (Source: Towards Data Science) 

Chroma Short-Time Fourier Transform (Chroma STFT): This feature used to describe the 

harmonic or Chroma STFT, Spectral Centroid, Spectral Rolloff-related content of audio and helps 

analyze Chroma STFT, Spectral Centroid, Spectral Rolloff-related patterns. 

Root Mean Square (RMS): Indicates the intensity of the audio signal. It calculates the average power 

of the waveform over time. 

Spectral Centroid: This identifies the ‘centre of mass’ of the sound spectrum, indicating brightness of 

the audio. 

Spectral Rolloff: It helps identify how the energy is distributed in the spectrum. 

Zero-Crossing Rate: This feature is used to measure the number of times the audio waveform crosses 

the zero line in a defined time period. 

Mel-Frequency Cepstral Coefficients (MFCCs): Here, we calculate 20 coefficients per audio file that 

summarizes essential tonal quality and texture aspects of the audio. These coefficients represent the 

short-term energy patterns of sound. 

3.2.2 Standardization and Label Encoding 
Features were standardized to ensure uniform scaling with a mean of 0 and a standard deviation of 1. Labels 

were encoded numerically as 1 for real audio and 0 for fake audio, ensuring compatibility with machine 

learning models. 

3.2.3 Dataset Splitting 
For the ‘In-the-Wild’ Dataset, Split into training (80%) and test (20%) sets while in case of FoR 

Dataset, Split into training (70%), validation (15%), and test (15%) sets for robust evaluation. 



3.3 Machine Learning and Deep Learning Models 
Logistic Regression is a statistical model used for binary classification. It predicts probabilities using 

a logistic (sigmoid) function, making it suitable for problems with linearly separable data. While simple 

and interpretable, it struggles with non-linear relationships unless features are carefully engineered. 

 

Figure 7: Illustration of Logistic Regression with the use of sigmoid function (Source: Wikipedia) 

Random Forest is an ensemble learning technique that combines multiple decision trees to improve 

performance. By training trees on random subsets of data and features, it handles non-linear data well 

and reduces overfitting through averaging, though it can be computationally intensive for large datasets. 

 

Figure 8: Illustration of Random Forest (Source: Geeks For Geeks) 

XGBoost is a gradient boosting framework that builds decision trees sequentially to minimize errors. 

It’s highly efficient and accurate, especially on structured data, but requires careful tuning to avoid 

overfitting, especially on small datasets. 

 

Figure 9: XGBoost (Source: Nvidia) 



LightGBM is another gradient boosting framework, optimized for speed and memory efficiency. 

Unlike XGBoost, it splits trees leaf-wise and supports categorical features natively, making it faster on 

large datasets, though it may underperform on smaller ones. 

 

Figure 10: Flow diagram for Light Gradient Boosting (Source: Javapoint) 

CNNs (Convolutional Neural Networks) excel at tasks involving spatial data like images. They 

extract hierarchical features using convolutional and pooling layers, followed by classification layers. 

While they deliver state-of-the-art results in image analysis, they demand large datasets and high 

computational power. 

 

Figure 11: CNN architecture (Source: Deeplearning.io) 

LSTMs (Long Short-Term Memory Networks) are specialized for sequential data, such as time series 

and text. They address the limitations of traditional RNNs by retaining long-term dependencies, though 

they are slower to train and may face challenges with very long sequences. 

 

Figure 12: LSTM Cell (Source: Researchgate) 



CNN + LSTM models combine the strengths of CNNs and LSTMs. CNNs extract spatial features, 

which are then passed to LSTMs for learning temporal patterns. This hybrid architecture is ideal for 

tasks like video analysis but comes with increased computational complexity. 

 

Figure 13: CNN based LSTM architecture (Source: Research gate) 

3.4 Performance Evaluation 
The models were evaluated using metrics such as accuracy, precision, recall, and F1-score. The ‘In-

the-Wild’ dataset allowed higher accuracy across models due to its clean audio samples, while the 

FoR dataset highlighted the need for robust models capable of handling distortions and noise. 

 

Figure 14: Confusion Matrix (Source: Research gate) 

To evaluate the performance and effectiveness of our models in classifying Deepfake audio, we 

employed two primary metrices:  

Accuracy: It measures the overall correctness of the model across all classes. It indicates the fraction 

of correct predictions made by the model. In this task of binary classification, achieving high accuracy 

is very important so that true samples as well as manipulated audio samples can be correctly labeled 

and misclassifications minimized. 

Accuracy = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
 

Precision: Precision is a metric that measures how often a machine learning model correctly predicts 

the positive class. For audio classification in deepfakes, high precision is highly necessary to ensure 

the majority of cases reported as ‘fake’ are actually fraudulent. 

                       Precision = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 



Chapter 4: Implementation 

 

Figure 15: Implementation Framework for Deepfakes detection using the audio samples 

The implementation phase of this study involves the development, training, and evaluation of multiple 

machine learning and deep learning models for detecting audio deepfakes using two datasets: ‘In-the-

Wild’ and Fake-or-Real (FoR). The implementation pipeline was meticulously designed to handle the 

unique challenges posed by both datasets, ensuring robust and scalable model development. 

4.1 Dataset Preparation 

Both datasets were preprocessed to ensure consistency and usability: ‘In-the-Wild’ Dataset: Audio 

recordings were processed to extract key features like Chroma STFT, Spectral Centroid, MFCCs, 

and RMS, capturing spectral and temporal properties critical for distinguishing real and fake audio. The 

dataset was split into training (80%) and testing (20%) sets. Fake-or-Real (FoR) Dataset: The ‘for-

rerec’ subset was used due to its real-world relevance, with distortions and noise mimicking conditions 

such as phone calls. Similar features were extracted, and the dataset was divided into training (70%), 

validation (15%), and testing (15%) sets. Both datasets underwent standardization, ensuring feature 

values had a mean of 0 and a standard deviation of 1. Labels were encoded numerically (1 for real audio 

and 0 for fake audio). 

4.2 Data Pre-Processing 
The data preprocessing focused on extracting important audio features to describe each file.  

These features include: 



 

Figure 16: Features Extraction Process flow 

4.2. Model Development 
Using Machine Learning Models: Logistic Regression: Implemented as a baseline, Logistic 

Regression modeled the linear relationship between features and class labels. It achieved 94.83% 

accuracy on the ‘In-the-Wild’ dataset but struggled with the distorted FoR dataset, achieving only 58% 

accuracy. Random Forest: An ensemble model leveraging 100 decision trees achieved 98.28% 

accuracy on the clean ‘In-the-Wild’ dataset but faced challenges with distorted audio, achieving 60% 

accuracy on the FoR dataset. XGBoost: The gradient boosting algorithm achieved 99.20% accuracy 

on the ‘In-the-Wild’ dataset, making it the best performer on clean audio. However, it achieved only 

47% accuracy on the FoR dataset, indicating difficulty with distortions. 

Using Deep Learning Models: Convolutional Neural Networks (CNNs): CNNs were designed to 

capture local spectral patterns in audio. They achieved 98.23% accuracy on the ‘In-the-Wild’ dataset 

and 58% accuracy on the FoR dataset. Long Short-Term Memory Networks (LSTMs): LSTMs 

modeled temporal dependencies, achieving 95.12% accuracy on the ‘In-the-Wild’ dataset and 63% 

accuracy on the FoR dataset. Their sequential modeling capability improved robustness against 

distortions. Hybrid Model (CNN+LSTM): This model combined CNNs for feature extraction and 

LSTMs for temporal modeling. It achieved 69% accuracy on both datasets, demonstrating consistent 

performance across clean and distorted audio. 

Using Additional Models: LightGBM: Achieved moderate performance with 49% accuracy on the 

FoR dataset, reflecting its efficiency on structured datasets. Logistic Regression: Served as a baseline 

model, providing a strong starting point for feature evaluation. 

4.3 Training and Evaluation 
Each model was trained on the preprocessed datasets using relevant hyperparameters: Logistic 

Regression: Trained using the fit() method from scikit-learn, with predictions evaluated using  accuracy 

and precision metrics. Random Forest and XGBoost: Ensemble models were optimized to handle the 

diversity of features, with Random Forest achieving better results on clean audio and XGBoost 

excelling in gradient-based learning. CNN and LSTM Models: Deep learning models were 

implemented using TensorFlow/Keras, with Adam optimizer and binary cross-entropy loss. Training 

involved 10 epochs with a batch size of 32, monitoring loss and accuracy trends to prevent overfitting. 

Hybrid CNN+LSTM: Combined architectures to leverage both spatial and temporal feature extraction, 

resulting in robust performance across datasets. 



Chapter 5: Result and analysis 

Case 1: Using In the Wild dataset 

 

 

 
Figure 17: Confusion Matrix comparison of (a) Logistic Regression (b) Random Forest Classifier (c) 

Support Vector machines (d)LSTM (e) CNN (f) XGBoost 

 

From the confusion matrix of the logistic regression model on ‘In-the-Wild’ dataset, it is seen that 6028 

out of the total 6356 test samples have been correctly classified, achieving an accuracy of 94.84%. From 



the confusion matrix of the Random Forest Classifier model on ‘In-the-Wild’ dataset, it is seen that 

6247 out of the total 6356 test samples have been correctly classified, achieving an accuracy of 98.29%. 

From the confusion matrix of the SVM model on ‘In-the-Wild’ dataset, it is seen that 6042 out of the 

total 6356 test samples have been correctly classified, achieving an accuracy of 95.06%.  

 

 
Figure 18: Loss and Accuracy Curved over Epochs for the LSTM model 

 

This graph shows the progression of training and test accuracy over epochs. Initially, in epochs 0 to 1, 

the model has low training accuracy since it's trying to learn intrinsic patterns in the data, whereas it 

has a much faster improvement for test accuracy which means it learns the overall trends very quickly. 

In the middle phase (epochs 1 to 3), train accuracy is steady due to the learning of more accurate 

representations by the model, and test accuracy also rises a little beforehand than train accuracy, which 

indicates that this model generalizes well and is not overfitting. For the final stage, epoch 3 through 

epoch 4, learning continues to improve but at a slower pace, indicating that the model is fine-tuning its 

learning process. The second graph illustrates how the losses on the training and test cases progress to 

decrease over epochs as the model learns. The train loss is high at first, meaning many errors during 

training but test loss drops rapidly, indicating that the model is very well capturing general patterns. 

Both the losses drop steadily as training progresses onward, but test loss stays a little lower than the 

train loss, meaning good generalization without overfitting. In the final stages, the training loss 

decreases more slowly where the model has improved its knowledge. The test loss remains at a lower 

value, which indicates that the model is doing very well on new data. This steady decrease in loss shows 

that the model is well-trained and stable. 

 

From the confusion matrix of the SVM model on ‘In-the-Wild’ dataset, it is seen that 6046 out of the 

total 6356 test samples have been correctly classified, achieving an accuracy of 95.12% which is 

marginally better than SVM model. 

  

Figure 19: Accuracy and Loss curves for the CNN model over the epochs 



The accuracy graph demonstrates that both the training and testing accuracies for the CNN model 

steadily improved over the course of 5 epochs. Initially, both accuracies started around 0.94 and quickly 

increased, with testing accuracy rising slightly faster than training accuracy. By the third epoch, both 

accuracies were close to 0.98, and they stabilized by the fourth epoch, indicating that the model was 

learning effectively from the training data and generalizing well to the test data. The overall trend shows 

that the model achieved high accuracy without overfitting, maintaining a consistent performance on 

both the training and testing sets. This loss graph depicts the amount of error, or loss, of the CNN model 

for the training data (blue line) and the testing data (orange line) over the course of 5 epochs of training 

steps. The training loss is high at first but drops drastically as the model starts matching the data. In any 

case, the test loss also goes down fairly well, showing the model does better on new data it hasn't seen 

yet. The final lines come together and stabilize, meaning that it's learned well and not overfitting. 

Overall, the steady drop in both losses, indicating that the model is doing a good job. From the confusion 

matrix of the CNN model on ‘In-the-Wild’ dataset, it is seen that 6244 out of the total 6356 test samples 

have been correctly classified, achieving an accuracy of 98.24%. From the confusion matrix of the 

XGBoost model on ‘In-the-Wild’ dataset, it is seen that 6305 out of the total 6356 test samples have 

been correctly classified, achieving an accuracy of 99.20% which is best among all the models. 

Table 2: Precision and Accuracy comparison of all models for Wild dataset  

 

MODEL ACCURACY PRECISION 

Logistic Regression 94.83% 94.99% 

Random Forest Classifier 98.28% 97.71% 

Support Vector Machine 95.05% 95.11% 

LSTM 95.12% 94.96% 

CNN 98.23% 97.54% 

XGBoost 99.19% 98.98% 

 

5.2 Case2: Using FOR dataset 

 



 

 

 
 

Figure 20: Confusion matrix comparison of all the models using the FOR dataset 



The comparison of several models for classifying fake or real audios reveals a high performance of the 

proposed hybrid model CNN+LSTM. This model gave the greatest top precision of 69% and F1-

measures 0.68 (Class 0) and 0.70(Class 1) than the other methods. As shown by Fig. 4, during training, 

both the accuracy and precision gradually rose and validation accuracy began to oscillate slightly after 

the sixth epoch or two, suggesting a mild case of over-training. Possible loss trends ensured that learning 

was effective by having a validation loss, rise slightly after epoch 7. The overall accuracy and the model 

learning capability of CNN are relatively high as compared to other models but the validation accuracy 

has the danger to oscillate after the 7th epoch and the model starts overfitting. The LSTM model does 

show good training/validation split balance with little overfitting with the accuracy of 63% and the F1-

scores of around 0.62. Models such as Random Forest and logistic regression had decent practices of 

60% and 58% respectively with random forest having a better recall rate in class 0. XGBoost and 

LightGBM gave relatively poor accuracies-47% and 49% respectively and low levels of both precision 

and recall. 

It is evident from the results that the best model for this task will be the CNN + LSTM since it exhibits 

the best overall performance of the recognized features due to its capability to extract the spatial and 

temporal qualities. Other models have issues of over fitted models, or issues of class imbalance, or 

issues with learning performances. 

 

  

  

Figure 21: Loss and Accuracy curves for (a) CNN model (first 2 graphs) (b) LSTM (middle row) (c) 

CNN + LSTM (bottom row) 



After examine all the model Hybrid model(CNN+LSTM) is identified best suited for the identification 

of fake or real audios. 

5.3 Discussion 
This study presents a comprehensive framework for detecting audio deepfakes, addressing a critical 

challenge in safeguarding social media and web platforms against malicious misuse. By leveraging two 

diverse datasets, ‘In-the-Wild’ and Fake-or-Real (FoR), the research demonstrates a robust approach 

to handling both clean and distorted audio samples, ensuring adaptability to real-world scenarios. The 

XGBoost model emerged as the best performer on the ‘In-the-Wild’ dataset, achieving remarkable 

accuracy and precision in detecting deepfakes in cleaner audio environments. Meanwhile, the hybrid 

CNN+LSTM model proved its robustness on the FoR dataset, effectively managing the complexities 

introduced by distortions and noise. This dual-model deployment strategy highlights the importance of 

tailoring detection systems to the specific characteristics of the data, ensuring both precision and 

scalability. 

The study also underscores the significance of advanced preprocessing techniques and feature 

extraction methods in enhancing model performance. By capturing temporal and spectral features of 

audio signals, the models were able to distinguish subtle patterns between real and fake samples. 

Furthermore, the integration of these models into an API framework enables real-time detection, 

ensuring practical applicability across diverse domains. 

5.4 Real time application 

 

 

Figure 22: Real Time application for the detection of Real or Deep Fake Audio 



Link to the deployed code: 

In conclusion, this research lays a strong foundation for the development of adaptive and scalable audio 

deepfake detection systems. While the results demonstrate significant progress, the evolving nature of 

deepfake technologies calls for continued innovation to stay ahead of potential threats. By bridging the 

gap between clean and distorted audio detection, this study contributes to the creation of secure digital 

ecosystems, ensuring trust and reliability in online communication. 

Chapter 6: Conclusion and Future Work 
This work developed a proper framework that can be used for detecting audio deepfakes, it uses signal 

processing and deep learning model, for detecting a new threat that is arising in cybersecurity. This is 

due to the inclusion of features like MFCCs in conjunction with metrics such as jitter and shimmer in 

conjunction with CNNs, LSTMs and the proposed hybrid model, the system detects fake and real audio 

with high accuracy. The models were not sensitive to the change between Clean (In-the-Wild) and noisy 

(Fake-or-Real) data sets; while XGBoost gave higher Precision for Clean data, CNN+LSTM proved its 

immunity against distorted samples. The real-time implementation through an API further illustrates 

how this research can be applied in real-world cybersecurity paradigms such as identity theft protection, 

scams and fake news prevention for online communication platforms. 

6.1 Future Work 
The future work will focus on improving the generalization for unfair examples across a new set of 

deepfake generation methods through transfer learning and, indeed, unsupervised techniques. Extension 

of the multimodal approach in terms of identifying the audio-visual consistency checks, for example, 

will enhance further defense to the advanced attacks effectively. Increasing sample size with respect to 

different languages, accents, and noisy environments will enhance the generality of the applicability. 

Effortless model building will help to expand lightweight to low-resource environments, for example, 

IoT devices. Thus, this study helps to protect against cybercriminal threats rooted in deepfake 

technology – phishing, social engineering, and fake news distribution, ensuring the security of digital 

communication and strengthening the integrity of interactions, as well as protecting individuals, 

organizations, and governments from AI threats. 
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APPENDIX 

1. Appendix – Research Summary 
Table 1: Summary of different research papers that is being reviewed 

Paper Title Authors Dataset Used Model Used Result Summary 

Leveraging Deep 

Learning 

Approaches for 

Deepfake 

Detection: A 

Review 

Tiwari, A., 

Dave, R., 

Vanamala, M. 

Utilizes multiple 

datasets, such as 

FaceForensics+

+ 

Various deep 

learning models 

(e.g., CNN, 

RNN, GAN) 

Provided a comprehensive review of deep 

learning models and their applications in 

deepfake detection. Highlighted 

advantages and challenges in detecting 

deepfakes. 

Fake Artificial 

Intelligence 

Generated 

Contents 

(FAIGC): A 

Survey of 

Theories, 

Detection 

Methods, and 

Opportunities 
 

Yu, X., Wang, 

Y., Chen, Y., 

Tao, Z., Xi, D., 

Song, S., Niu, 

S. 

(text, images, 

audio, and 

video) used for 

training and 

benchmarking 

FAIGC 

detection, 

including 

datasets 

designed for 

deepfake 

detection, audio 

synthesis, and 

multimodal 

validation 

Various 

detection 

methods 

including CNN, 

GANs 

Provided a detailed survey of fake AI-

generated content detection methods, 

challenges in detection accuracy, and 

future opportunities. 

Multi-Modal 

Generative 

Zhang, G., 

Gao, M., Li, 

Celeb-DF, 

DeepfakeDetect

ion 

Multi-modal 

models with 
Achieved high accuracy in detecting 

deepfakes by combining visual and textual 



DeepFake 

Detection via 

Visual-Language 

Pretraining with 

Gate Fusion for 

Cognitive 

Computation 
 

Q., Zhai, W., 

Jeon, G. 
visual-

language 

pretraining 

 

features using gate fusion, outperforming 

traditional models. 

The Sound of 

Disinformation: 

TikTok, 

Computational 

Propaganda, and the 

Invasion of Ukraine 

Bösch, M., 

Divon, T. 

TikTok videos, 

social media 

data 

Propaganda 

analysis 

techniques 

 

Semi-automated, scalable disinformation 

thrives, leveraging TikTok’s audio 

elements 

Sound Check: 

Auditing Audio 

Datasets 

Agnew, W., 

Barnett, J., 

Chu, A., Hong, 

R., Feffer, M., 

Netzorg, R., 

Jiang, H.H., 

Awumey, E., 

Das, S. 

Various audio 

datasets (e.g., 

LibriSpeech, 

AudioSet) 

Auditing 

algorithms for 

audio datasets 

Presented an auditing framework to ensure 

the quality of audio datasets, emphasizing 

dataset reliability and ethical concerns in 

machine learning tasks. 

Deepfake 

Detection: A 

Multi-Algorithmic 

and Multi-Modal 

Approach for 

Robust Detection 

and Analysis 
 

Nailwal, S., 

Singhal, S., 

Singh, N.T., 

Raza, A. 

FaceForensics+

+, Celeb-DF 

Multi-

algorithmic 

model 

combining 

CNNs, RNNs 

Developed a robust deepfake detection 

model integrating multiple algorithms and 

modalities, achieving significant 

improvement in detection accuracy. 

An Overview of 

Affective Speech 

Synthesis and 

Conversion in the 

Deep Learning Era 

Triantafyllopo

ulos, A., 

Schuller, B.W., 

İymen, G., 

Sezgin, M., 

He, X., Yang, 

Z., Tzirakis, P., 

Liu, S., 

Mertes, S., 

André, E., Fu, 

R. 

Various speech 

synthesis 

datasets (e.g., 

VCTK Corpus) 

Deep learning-

based speech 

synthesis 

models (e.g., 

Tacotron, 

WaveNet) 

Provided an extensive review of speech 

synthesis models and discussed how deep 

learning is revolutionizing affective 

speech generation. 

Trustworthy 

Journalism 

through AI 
 

Opdahl, A.L., 

Tessem, B., 

Dang-Nguyen, 

D.T., Motta, 

E., Setty, V., 

Throndsen, E., 

Tverberg, A., 

Trattner, C. 

N/A AI-driven 

journalism 

models 

Explored the use of AI in journalism, 

focusing on enhancing trust and mitigating 

misinformation through automated fact-

checking and content verification models. 

A Survey on 

Semantic 

Communication 

Networks: 

Architecture, 

Security, and 

Privacy 

Guo, S., Wang, 

Y., Zhang, N., 

Su, Z., Luan, 

T.H., Tian, Z., 

Shen, X. 

N/A Semantic 

communication 

models 

Surveyed semantic communication 

networks, highlighting their architectural 

advancements and the security challenges 

posed by AI-driven communication 

systems. 

Object Detection 

and Crowd 

Analysis using 

Deep Learning 

Techniques: 

Comprehensive 

Review and Future 

Directions 
 

Ganga, B., 

Lata, B.T., 

Venugopal, 

K.R. 

COCO, 

PASCAL VOC 

Object detection 

models (e.g., 

Faster R-CNN, 

YOLO) 

Reviewed the advancements in object 

detection and crowd analysis, emphasizing 

deep learning models and future research 

directions in improving real-time 

performance and accuracy. 



ExplaNET: A 

Descriptive 

Framework for 

Detecting 

Deepfakes With 

Interpretable 

Prototypes 

Khalid et al. 

(2024) 

Custom 

Deepfake 

Dataset 

Interpretable 

Prototype 

Network 

Achieved high interpretability, allowing 

human validation alongside accuracy 

improvements in detecting altered facial 

features 

Contributions of 

Jitter and Shimmer 

in the Voice for 

Fake Audio 

Detection 

Li et al. (2023) Audio deepfake 

datasets 

Jitter and 

Shimmer-based 

Feature 

Extraction 

Improved detection of synthetic audio by 

leveraging nuanced voice features like 

jitter and shimmer in synthetic voices 

Cyber Security 

Focused Deepfake 

Detection System 

Using Big Data 

Kumar & 

Kundu (2024) 

Social media 

dataset 

Big Data ML 

Framework 

Enabled scalable, real-time detection 

across large social platforms, optimized 

for rapid processing for cyber defense 

HolisticDFD: 

Infusing 

Spatiotemporal 

Transformer 

Embeddings for 

Deepfake Detection 

Raza et al. 

(2023) 

Video datasets 

(e.g., 

FaceForensics 

Spatiotemporal 

Transformer 

Enhanced accuracy by capturing both 

spatial and temporal patterns across video 

frames for more robust deepfake detection 

Deepfake 

Detection: 

Enhancing 

Performance with 

Spatiotemporal 

Texture and Deep 

Learning Feature 

Fusion 

Almestekawy, 

Zayed, & Taha  

Video deepfake 

datasets 

Spatiotemporal 

Texture 

Extraction and 

CNN Feature 

Fusion 

Achieved superior performance by 

combining temporal texture changes with 

CNN-derived spatial features, providing a 

comprehensive approach for detecting 

subtle manipulations in videos 

 

 


