
Configuration Manual

MSc Research Project
Cyber Security

Taher Ahmed
Student ID: 23186950

School of Computing
National College of Ireland

Supervisor: Mr. Raza Ul Mustafa



National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Taher Ahmed

Student ID: 23186950

Programme: MSc in Cyber Security Year: 2024-25

Module: MSc Research Project

Lecturer: Mr. Raza Ul Mustafa
Submission Due
Date: 12th December 2024

Project Title: Detection of replay attacks in Autonomous vehicle LTV systems
using Dynamic Watermarking, Kalman Filter and Mahalanobis
Distance

Word Count: 1035

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Taher Ahmed

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):



1

Configuration Manual

Taher Ahmed
Student ID: 23186950

1 Introduction
The research project aims to propose a robust framework in detecting replay attacks in
autonomous vehicles Linear Time Varying (LTV) systems using dynamic watermarking,
Kalman Filter and Mahalanobis Distance. In addition to this paper, the configuration manual
provides a clear insight on setting up a simulation environment on how the CAN bus model
has been developed, replay attacks are triggered, detection using dynamic watermarking with
Kalman Filter and Mahalanobis Distance, and the configuration set up for evaluation metrics.

2 System configuration

2.1 System hardware configuration
 Processor: Intel core I7
 Operating System: Windows 11
 Storage: 500 GB HDD
 RAM: 32 GB

2.2 Software versions
 Python: 3.10.8
 Python-can: 4.4.2
 VS code: 1.95.1
 Matplotlib: 3.9.2
 Pandas: 2.2.3
 Filterpy: 1.4.5
 Scikit-learn: 1.5.2

3 Development environment set up

3.1 Install VS code
The entire simulation environment is developed using IDE VS code. The latest version can be
downloaded from here https://code.visualstudio.com/download

3.2 Install Python
The python has been selected as a programming language to set up the simulation
environment due to its high availability of libraries dedicated for a CAN bus model. The
latest version can be downloaded from here https://www.python.org/downloads/

https://code.visualstudio.com/download
https://www.python.org/downloads/


2

4 Dataset configuration

4.1 Apollo Scape dataset set up
Apollo Scape dataset provides a large scale trajectory dataset of urban streets consisting of
camera based images, LiDAR scanned point clouds and manually annotated trajectories
along with traffic flows containing vehicles, riders and pedestrians. This overall sensor data
of more than 400,000 data points are used as message transfer between sensor nodes to ECU
or Actuator nodes in the simulation environment to handle the dynamics of the vehicle
maneuver based on detected objects around the vehicle to avoid any collision.

4.2 Dataset pre-processing
The dataset provides overall details of five different object types such as, small vehicles, big
vehicles, pedestrian, motorcyclist and bicyclist, and other variants. This data structure is
categorized with separate columns as, frame id, object id, object type, position x, position y,
position z, object length, object width, object height and heading.

Considering the amount of dataset, the first step of pre-processing involved inspecting the
raw data to ensure data with proper delimiter, removing null values or inappropriate values
from the dataset. This ensures that the dataset has valid and appropriate data to maintain the
reliability and accuracy for simulation of messages.



3

In order to transmit the data through CAN messages, the range value exceeding 0 to 255
bytes were encoded to split each values and transmit across multiple bytes. This technique is
known as Byte Splitting which allows the larger values into sequence of bytes and later be
decoded to reassemble to fetch the actual data.

5 Simulation environment set up

5.1 Preparation of CAN bus model
Considering the key components of LTV system in an autonomous vehicles, three nodes,
ECU, Actuators and Sensors within a CAN bus are created to send and receive messages
between each units. Python provides a dedicated library which acts as a CAN bus model and
by default handles its characteristics and limitations. The latest version can be downloaded
from here https://python-can.readthedocs.io/en/stable/

The log of a particular message transfer between sensor node to an actuator node in a CAN
bus is shown below.

https://python-can.readthedocs.io/en/stable/


4

5.2 Apply dynamic watermarking
Every messages passed through the CAN bus model are handled by adding dynamic
watermarking. The following python function is used for this integration.

5.3 Trigger replay attack
In order to simulate a replay attack within the message transmission between sensor and
actuator nodes, the previous sensor messages sent into CAN bus are captured and these
messages are replayed with a varying watermark at different time intervals.



5

5.4 Detect replay attack
The Kalman filter using Python is derived with ‘filter py’ library provided by Python which
handles the algorithm. The latest version can be downloaded from here
https://filterpy.readthedocs.io/en/latest/

This library provides a detailed documentation on how to apply Kalman Filter into our code.
Based on this documentation, the Kalman filter is applied to detect any potential replay attack.

Furthermore, the Mahalanobis Distance mathematical equation is derived into python code in
order to calculate its distance for each messages.

6 Results

6.1 Detection rate
The detection rate is derived based on the ratio of number of anomalies detected with the
total number of anomalies present. The approach has resulted with significant results in
detecting a replay attack between the range of 0.00 to 0.20 seconds which proves the
technique detects a potential anomaly in a short span of time. The detection rate of replay
attack is obtained by accumulating the time taken to detect each attacks and the graph was
plot using ‘matplotlib’ library.

https://filterpy.readthedocs.io/en/latest/


6

6.2 Overall performance
This overall performance with combination of Kalman filter and Mahalanobis distance has
resulted with higher true positive rate of 77%, which significantly improves handling
multidimensional states of an AV. With ‘matplotlib’ library and using the mathematical
equations for each metrics, the overall performance is derived as shown below.



7

6.3 Mean Squared Errors (MSE) of residuals
The MSE of residuals is evaluated to differentiate between the Kalman Filter predictions
from the observed values. With ‘matplotlib’ library and using the mathematical equations to
calculate the mean values of each residuals, the MSE for residuals are derived and plotted as
shown below.

6.4 Normalized Mahalanobis Distance distribution
The normalized Mahalanobis distance is derived based on calculating the mean and standard
deviations of the overall detection scores. The following images shows how the metrics are
plotted using ‘matplotlib’ library and its results.



8

6.5 Detection score
The detection score of the overall Mahalanobis distance is calculated based on accumulated
detection scores of every messages transferred into the CAN bus model. The approach for
calculating the detection score for each message and its following outcome is shown below.



9

6.6 False Positive Rate in noisy environment
The false positive rates is derived based on the false positive rates and true negative rates
resulted from the confusion matrix. This final false positive rates are plotted using
‘matplotlib’ library.



10

References
ApolloScapeAuto (2018). dataset-api/trajectory_prediction at
master · ApolloScapeAuto/dataset-api. [online] GitHub. Available at:
https://github.com/ApolloScapeAuto/dataset-api/tree/master/trajectory_prediction [Accessed
11 Dec. 2024].

Can, P. (n.d.). python-can 4.3.1 documentation. [online] python-can.readthedocs.io.
Available at: https://python-can.readthedocs.io/en/stable/.

Python (2019). Download Python. [online] Python.org. Available at:
https://www.python.org/downloads/.

Python, F. (n.d.). FilterPy — FilterPy 1.4.4 documentation. [online] filterpy.readthedocs.io.
Available at: https://filterpy.readthedocs.io/en/latest/.

Visual Studio Code (2016). Visual Studio Code. [online] Visualstudio.com. Available at:
https://code.visualstudio.com/Download.


	1Introduction
	2System configuration
	2.1System hardware configuration

	Processor: Intel core I7 
	Operating System: Windows 11
	Storage: 500 GB HDD
	RAM: 32 GB 
	2.2Software versions

	3Development environment set up
	3.1Install VS code
	3.2Install Python

	4Dataset configuration
	4.1Apollo Scape dataset set up
	4.2Dataset pre-processing

	5Simulation environment set up
	5.1Preparation of CAN bus model
	5.2Apply dynamic watermarking
	5.3Trigger replay attack
	5.4Detect replay attack

	6Results
	6.1Detection rate
	6.2Overall performance
	6.3Mean Squared Errors (MSE) of residuals
	6.4Normalized Mahalanobis Distance distribution
	6.5Detection score
	6.6False Positive Rate in noisy environment

	References

