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Detection Of Replay Attacks In Autonomous Vehicle
LTV Systems Using Dynamic Watermarking, Kalman
Filter And Mahalanobis Distance

Taher Ahmed
23186950

Abstract

A strong replay attack in autonomous vehicle would lead to traffic disruptions, compromise
of sensitive data and could also put the passenger’s life at risk. Considering the evolution of
autonomous vehicle and its corresponding complications of replay attack, this paper focuses on
proposing a solution to detect replay attacks in autonomous vehicle’s CAN bus model. Although there
are various research strategies proposed on this category, the prime idea behind this research paper
aims to study about the Linear Time Varying (LTV) systems which handles the core dynamics of the
self driving vehicles and accountable for handling deviations in the varied conditions. This is
achieved by combining dynamic watermarking with Kalman Filter and Mahalanobis Distance to
estimate the state of dynamic system and handle correlated variables of CAN bus data effectively. The
technique is investigated by creating a simulation bed acting as a CAN bus model to transmit
messages between each nodes, and the data is extracted from Apollo Scape which consists a large
scale trajectory data of urban streets with traffic flows containing vehicles, riders and pedestrians.
Here, the replay attack was triggered and tested at different intervals and has resulted with higher
recall rate for LTV systems with 77%, an average of 0.10 seconds detection rate, and predicting the
freshness of each messages efficiently.
Keywords-Linear Time Varying (LTV), Kalman Filter, Mahalanobis Distance, Dynamic
Watermarking.

1 Introduction

With a rapid development in the automobile industries, the invention of autonomous vehicles
are expected to replace traditional vehicles in next few years. A fully autonomous vehicle is
designed to be self aware and highly capable of making its own decision. This system is
possible as the AVs function based on sensors, Control Area Network, complex algorithms,
and powerful processors. Thus, a cyber attack like replay attacks pose significant threats by
altering and re-transmitting messages, potentially causing severe damage to vehicle’s
operation. A replay attack on any of this sensitive system will arise to potential consequences
such as, causing serious accidents which puts users life at risk, a corrupted CAN bus will
mislead to massive traffic jams and traffic disruptions, compromise of sensitive data due to
its connected systems, and this will affect the public trust and integrity towards the
innovation of AV technologies. A replay attacks occurs when an attacker eavesdrops on the
vehicle’s communication channel, in order to intercept it and resend the fraudulent message
to misuse the system. For example, when the sensor detects an obstacle in front of the vehicle
and passes the communication to the actuators. Here, if the message has been captured by an
attacker, then the actual message can be replayed with a fraudulent message which could lead
to severe damages (Sooraj. T, 2019). Considering these factors, the research paper focuses on
detecting replay attacks in autonomous vehicles by leveraging dynamic watermarking based
on a Linear Time Varying (LTV) system.
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Figure 1: Replay attack in autonomous vehicle.

However, there are several research conducted on AVs for replay attacks which
includes common techniques like Intrusion Detection Systems (IDS), watermarking,
encryption and authentication methods. Even though these methods propose a strong
detection strategies, they come with a set of limitations like ineffective handling of strong
replay attacks, weak encryption with insecure time stamping approaches, failure of
identifying the freshness of the message, and following Statistical Hypothesis Testing
methodologies. Among these standard methodologies, dynamic watermarking has proven to
be more effective in detecting replay attacks as it involves embedding secret watermarks into
control signals or data streams, complicates efforts by attackers to replay data undetected.
However, these previous research has explored dynamic watermarking based on Linear Time
Invariant (LTI) systems, which assumes fixed dynamics and fail to address the complexities
of real-world driving conditions. In LTI systems, the relationship between input and output
remains linear and constant, making them suitable for simplified scenarios, such as
maintaining cruise control on straight roads. However, this static nature makes LTI systems
more predictable, offering attackers the potential to infer system dynamics and execute
successful replay attacks (Toni.F, 2024). These studies primarily rely on Statistical
Hypothesis Testing methods as a probabilistic technique for detecting replay attacks. While
this method is useful for systems with known statistical models, it comes with limitations like
identifying the robustness and accuracy of detecting replay attacks in a LTV system.

LTV systems have a changing behavior which can be handled by the time dependent
system matrices nature of Kalman Filter. Unlike Euclidean distance, Mahalanobis distance
makes the system more robust for analyzing the correlations between variables. In contrast
with Al techniques, the combination of these two methods do not require excessive training
data. On the other side, Heuristic approaches are less adaptable and system independent,
while the Kalman Filter and Mahalanobis distance generalize to a set of conditions. The
combination of Kalman Filter and Mahalanobis distance are highly efficient for state
estimation and anomaly detection. Hence, this research paper focuses on enhancing effective
detection of replay attacks by proposing an approach that combines Kalman Filtering, known
for their ability to estimate the state of dynamic systems accurately, with Mahalanobis
Distance to handle correlated variables. This will be integrated with dynamic watermarking
to analyse Linear Time Varying (LTV) systems, which account for the changing dynamics of
autonomous vehicles in varied conditions. The primary contributions of this research aims to:

1. Analyse the autonomous vehicle’s behaviour under complicated environment conditions.
Based on these dynamic factors, design and implement dynamic watermarking that is both
secretive and unpredictable, to prevent attackers from replaying the data.



2. Apply Kalman Filter with Mahalanobis Distance for the LTV system to estimate the
vehicle’s real-time system state and predict expected outputs. Utilize these predictions to
detect and indicate replay attacks by observing discrepancies between actual and predicted
outputs with minimizing delays and ensure reliable detection.

3. Implement a proof of concept within a simulated environment that models autonomous
vehicle communication system, and incorporate dynamic watermarking with Kalman Filter
and Mahalanobis Distance techniques to simulate replay attacks.

4. Evaluate the performance for the proposed detection mechanism with possible key metrics
based on its performance and detection rate, and deliver an efficient solution to detect replay
attacks in LTV systems.

2 Related Work

2.1 IDS based countermeasures

2.1.1 Intrusion detection based on bit constraint

In 2022, Kaixuan Zheng, Shihong Zou, and co-authors inestigated on a segment
detection algorithm based on real-time intrusion detection of injection attacks in autonomous
vehicles. This algorithm aims to improve the precision and recall rates in detecting abnormal
traffic on the Controller Area Network (CAN) bus, by considering the memory limits and
computational power available on multiple in-vehicle environments. This detection algorithm
calculates the bit-flip rate as per each segment, and reveals the relationships between
transmitted messages (Zheng et al., 2022). The approach involves various phases, such as
feature analysis, model training, and real-time detection. With larger datasets, this technique
resulted impressively with a combined precision and recall rate of 99.97% on detecting
different types of injection attacks. However, the study identified that the algorithm's
performance was poor when faced with large injection volumes, which reduced the precision
and recall rates. To handle these limitations, an alternative methodology using CCID is
reviewed in the following section.

2.1.2 Graph-Based IDS for CAN

In 2021, Riadul Islam, Sai Manikanta Yerram, and co-authors proposed a Graph-
Based Intrusion Detection System (IDS) to detect cyber and physical attacks on the CAN bus.
Their approach involves four stages of IDS layers that leverages graph-based techniques,
making it reliable to detect intrusions without any changes in the CAN protocol. This system
is implemented with statistical analysis to mainly detect anomalies in the communication
patterns (Islam et al., 2020). The CAN messages are transformed into a graph structure, and
these features are derived to segregate anomalies. This resulted with an effective detection
rate of 4.76% for replay attacks, and with a less misclassification rate. Albeit the outcome
being more efficient compared with other methods, this has a limitation of handling strong
replay attacks which is compromised by CAN arbitration IDs. The study has investigated that
the detection of replay attacks could be improved when the CAN arbitration IDs were
handled separately. To manage this limitation, the next section covers an alternative
technique which aims to enhance the detection of strong replay attacks in CAN bus systems.

2.1.3 CCID-CAN for autonomous vehicles
In 2019, Heng Sun, Weilin Huang, Jian Weng, and seven other researchers
collaborated to design a Cross-Chain Intrusion Detection (CCID) system for the Control Area
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Network (CAN) bus system in autonomous vehicles. This research addresses on a major gap
in the absence of encryption and authentication mechanisms in CAN bus communications,
which makes the Electronic Control Units (ECUs) vulnerable to cyberattacks (Sun et al.,
2024). This framework combines the Kalman filter and Naive Bayes model to generate a
Valid Bit Index (VBIN) model, which is capable of detecting anomalies within a short
interval. This method has proven to be successfully detecting attacks like, spoofing, fuzzy
attacks, replay attacks, and suppression attacks, with high accuracy, recall, precision, and F1-
score. While the CCID-CAN system demonstrates higher precision and recall rates compared
to the bit-constraint-based IDS discussed earlier, it focuses primarily on continuous message
streams in time-series analysis. In this approach, each CAN ID is treated as an independent
unit, which covers the limitation in detecting replay attacks by Graph based approach.
Although, this article covers the limitation from other two research papers, these replay
messages generated by this method are valid only for a temporary time period. Here, the
attackers can exploit this by replaying legitimate data at a different point in time within the
system's allowable time boundary. The IDS verifies the temporal patterns but fails to detect
these delayed replayed messages, making the system vulnerable to timing-based replay
attacks.

2.2 Cryptographic based detection

2.2.1 Encryption with timestamp and initialization vector

A standard authentication and encryption method was proposed by Selvamani
Chandrasekaran, K.I. Ramachandran, and co-authors, with the goal of detecting and
preventing replay attacks in the CAN protocol (Chandrasekaran et al., 2020). This method
introduces a suppression technique by incorporating a counter or timestamp on top of
encryption to ensure message authenticity. The process is categorized into authentication and
encryption phases. In the authentication phase, a node authentication model is generated to
distinguish between legitimate and corrupted nodes. Later, a Message Authentication Code
(MAC) is enabled to ensure the integrity and authenticity of the messages. On the next step,
in the encryption phase, traditional cryptographic algorithms such as Tiny Encryption
Algorithm (TEA) and Secure Hash Algorithm (SHA) are used to encrypt and decrypt
messages, which are incorporated with a timestamp. The results shows that the system is
feasible to successfully decrypt fresh messages with valid keys and detect any replayed
messages. However, this approach uses weak encryption keys with a 16-bit key length,
making the system more vulnerable to brute-force attacks. Furthermore, the traditional
timestamp approach creates a time window through which the attackers can exploit the
system to replay messages. Considering these weaknesses, it requires more advanced
encryption techniques and secure timestamping approach. An alternative approach to enhance
this system is discussed in the next section.

2.2.2 Lightweight encryption & authentication for CAN

In 2023, Jie Cui, Yaning Chen, and five other researchers proposed a lightweight
encryption and authentication scheme for an in-vehicle Control Area Network (CAN) bus.
This approach addresses issues related to Electronic Control Units (ECUs) like consumption
of time and the complexity in key distribution. The authors replaced the traditional key
distribution process with Blom key management algorithm used in the CAN bus to make it
more efficient (Cui et al., 2023a). The system’s effectiveness was evaluated using BAN logic
and security analysis, demonstrating success in defending against attacks such as forgery and
replay. While the technique provides a strong encryption framework, its reliance on the Blom
key management method primarily ensures secure key distribution and communication
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between nodes or messages. However, the approach has failed to validate the freshness of the
messages, like a message is new or replayed from old session. However, this technique might
work as an additional layer of defense, but it requires enhancements like precise timestamp
validation, to completely mitigate risk of replay attack.

2.2.3 A Re-Encryption scheme for autonomous vehicles

In 2023, Yun Shen, Hong Zhong, and three other researchers proposed a multilevel
Electronic Control Unit (ECU) architecture with a re-encryption scheme for autonomous
vehicles. This approach centers on re-encrypting all critical information, verified by the
Global ECU (GECU), to prevent the transmission of malicious messages (Shen et al., 2023a).
The framework also allows forwarding messages, process during single-point failures and
establish cross-bus communication in a centralized gateway architecture. An enhancement
made in this approach compared with previous works, is the integration of timestamps with
both encryption and re-encryption phases. This works as an additional layer in preventing
replay attacks, and the scheme was analyzed using a random oracle model and BAN logic to
evaluate its security. This further resulted from withstanding against a variety of attacks like,
sniffing, tampering, replay, collusion, flooding, and spoofing attacks. In the context of replay
attacks, the Message Authentication Code (MAC) is generated during both encryption and re-
encryption based on timestamps. This effectively authenticates all the nodes and prevent
replayed messages from being accepted. However, while the paper highlights the novelty of
its re-encryption scheme, it leaves several gaps for future research. This includes
performance limitations, reduced flexibility, and the use of symmetric keys weakens the
system’s resistance to malicious activities. This directs to poor performance in detecting
certain types of cyber attacks, a major factor addressed in next section.

2.3 Watermarking based approach

2.3.1 Dynamic Watermarking for general LTI systems

Considering an enhancement of research study based on detecting malicious sensor
attacks for SISO LTI systems, a modern technique using design of dynamic watermarking for
detecting malicious sensor attacks were published in 2017 by Pedro Hespanhol, Matthew
Porter, and two other authors (Hespanhol et al., 2017). The previous paper was focused on
systems with partial state observations and MIMO LTI systems with a full rank input matrix
and full state observation. This approach is not suitable for general LTI systems which are
MIMO and maintain partial state observations. This is enhanced by providing a new set of
asymptotic and statistical tests in this current research study, which has proved to have the
tendency to distinguish between sensor attacks and wind disturbance by developing an
internal model principle framework. However, this work has been explored only for general
attacks than replay attacks, which needs to be applied for other attack models. Alongside, the
paper has failed to discover the robust control design in the regime of when an attack is
detected.

2.3.2 Dynamic Watermarking for autonomous vehicle

In 2022, Lantian Shangguan, Kenny Chour, and four other researchers implemented a
defensive technique using a dynamic watermarking scheme on a real-time autonomous
vehicle sensing system. The study focused on three types of attacks, random noise, constant
bias, and intermittent toggling, all of which aimed to tamper with the vehicle’s yaw rate
measurement at a specified linear velocity (Shangguan et al., 2022). For each attack, the
system’s sensitivity and responsiveness in detecting attacks were tested by using three
different sizes of watermarks. The research primarily focuses on assessing how quick attacks
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can be identified considering the length of the watermark. The attacks were triggered through
a ROS node, which changed the yaw rate measurements, reporting false data to the controller.
The research resulted that the dynamic watermarking technique is effective, robust, sensitive,
and responsive in detecting cyberattacks. However, a major limitation of this research is its
focus on linear velocity and the use of Linear Time-Invariant (LTI) systems. The method has
not been analyzed for replay attacks in Linear Time-Varying (LTV) systems, which would be
critical for real-world autonomous vehicles.

2.3.3 Dynamic Watermarking using auto-correlation normalizing factor

In 2020, Matthew Porter, Sidhartha Dey, and five other researchers proposed a
method for detecting replay attacks in Linear Time-Varying (LTV) systems for autonomous
vehicles. This approach aims to overcome the limitations of Linear Time-Invariant (LTI)
systems, which were previously used to validate measurements but struggled with time-
varying effects and auto-correlation in LTV systems. The authors fixed these challenges by
developing an auto-correlation normalizing factor, which is designed to eliminate auto-
correlation effects from the residuals (Porter et al., 2020). This technique reinforces the
statistical foundation of all the detection tests. This was followed by applying dynamic
watermarking to a high-fidelity vehicle model in CarSim to further validate this approach. In
their experiments, replay attacks were triggered during mid-trajectory tasks of the vehicle.
The use of the LTV dynamic watermarking scheme, enhanced by the auto-correlation
normalizing factor, demonstrated quick detection of these attacks, proving its effectiveness in
more complex, time-varying autonomous vehicle environments.

2.3.4 Detection of replay attacks using time varying watermarking

In 2020, Matthew Porter, Pedro Hespanhol, and three other researchers proposed a
Linear Time-Varying (LTV) with dynamic watermarking approach to detect generalized
replay attacks in autonomous vehicles. This study introduced asymptotic guarantees along
with implementable tests by designing a matrix normalization factor to handle temporary
changes in the system's dynamics (Porter et al., 2020). The approach also utilized statistical
tests with a sliding window method to expand the real-time attack detection limit. A vehicle
equipped with the LTV dynamic watermarking scheme was used for simulation, and its
performance was compared to a Linear Time-Invariant (LTI) counterpart. The results
demonstrated consistent test metrics, showing that the LTV watermarking effectively
detected generalized replay attacks. Notably, the method maintained a false alarm rate of no
more than once per every 50 seconds of runtime.

However, despite the effectiveness of both this and the previous research methods, the
approaches heavily rely on Statistical Hypothesis Testing for detecting replay attacks. While
this technique works well in systems with well-understood statistical models, it has several
limitations like, delays in detection, higher false positive rates, especially in noisy
environments, lack of robustness under approximation errors, and failure to address key
performance metrics, such as the average time to detect replay attacks.

In conclusion, the reviewed articles focus on common approaches researched to
detecting replay attacks in autonomous vehicles, which are Intrusion Detection Systems
(IDS), encryption and authentication techniques, and dynamic watermarking. Even though
these methods propose a strong detection strategies, they come with a set of limitations such
as, ineffective handling of strong replay attacks, weak encryption with insecure time
stamping approaches, failure of identifying the freshness of the message, and poor detection
rate. Among these standard methodologies, dynamic watermarking has proven to be more



effective in detecting replay attacks as it involves embedding secret watermarks into control
signals or data streams, complicates efforts by attackers to replay data undetected. The
integration of dynamic watermarking into LTV systems showcase a dynamic model and
active defense. This provides a realistic model for system behaviour and with this, the
watermarking adds an additional layer for active probing, which makes the system resilient
from a wide range of attacks. This technique makes it computationally efficient which makes
the detection and mitigation of real time attacks.

While previous research has explored dynamic watermarking based on Linear Time
Invariant (LTI) systems or LTV with Statistical Hypothesis Testing methodologies, therefore,
this article aims to detect replay attacks in autonomous vehicle’s Linear Time Varying (LTV)
systems with combination of Kalman Filter, Mahalanobis distance and dynamic
watermarking.

3 Research Methodology

3.1 Kalman Filter with Dynamic Watermarking

The characteristics of replay attacks follows sending previously recorded messages by
altering the actual data. Here, the Kalman filter with dynamic watermarking proves
efficiently in identifying the difference between the replayed data and expected input. This is
a powerful mathematical algorithm significantly used in analyzing the state of a system and
handles high detection rate for responses with noise and uncertainty. It starts by processing
the real-time estimation including state transition model and measurement model followed by,
setting up the initial values of the state vector and initialize the covariance matrices to handle
the measurement noise (Liang et al., 2019). It then collects the sensor data such as speed,
acceleration, orientation or position generated from the CAN bus and adds a dynamic
watermark in these control signals to maintain a unique pattern.

Imitial Estimates

j

Kalman Gain

Measurements

V

Project into k+1 Update Estimate

Update Covariance _

Proiected Estimates Updated State Estimates
Figure 2: Kalman Filter algorithmic loop.

Kalman filter basically operates with two steps: prediction and update. In this
prediction step, the next state will be predicted based on the vehicle’s current state and the
control inputs, and this determines the predicted state and covariance. In the update step, the
received measurement will be compared with the predicted state which derives with the
residuals for the prediction error. The system maintains a specific threshold and if the
calculated residuals are under this level, then the normal operation will be continued. When
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the residuals are beyond the threshold level, it can be raised as a potential replay attack has
been detected, and the iteration continues. This technique involves detecting the anomalies
more efficiently and allows autonomous vehicles to enhance their security system from
replay attacks (Teow.J, 2018).

In general, the sensors of the autonomous cars detect the prevailing collisions and
make judgement. In order to perform this efficiently, the vehicle must predict the future
metrics so that the decision could be made prior. For instance, if there are a set of cars
waiting at a signal, here, the AV must detect the signal status and the distance of the last car
that is in halt so that it can apply breaks at the right time. This behaviors are handled by
sensors to position the objects and with the help of Kalman Filter, this uncertainty can be
mitigated by predicting the future states of the vehicle. The implementation of Kalman Filter
handles the errors and noise for both prediction and the measures the required tracking
variables. Examining this errors, the Gaussian is characterized by the parameters mean and
the width of the Gaussian, sigma squared.

C=1/\2Ilc>

As it progresses, the following equation nu and r squared are the mean and variance
for the newly observed data. This is implied to update the prior mean and variance values.
This updates the prior mean with the weighted sum of the old means. This new weights are
the variances from the other mean which is normalized by the sum of the weighting factors.

u=r’u+ o’v/r’*+c¢?

In the process of calculating the prediction or motion update, the vehicles are assumed
to start in some position. This motion has its own uncertainty and its calculated by
accumulating as the position changes. This mean value is updated by taking the previous
mean and adding the motion to its movement which is u here.

W=p+tu

The Kalman gain is further calculated by comparing with the observed data. This
involves conjunction of Kalman with the previously estimated data and the newly observed
values. This also updates process covariance based on the Kalman gain and these updates are
then utilized in next circle of predictions.

3.2 Mahalanobis Distance

The data with normal distribution of mean zero and variance as one are the distance which
can be calculated using Euclidean equation. On the other side, the Mahalanobis distance is an
efficient statistical technique to measure the distance between data point and the distribution
which is its mean value and covariance matrix. The Euclidean distance works well for a
straight line separation approaches but the Mahalanobis Distance is suitable to handle the
correlation between different metrics in data. This characteristics makes it robust in managing
the three dimensional data distributions where the data set is clustered from a single center.
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Figure 3: Working model of dynamic watermarking combined with Kalman filter &
Mahalanobis Distance.

In order to handle uncertain data set like the autonomous vehicle sensor data, the equation of
Kalman Filter alone will not be sufficient. The data structure has multiple variances
representing the position of different objects from the vehicle, such as pedestrians, signals,
medians, and other vehicles. In order to predict the future state of this dynamic objects, it is
highly important to combine the approach with Mahalanobis distance (Jade.D, 2024). This
combined mathematical orientation handles the covariance matrix significantly by handling
the complex metrics in the sensor data. The final residuals generated with Kalman Filter
equations and inverted covariance matrix are used to calculate a normalized distance of
Mahalanobis value to obtain the final threshold.

4 Design Specification

4.1 Control Area Network bus

This research article primarily focuses on replay attacks in autonomous vehicle’s Control
Area Network (CAN) bus system, as this is considered as the nervous system of AVs which
acts as a communication system allowing to send and receive messages between different
control units of the vehicle (Symmonds, C., 2023). This simplifies the way vehicle operates
by maintaining a centralized communication system and improves reliability by avoiding the
complexity of traditional wiring mechanisms. This was first developed by Bosch in 1980s by
analyzing the need for reliable approach to connect the increasing number of electronic
components in the system. Before the introduction of CAN bus, the vehicles were integrated
with a lot of wires to connect different components making the system huge and complicated.
CAN bus reduces this complexity by sharing a single communication pathway for multiple
devices to communicate. This makes the system more scalable, cost effective and handles
errors more effectively.

Control Area Network

Node 1 - Electronic Node 2 - Sensors Node 3 - Actuators
Control Unit
Engine LiDAR Steering adjustments
Transmission «—> Radar —> Braking actions
Braking Camera Throttle controls
Steering GPS

Figure 4: Control Area Network bus communication design for key components.
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The core design concept of the CAN bus is to maintain a common network for different parts
of the vehicle to communicate. This includes key components such as nodes, and bus. Nodes
are the various components connected to the CAN bus with inter linked CAN low and CAN
high wires, which handles both sending and receiving of messages. Some core nodes in CAN
bus are Electronic Control Unit (ECU), sensors and Actuators as shown in figure 4. And the
bus is the communication pathway which inter connects all these nodes. These components
work together in sending or receiving messages and ensure the messages are transmitted
properly. However, this design model is vulnerable for replay attacks as this comes with a set
of limitations like the CAN bus do not a have a built in message authenticating protocols,
missing timestamps, predictable data format and control signals etc., Here, marking messages
with dynamic watermarking based on Kalman filter and Mahalanobis Distance to each
messages makes the system feasible and prevents from replaying the old messages.

4.2 Linear Time Varying system dynamics

The LTV system in an autonomous vehicle handles core dynamics of the self driving cars
which manages the dynamic changes of the vehicle with time. The key components the LTV
system functions are based on sensors, actuators, Electronic Control Unit and environmental
components. These primary systems integrated together plays a pivotal role in robust decision
making and delivering accurate control (Li et al., 2020).

e Communication system
(ECU, CAN bus)

L ]S
| .

| T ———

Sensors
(Radar, LiDAR, Cameras)

\,

Figure 5: Core LTV system components.

Electronic Control Unit: The control unit acts as a core component that handles the
communication between each nodes in a vehicle, and ensures this metrics are adjusted as per
the dynamic requirements.

Sensors: Sensors in an autonomous vehicle refers to the LiDAR, cameras, GPS and radar
which gathers the real-time data from the internal system and the surrounding environment.

Actuators: Actuators makes the decision based on the action received from the control system
like steering, braking, acceleration to ensure the vehicle maneuvers are handled accurately
aligned to the path.

Environmental component: This handles the dynamic nature of the road conditions and shares

these details with control systems to manage accordingly. Based on this data, the primary
controls like acceleration and brakes are adjusted.
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4.3 Enhanced Architecture for CAN Bus Limitation

The CAN bus system in autonomous vehicles comes with a set of limitation which are,
absence of timestamps, poor authentication and encryption, limited bandwidth, and lack of
real time verification (Tara, J., 2022). In order to enhance the limitation of the CAN bus
system, the architecture is improvised with integration of CAN-FD, dynamic watermarking,
multiple layers with enhanced detection algorithm. The architecture is designed into layers
which includes detection and processing, security layer, communication layer and gateway
ECU layer. The gateway layer will monitor the abnormal traffic in the network to detect
anomalies. The communication layer can be improved by adding Control Area Network
Flexible data rate to enhance the network bandwidth and its efficiency. Alongside, the
automotive Ethernet acts as a backbone for CAN-FD to support the higher bandwidth data
like LiDAR and camera. (John, K., 2025). From the security layer is where this research is
focused on by adding dynamic watermarking which is a small perturbations to detect replay
attacks by comparing the threshold inconsistencies. This is handled with the help of time
stamping which validates the freshness of data. The final layer is detection and processing
where Kalman Filter and Mahalanobis Distance will be used to to estimate the system states,
evaluate the deviation of incoming data and signal anomalies based on threshold level.

Autonomous Vehicle System

Detection & Processing Layer

Security Layer

Communication Layer

Gateway ECU Layer

Figure 6: Enhanced CAN bus architecture to signal anomalies.

S Implementation

5.1 Assumptions

1. This model has been designed assuming the messages are transmitted between each nodes
in CAN bus model which are, Sensor, ECU and Actuator.

2. The data set used provides sensor data which is assumed to be transmitted between the
sensor nodes to actuator nodes. Here, the actuator nodes collects the messages and performs
the action.

3. The simulation environment is design based on assuming the CAN bus model handling
only the sensor data which circles information about trajectory details such as people,
vehicles, obstacles etc., around the vehicle.
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5.2 Set up simulation environment

5.2.1 Prepare CAN bus nodes using Python can

Considering the key components of LTV system in an autonomous vehicles, three nodes,
ECU, Actuators and Sensors within a CAN bus are created to send and receive messages
between each units. This simulation environment set up is generated using Python and its
dedicated library ‘python-can’ to depict CAN bus model (Python Can, 2023). Here, while
the nodes send and receive messages and when the message belong to that particular node, it
then accepts and delivers the task. For example, if the vehicle identifies a curve ahead of it, it
transmits the message through sensor to both ECU and actuator. The actuator approves this
request and handles the maneuver to avoid any damage.

Ac@gtor

5\
Figure 7: Message transfer between each nodes in CAN bus.

5.2.2 Handle sensor dataset for message transfer

In order to simulate message transfer between each nodes, a dataset from Apollo Scape has
been integrated (Apollo Scape, 2023). This dataset provides a large scale trajectory dataset of
urban streets consisting of camera based images, LIDAR scanned point clouds and manually
annotated trajectories along with traffic flows containing vehicles, riders and pedestrians.
This overall sensor data of more than 400,000 data points are used as message transfer
between sensor nodes to ECU or Actuator nodes in the simulation environment to handle the
dynamics of the vehicle maneuver based on detected objects around the vehicle to avoid any
collision.

Figure 8: Camera based images of trajectory sensor from the apploscape dataset.
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The dataset provides overall details of five different object types such as, small
vehicles, big vehicles, pedestrian, motorcyclist and bicyclist, and other variants
(ApolloScapeAuto, 2018). This data structure is categorized with separate columns as, frame
id, object id, object type, position x, position y, position z, object length, object width, object
height and heading. Considering the amount of dataset, the first step of pre-processing
involved inspecting the raw data to ensure data with proper delimiter, removing null values or
inappropriate values from the dataset and converting the data type into float to pass into CAN
bus messages. This ensures that the dataset has valid and appropriate data to maintain the
reliability and accuracy for simulation of messages.

Furthermore, in order to transmit the data through CAN messages, the range value
exceeding 0 to 255 bytes were encoded to split each values and transmit across multiple bytes.
This technique is known as Byte Splitting which allows the larger values into sequence of
bytes and later be decoded to reassemble to fetch the actual data. Hence, each rows are
converted into floating values and transformed into multiple bytes to make sure the bytes fit
within the 0 to 255 bytes range and ensure not breaking the actual value.

Arbitration Field

'5| Message 1D _IEIEM Data Ln-;m; _| Data (0-8 bytes) ILR( [ ACK ‘I EOF ] IFs |
5 [ el i igiiivalbicia

CAN 2.0 A
art of frame Reserved (recessive) interframe space
) End of frame
Re Acknowledge
Cyclic redundancy check
Artsitration Fleld A Arbitration Field B
= T —rrrerrr e
CAN2.0B & Base ID ® b Extended iD Esﬂ i Data Length Data (0-8 bytes) ] cRC | ack | EOF | s
] I L) Y - == ]

1D extension minant)
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Figure 9: CAN message byte splitting.

For instance, both the messages in the figure 8 shows a maximum payload of 8 bytes.
The standard CAN data rates in vehicles widely range between 250 kb/s to 1 MB/s. However,
the heavy equipment AVs usually follow 29-bit identifiers whereas the other vehicles allow
11-bit identifier to manage their custom defined messages (Horton.M, 2019). However, to
maintain the convenience and reliability, the CAN bus follows byte splitting to maintain the
payload to be within 8 bytes and thus this characteristics is handled by default in python bus
library. Hence, all the messages are converted to 8 byte in order to maintain the message
communication from sensor to other nodes in the CAN bus simulation.

5.3 Perform and detect replay attack

In order to simulate a replay attack within the message transmission between sensor and
actuator nodes, the previous sensor messages sent into CAN bus are captured and these
messages are replayed with a varying watermark at different time intervals. This helps in
exploiting the predictable nature of the messages transmitted between each components. The
dynamic watermarking applied here makes the system complex by setting varied intervals
when messages are re-transmitted (Rushikanjaria, 2021). This simulation scenario depicts the
attackers nature on trying to replicate the legitimate traffic patterns to exploit the system. The
actuators collecting these messages will respond inappropriately in failure of detecting or
alerting a replay attack, which leads to several critical safety issues like brake failure or
unintentional acceleration.
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Figure 10: Simulated replay attack concept model.

5.3.1 Kalman Filter

The attack is detected using Kalman filter where various sensor state variables based on
positions are set to reasonable values by constructing the object to specify the size of the state
vector with dimension X and the size of the measurement vector which is dimension Z,
which will be used to check the sign values for various metrics. This mathematical model
analysis the sensor state of the dynamic system and update this predictions based on the
results obtained. In the two primary steps of the Kalman filter, the prediction step predicts the
next covariance sensor data by estimating the current sensor data and the process model. The
update state updates this estimation and covariance as per the measurement by comparing the
prediction of the original measurement (Lacey.T, 2022). Here, the measurements are derived
from the objects such as vehicle or pedestrians and its corresponding position_x, position_y
and position_z in order to estimate the next sensor input.

Assuming the positions of the objects, the covariance matrix at a time interval of & can be
written as,

Pr=E[ex eTi] =E[(xk-x)(xk-x%)T]

Based on this estimation and the Kalman gain in the sensor inputs, the update equation for the
new estimation will be,

xAkzxAIk-i-Kk(Zk -Hx/\[k)

Based on the above principles, the Kalman filter equation is derived by associating the
measurement prediction covariance and thus,

Ki=PyHT(HP! HT+R)"

Based on this mathematical approach, the Kalman filter using Python is derived with ‘filter
py’ (Python Filterpy, 2023) which handles the algorithm by initializing key elements which
are, State vector (x) in order to define the current state of the sensor data, State transition
matrix (F) to determine how the vehicle evolves over time, Process noise (Q) to analyze the
uncertainty in the model, Measurement matrix to map the space of the measurement with the
state vector, Measurement noise (R) to detect the uncertainty in the sensor data and
covariance matrix (P) to record this uncertainty.

14



5.3.2 Mahalanobis Distance

However, in order to handle complex dynamics like trajectory sensor data and calculating its
measurements based on position_x, position_y and position_z, the Kalman filter might result
with less detection rate and higher false positive rates due to its prediction nature. Thus, the
Mahalanobis distance calculates the distance between two measurements in a multivariate
space. For correlated variables like the sensor data used, where the measurements have more
than three variables, becomes complicated to plot in a regular 3D space (Stephanie, 2017).
Here, the implementation of Mahalanobis distance resolves this measurement complications
by accurately measuring the distance between two points. This distance is measured in basis
of centroid, which measures the central tendency in a multi variant space where means from
all the variables are intersected. The mathematical algorithm of the Mahalanobis distance is
defined as,

dMahalanobis = [(xB - xA)T *C-1 * (xB - xA)] 0.5

Here, the x* and xB are the difference between the objects, C defines the covariance
matrix and T flips the matrix over its diagonal. The residuals generated from the Kalman
filter and the inverted covariance matrix are derived to obtain a Mahalanobis distance which
is further compared with a certain threshold level in order to detect a potential replay attack.
This threshold level is set based on analyzing the obtained results and the characteristics of
the trajectory sensor data.

6 Evaluation

The reason behind using the approach of dynamic watermarking with Kalman filter
combined with Mahalanobis distance in detection of replay attack in autonomous vehicle
LTV system is to predict robust system states and analyze precise deviation of the upcoming
measurements. This technique has a higher efficiency to handle LTV system dynamics and
detects deviation in the generated residuals to detect potential replay attacks in a short span of
time. The major limitations observed from previous research techniques includes, poor
performance, delay in detection rate, and failure of identifying freshness of message.
Alongside, most of these metrics has been evaluated for LTI systems of autonomous vehicles
but not considered for an advanced dynamic nature of AV’s system states. Considering these
limitations along with other key metrics based on dynamic nature of the system are evaluated
and discussed below.

6.1 Time taken to detect replay attack

The detection rate is derived based on the ratio of number of anomalies detected with the
total number of anomalies present (John.J, 2023). The approach has resulted with significant
results in detecting a replay attack between the range of 0.00 to 0.20 seconds which proves
the technique detects a potential anomaly in a short span of time. This prompt detection rate
is highly important in real time scenarios to ensure the safety of the vehicle and the overall
performance of the system. This combination of Kalman filter with Mahalanobis distance has
overtaken the detection rates of other traditional approaches when it comes to how quick an
attack could be identified by the system. Comparing this detection rate with other traditional
methods studied in research paper (Sun et al., 2024) such as VBIN, KF-NB and CCID-CAN,
the detection rate produced by this approach has resulted with an efficient rate. The average
detection rate of VBIN is 0.10, KF-NB is 0.49 and CCID-CAN is 0.60, whereas the detection
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time using dynamic watermarking with Kalman filter and Mahalanobis distance results
average of 0.10 seconds.
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Figure 11: Replay attack detection rate.

6.2 Overall Performance

As shown in fig. 11, the technique has resulted with 42% accuracy, 34% precision, 77%
recall rate, and 47% F1-Score. From the overall performance, it has resulted with higher true
positive rate of 77%, which significantly improves handling multidimensional states of an

AV (Jwo et al., 2023).

Replay Attack Detection Performance Metrics
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Figure 12: Performance of detecting replay attack.

This overall performance proves to be a lightweight approach for embedded systems and this
combination of Kalman filter and Mahalanobis distance proves an interpretable approach
which showcases adaptability real time AV systems. However, this approach has resulted
with fall in precision which produces higher false positive rates and the accuracy with 42%
proposes an imbalance in true and false positive resulting with a sub-optimal overall
performance. Albeit its downfall in few metrics, the performance has resulted with higher
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recall rate and computational efficiency which makes this approach handle effectively in
autonomous vehicle’s dynamic environment and its correlation with system state factors.

6.3 Mean Squared Error (MSE) of Residuals

The MSE of residuals is evaluated to differentiate between the Kalman Filter predictions
from the observed values. The metric has resulted with high efficiency for multi dimensional
residuals and with combination of Mahalanobis distance has obtained robustness for
identifying the malicious patterns accurately (Elshaer et al., 2021).

MSE = Z(yi — pi)2n

The flat line in the graph indicates the stabilization of Kalman Filter in order to maintain the
accurate predictions. The spikes over time indicates the replayed messages as an abnormal
patterns to measure the track deviation and the steady increase and fall projects the
identification of replay attacks and the false positives rates. Its overall efficiency has resulted
with identifying the freshness of each messages with high accuracy and not overlapping most
of the replayed messages.
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Figure 13: MSE of Kalman Filter Residuals.

6.4 Normalized Mahalanobis Distance Distribution

The normalized Mahalanobis distance evaluates the deviation of the residuals from mean
distribution and scales this value to a standard threshold in order to detect deviations. This is
derived based on calculating the mean distance and standard distance as derived from the
equation below.

NMD =MD /D

As shown in fig. 13, most of the distances are normalized and falls under the threshold level
which proves the Kalman filter has significantly reduced residual errors in normal operations.
Alongside, the spikes close to threshold level indicates anomalies and has effectively handled
in noisy environment. However, fine tuning the threshold level based on each dataset could
result with more accurate results.

17



Histogram of Normalized Mahalanobis Distances

120 === Anomaly Threshold

100

801

o
[=]

Frequency

201

-1 o 1 2 3 4
Normalized Mahalanobis Distance

Figure 14: Normlaized Mahalanobis Distance.

6.5 Detection Score

The Mahalanobis distance is calculated to handle correlated variables in the sensor data set
which operates with two measurements in a multivariate space. This is derived by combining
with Kalman filter which enforces a robust framework in detecting replay attacks for
complex dynamics of the LTV systems. The obtained results demonstrates handling the
fluctuations of the data efficiently and this provides a highly scalable environment to work
with larger datasets. However, the approach has resulted with inefficiency in clustering which
makes it difficult to identify the patterns between normal signals and replayed messages. This
can be further optimized by handling the noise frequency to enhance the stability of data by
maintaining a lesser false positive rates.
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Figure 15: Mahalanobis Distance Detection Score.

6.6 False Positive Rate in Noisy Environment

Considering the noise factor from the obtained data, the false positive rate has resulted with
above 70%. Albeit resulting with a higher false positive value, based on the detection speed
evaluated, it determines that 77% of the attacks are detected which captures most of the
genuine attacks effectively. Alongside, for an application like autonomous vehicle dealing
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with safety measure, the risk of failing to detect a potential attack is severe than risk of
predicting a false positive rate, which focuses on sensitivity of the attack more than its
specificity. However, the higher false positive rate affects the system’s reliability and
effectiveness, and this can be improved by integrating dynamic threshold detection into the
existing technique and test the approach with various data set models.
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Figure 16: False Positive Rate in Noisy Environment.

In future studies, state of art approaches like Recurrent Neural Networks (RNN) models,
Hidden Markov Models (HMM), Cryptographic authentication methods, and Hybrid models
can be used to benchmark the False Positive Rate performance. Through these advanced
methodologies, different test scenarios can be collected and compare the results for all these
state of art approaches. By evaluating these metrics in a large scale for each implementation
will result in analyzing the best detection rate. This research paper has focused only on
combination of dynamic watermarking with Kalman Filter and Mahalanobis Distance,
whereas the suggested alternative approaches collectively will result with better performance
analysis and, help to analyze the trade-offs based on different applications.

6.7 Discussions

The detection of replay attack for Linear Time Varying systems in autonomous vehicles has
resulted significantly in detection time with an average of 0.10 seconds and with detection
rate of 77% which is also the true positive rates from the overall sensor data. Considering the
dynamic metrics and noisy environment, the designed framework has proved with better
performance, efficient detection rate, and capability in identifying the freshness of message
through resulted MSE of residuals and normalized MD.

However, due to the clustered data and noise factor, the resulting false positive rate
has been comparatively high. This limitation from this methodology can be improvised by
first identifying the patterns in the false positive rates through multiple channels like system
logs and event handlers. Ensure high quality of data is used to generate test scenarios and
make the Kalman Filter dynamic to improve the accuracy of estimating the state of vehicle,
and fine tune the sensitivity in the deviations of Mahalanobis Distance. This technique can be
optimized by maintaining a dynamic threshold to handle the multidimensional states
effectively and test on various other metrics to enhance this solution. Furthermore, multiple
detection layers can be implemented like Ensemble methods in order to minimize the false
positive alarms. Alongside, a hybrid based detection model can be implemented using
various state of art techniques as discussed in above section 6.6 to achieve high detection
accuracy, less false positive rates, and improve the robustness of detection mechanism.
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On the other side, enhancing the CAN bus architecture considering the control
systems and cybersecurity components relies on the trade-offs between system complexity
and performance improvements. The architecture requires higher computation compared with
current system to improvise the performance which leads to time delay and higher cost in
addition of resources. An advanced system needs to be equipped to maintain the dynamics of
the environment which will result in huge chunk of code base and maintainability. When it
comes to scalability of the application, an optimized performance to maintain load balancing
is efficient which requires intricate distribution system with advanced hardware and
networking. However, these trade-offs are achievable by maintaining a modular design
concept to handle the complexity without affecting the performance and, combine
lightweight models with advanced algorithms to reduce the complexity.

7 Conclusion and Future Work

The core idea of this research paper was to investigate on a framework to detect replay attack
in autonomous vehicle’s LTV system using Kalman Filter and Mahalanobis distance
integrated with dynamic watermarking. The research has demonstrated promising results in
identifying the replayed messages for the vehicle’s dynamic nature with 77% of recall rate to
detect a potential attack, an average of 0.10 seconds detection rate, and predicting the
freshness of each messages efficiently. This could possibly provide an overview for self
driving vehicles to manage their CAN bus model based on LTV systems in identifying
anomalies at a quick rate and higher precision for various non linear metrics. However, this
approach has resulted with higher false positive rates due to the noisy environment in sensor
data. This framework can be further enhanced by evaluating the thresholds dynamically
based on the current and previous states of the vehicle. Alongside, the paper focuses only on
a certain type of sensor data set and thus, various other data sets can be evaluated and tested
to propose a more optimal solution. With further fine tuning using dynamic threshold, this
technique will reduce the false positive rates to handle the multidimensional states effectively
and maintain a rigid balance between the sensitivity and specificity of the CAN bus data in
terms of detecting the replay attack.
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