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Abstract 

Data Loss Prevention (DLP) is vital for the protection of exclusive information for 

organizations against leakage and unauthorized access. A key limitation of conventional 

DLP systems is their inability to effectively identify complex data loss events amidst the 

vast amount of cyber threat data. The following work focuses on comparing different 

Machine Learning (ML) models for DLP solutions. Utilizing a comprehensive dataset 

comprising 40,000 records of network traffic and attack characteristics, we implemented 

and evaluated ML models like SVM, K-Means clustering, Random forests, Logistic 

Regression and K-Neural networks. The data preprocessing steps involved were feature 

cleaning such as missing value handling, categorical encoding, feature creation and 

synthetic data augmentation by SMOTE technique. Further, data augmentation was carried 

out through adding Gaussian noise to achieve better generalization architecture. The 

assessment, indicated that the Random Forest model was far more effective than the other 

models we investigated, including the SVM, K-means clustering, Logistic Regression 

model and the Neural Networks model; after we hyperparameter tuned the Random Forest 

model, its accuracy was 87.0 % while that of the other models was approximately 34 % 

for the same features. The parameters of the model also reflected Random Forest’s high 

level of accuracy: the ROC-AUC score was 0.97, hence the model excels at distinguishing 

between various classes of data loss incidents. These results further apply ensemble 

learning methods as valuable in the improvement of DLP systems and providing solid 

foundation from which to detect data loss attempts. 

 

1 Introduction 

In the digital era, data protection for personal and organizational is a growing challenge. With 

so many cyber threats, Data Loss Prevention is indispensable for securing certain information. 

Cases of data loss are by far the most detrimental to the financial, operational and reputational 

costs they can have. DLP refers to measures that comprise methodology and technologies 

aimed at the prevention of unauthorized access, use, and transmission of identifiable 

information. Traditional DLP systems struggle to effectively address the complex and dynamic 

nature of modern data loss threats, which are worsened by the growing volume and variety of 

data in cyber environments. 
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                                 Figure 1: Data Loss Incidents Trend over years [1] 
 

As illustrated in Figure 1, the rise in data loss incidents underscores the urgent need for more 

robust and intelligent prevention mechanisms. 

The ever-increasing frequency and complexity of data loss threats require fundamentally 

higher levels of protection that would be able to prevent the threats by using new strategies. 

ML is useful in this context by providing a means through which such systems can be built: the 

systems are fed data, and they learn, decide, and predict potential data loss activities. The 

incorporation of ML in DLP framework enables the intelligence-led detection and response to 

the listed risks, in turn strengthening the security response and measurement. [2] 

Still, there is a series of issues that hinder the proper implementation of ML in the 

framework of data loss prevention. These are, for example, the skewed dataset problem, 

requirements for online/real-time data analysis, and the issue of transparency of the Machine 

Learning models. Also, as the approaches used in data loss change constantly, constant 

modification in the prevention models is necessary. It is important to solve those challenges to 

enhance the dependability and resiliency of ML-based DLP systems. [3] 

This paper compares various ML models for DLP solutions, evaluating their effectiveness 

in detecting complex data loss incidents. The primary research questions guiding this 

investigation are: 

1. Which ML models demonstrate the best performance in identifying potential data loss 

incidents? 

2. How do different feature selection and data preprocessing techniques impact the accuracy 

and efficiency of these models? 

To address these questions, the study aims to: 

1. Preprocess and analyze a comprehensive dataset of data loss incidents, 

2. Implement and train multiple ML models, and 

3. Evaluate their performance using appropriate metrics. 

The present research advances the scientific body of knowledge in two ways. To start with, 

it highlights the weaknesses or performance of diverse methods of ML in the field of data loss 

prevention as well as a comparison to their efficiency. Secondly, it investigates relationships of 

different data preprocessing and feature selection techniques with the effectiveness of ML 

models, which in turn helps in improving the DLP systems. [4] 

The remainder of this report is structured as follows: Section 2 reviews the existing 

literature on ML-based data loss prevention. Section 5 details the data preprocessing, feature 

engineering, and model implementation processes. Section 6 presents the evaluation metrics 
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and results of the comparative analysis. Finally, Section 7 concludes the report by summarizing 

the findings and suggesting directions for future research. 

2 Related Work 

DLP is still one of the most significant issues in the cybersecurity domain as novel and highly 

evolved threats aim at personal and company data assets. In the era where organizations lean 

more towards digital solutions, data exfiltration has emerged as a concern. Therefore, the 

adoption of Machine Learning (ML) has come out as a strong enabler in improving the 

resilience of DLP systems. These systems employ several ML strategies to enhance the tools’ 

ability to detect multiple threats effectively, diminish the rate of false alarms and manage 

tremendous amounts of data. Thus, this section summarizes the existing literature on ML based 

DLP, with attention to the supervised and unsupervised learning techniques used, recent 

developments in deep learning, and techniques used for data preprocessing, feature selection, 

and data balancing. Furthermore, this work locates itself in the discourse as it examines novel 

ML models with improved detecting performance that confront issues throughout the labeled 

data deficiency and computational-load concerns. 

2.1 Machine Learning Techniques for Data Loss Prevention 

2.1.1 Supervised Learning Approaches 

Supervised learning has proven to be one of the most effective techniques in identifying data 

exfiltration activities, as it relies on labeled data to detect specific patterns associated with 

malicious behavior. These techniques use classifiers trained on historical data to predict the 

likelihood of an incident occurring. For instance, Sahingoz et al. (2021) applied supervised 

learning models such as Random Forest, Support Vector Machines (SVM), and k-Nearest 

Neighbors (k-NN) to detect potential data exfiltration activities. Their work primarily focused 

on analyzing lexical and host features derived from user traffic. The study showed that Random 

Forest outperformed the other models in terms of both accuracy and detection rate, highlighting 

its robustness in handling diverse datasets. [5] 
 

Similarly, Hussain Alattas, et al. (2022) employed Naïve Bayes and Decision Trees to detect 

insider threats based on behavioral features. They found that Naïve Bayes achieved higher 

accuracy and lower false positive rates compared to Decision Trees, making it a promising 

approach for behavior-based analysis in DLP systems. These studies underline the importance 

of selecting relevant features to optimize the performance of supervised learning models in the 

detection of data loss incidents. [6] 

2.1.2 Unsupervised Learning Approaches 

Non-supervised learning models are indispensably important in the design of DLP systems 

because in many cases, labeled data is difficult to come by or is completely absent. These 

models operate based on two principles – they seek to find patterns or outliers that can be 

produced without reference to predefined labels. One of the methods often utilized is K-means 

clustering, which gathers the material into groups by similarity and considers objects that do 

not fit into any cluster as threats, Canali et al. (2011) reported on the possibility of using 

unsupervised models for identifying malicious user activity through K-means clustering. 
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Some of the weaknesses inherent in the semi-supervised learning techniques are that even 

though the approach does not require labelled data, it has a high false positive rate and the 

problem of distinguishing between normal and anomalous data, anomalous behavior. 

Nevertheless, methods of this type offer certain benefits in terms of recognizing previously 

unidentified threats, and they can enhance learnable models by increasing the precision of the 

results where there is little data for labelling the training sets. [7] 

2.2 Advancements in Deep Learning for Data Loss Prevention 

Deep learning has brought a tremendous amount of change within the area of DLP systems 

through the development of models that can learn features from the data set on their own. CNNs 

and RNNs are found to perform well with unstructured data and temporal sequences 

respectively in literature. These models do not only enhance the techniques of detection of the 

tumor but also eliminate the problem relating to feature engineering which is tiresome and 

sometimes involves a lot of errors. 

2.2.1 Convolutional Neural Networks (CNNs) 

Unlike traditional neural networks that have been initially developed for image recognition, the 

CNN method has also been used in DLP applications, especially in network traffic data. 

Alotaibi et al. (2018) extend the analysis of raw network packets and detect data exfiltration 

activities. While the traditional approaches used separate procedures for data preprocessing and 

application of predetermined heuristics, the CNN models allow to learn the relevant features 

starting with the data as raw as possible, thus providing an end-to-end perspective on detection 

of unauthorized data transfers. Their approach indicated relatively high precision in detection 

of data loss events but still it is highly computational and needs a lot of resources. CNNs 

capability in feature learning from raw data through hierarchal feature representation makes it 

suitable especially in real-time application such as DLP in large network traffic analysis. [8] 

2.2.2 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs), and particularly Long Short-Term Memory (LSTM) 

networks, have shown great promise in detecting data loss events that involve temporal 

sequences, such as user behavior patterns over time.  Su, Y. (2020) applied LSTMs to analyze 

user logs and discovered that LSTMs were highly effective at capturing the temporal 

dependencies of user behavior. This is particularly important for identifying data loss incidents 

that unfold over time, as LSTMs can model long-term dependencies in sequential data. By 

understanding the context and sequence of events, LSTMs offer an advantage over traditional 

methods that might overlook important temporal aspects. This makes LSTMs particularly well-

suited for detecting sophisticated data loss activities that involve multiple stages or occur over 

extended periods. [9] 

2.3 Summary of Results 

The situational analysis of main studies on use of machine learning in DLP techniques is given 

in the table below along with detected advantages and disadvantages of the methods as well as 

evaluation of their effectiveness. These studies show variations of DLP programs and show 

how each approach has benefits and drawbacks. The literature review highlights that supervised 

methods like Random Forest excel in handling diverse datasets, while unsupervised approaches 

like K-Means are limited by high false-positive rates. Advanced techniques such as CNNs and 
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LSTMs show promise in real-time data loss detection but require significant computational 

resources and large datasets for effective training. 

 

Table 1: Summary of Data Loss Prevention Techniques 

Technique Key Findings Accuracy Limitations 

Random 

Forest 

High accuracy, robust to 

overfitting risk [5] 

95.6 Requires extensive feature 

engineering and careful 

tuning 

Naïve Bayes Effective for 

behavior-based analysis [6] 

92.3 Sensitive to feature 

correlations and may perform 

poorly with highly 

dimensional data 

K-means 

Clustering 

Detects anomalies in user 

behavior [7] 

85.0 Prone to high false positive 

rates and may struggle with 

overlapping clusters 

CNN Excels in feature extraction from 

raw network data [8] 

94.8 Computationally intensive, 

requiring significant 

processing power 

LSTM Captures temporal patterns in 

user activities [9] 

93.5 Susceptible to vanishing 

gradients and requires large 

amounts of data for 

effective training 

3 Methodology 

This section describes the systematic process embarked on to investigate the applicability of 

different ML models on improving DLP in cyber security realm. It includes data collection and 

cleaning, variable transformation, data sampling, data generation, data partitioning, feature 

standardization, model estimation and assessment. All the stages are elaborated quite 

thoroughly to allow for the high reproducibility and reliability of the research. 

3.1 Data Collection 

The data set used within this research is named cybersecurity attacks.csv and contains 40, 000 

records and 25 features. This involves a comprehensive list of attributes on the network traffic 

and attacks such as source and destination IP addresses, protocol, port numbers, packet size, 

payload, malware footprints, anomaly scores, types of attacks, and geo-location data. The 

Timestamp feature stipulates the day and time of occurrence of each attack as phase 

information. 

3.2 Data Preprocessing 

Effective data preprocessing is critical to ensure the quality and suitability of the dataset for 

subsequent analysis. The preprocessing steps are as follows: 

3.2.1 Handling Missing Values 

Initial exploration identified missing values in several features: Malware Indicators, 
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Alerts/Warnings, Proxy Information, Firewall Logs, and IDS/IPS Alerts. These missing values 

were imputed with zeros to maintain dataset integrity and prevent biases during model training. 

Post-imputation verification confirmed the absence of any remaining missing values. 

3.2.2 Encoding Categorical Variables 

Categorical features, including Protocol, Packet Type, Traffic Type, Attack Type, Attack Signature, 

Action Taken, Severity Level, User Information, Device Information, Network Segment, Geo-location 

Data, and Log Source, were encoded using Label Encoding. This process involved transforming 

categorical labels into numerical values, facilitating their use in ML models. 

3.3 Feature Engineering 

Additional temporal features were extracted from the Timestamp attribute to enhance the 

predictive power of the models. Specifically, Year, Month, and Weekday were derived to 

capture temporal patterns in the attack data. Furthermore, IP addresses were converted to their 

integer representations using the ipaddress library, enabling numerical analysis of network-

related features. 

3.4 Data Balancing 

Another limitation of the phishing detection datasets is class imbalance in which some attack 

types can be abundant while others are scarce. To counter this, Synthetic Minority Over-

sampling Technique was applied in this research. Unlike other approaches, SMOTE synthesizes 

samples for minority classes, so that one has equal probability of choosing each of the four 

types of attacks. This balancing was important for controlling the risk of the models favoring 

the majority classes as well as for the general improvement of the classifiers’ reliability. 

3.5 Data Augmentation 

Furthermore, to increase the training set variability and reduce overfitting risk, data 

augmentation was applied to all numerical fields using Gaussian noise addition. This selective 

noise addition disturbs the originals slightly and produces a more complex set of inputs without 

much effect on distribution. By augmentation, I was able to multiply the number of samples by 

two, which enriched arrays of examples for the models. 

3.6 Dataset Splitting 

The augmented dataset was split into training and testing using methodology of stratified train-

test split. In detail, the training set was used with 80% of overall data, and the testing set with 

the rest, which is 20%. Class distribution was maintained within both sets through grouping so 

that the ability to generalize the chosen ML models was improved. 

3.7 Feature Scaling 

Feature scaling was done by the standard Scaler to bring the scale of the numerical features into 

standard scale. This method of scaling was used on the training as well as on the testing dataset 

to preserve comparability. This normalization process places all features on the same scale, 

where each feature has a mean value equal to zero and standard deviation of the feature equal 

to one. This process is critical for models like SVM and neural networks, which are sensitive 

to feature magnitudes, ensuring that no single feature disproportionately influences the model. 
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3.8 Model Training 

Multiple ML models were selected based on their relevance and effectiveness in classification 

tasks. The models implemented include: 

3.8.1 Random Forest 

Random Forest, which is an ensemble learning method, which builds several decision trees 

during the training step, was selected for its great performance for several reasons. In this study, 

Random Forest was set with 100 trees and maximum depth of tree as 10 to achieve decent 

complexity with acceptable time cost to run the model. 

3.8.2 Logistic Regression 

A traditional linear model, Logistic Regression, was used as a starting point in the study. This 

model is chosen from the stable of classification models due to its ease of interpretability. The 

Logistic Regression model was done using scikit-learn native module to generate the model 

using the default features of the model such as a regularization strength of 1.0 and a solver of 

‘liblinear’ which fits small to medium datasets and multi-class classification problems. 

3.8.3 Neural Networks 

A deep learning approach was adopted using a Sequential model with multiple dense layers and 

dropout regularization to prevent overfitting risk. The architecture comprised: 

• An input layer with 64 neurons and ReLU activation. 

• A dropout layer with a rate of 0.5. 

• A hidden layer with 32 neurons and ReLU activation. 

• A dropout layer with a rate of 0.3. 

• An output layer with softmax activation for multi-class classification. 

The model was compiled using the Adam optimizer and categorical cross-entropy loss function. 

Training was conducted over 20 epochs with a batch size of 256, incorporating a validation 

split of 20% to monitor performance. 

3.9 Evaluation Methodology 

To assess performance of ML models, comprehensive set of evaluation metrics was employed: 

• Accuracy: Measures the overall correctness of the model in predicting both phishing and 

legitimate instances. 

• Precision: Evaluates the proportion of correctly identified phishing instances out of all 

instances predicted as phishing. 

• Recall (Sensitivity): Assesses the model’s ability to correctly identify all actual phishing 

instances. 

• F1-Score: Offers a harmonic mean of precision and recall, that is, a balanced measure of 

how well model performs. 

• Confusion Matrix: A detailed discussion of true positives, true negatives, false positives, 

and false negatives. 

• ROC-AUC Score: It estimates the model’s capacity at discriminating classes given the 

different setting of the threshold. 

These metrics provide a holistic view of the models’ performance, enabling a nuanced 

comparison of their strengths and weaknesses in the context of phishing detection. 
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The above presented methodology provides a framework for the evaluation of various ML 

models for DLP processes. Precision, recall, and ROC-AUC were chosen as key evaluation 

metrics to address the imbalanced nature of the dataset, where false negatives (missed 

detections) and false positives (false alarms) have critical implications. Precision highlights the 

model's ability to avoid false alarms, while recall ensures all actual data loss incidents are 

identified. The ROC-AUC provides a holistic view of the model's discrimination capability 

across varying thresholds, ensuring robust evaluation. 

While performing the steps of preprocessing data, feature selection, data balancing and use 

of Multiple models the study minimizes variations and maximized reliability. Logistic 

Regression was added as third comparison to Random Forest and Neural Networks to illustrate 

effectiveness of ensemble methods for cybersecurity data modeling. 

4 Design Specification 

This section details the design and implementation of the proposed system for Data Loss 

Prevention (DLP) enhancement. Five models were developed and evaluated: Neural Network, 

Logistic Regression, Random Forest, Support Vector Machine (SVM), and K-Means 

clustering. 

4.1 System Architecture 

The system architecture is composed of the following components: 

• Data Preprocessing: Includes handling missing values, encoding categorical features, 

and scaling numerical features. 

• Model Development: Five models were implemented to predict attack types: 

1. Neural Network. 

2. Logistic Regression. 

3. Random Forest. 

4. Support Vector Machine (SVM). 

5. K-Means. 

• Model Evaluation: All models were evaluated on accuracy, precision, recall, and ROC-

AUC scores. 

4.2 Model 1: Neural Network 

For multi class classification the Neural Network (NN) with this architecture is designed. The 

hyperparameters for the layers, such as the number of neurons and dropout rates, were chosen 

experimentally to balance model complexity and performance: 

1. Input Layer: Accepts n scaled features. 

2. Hidden Layers: 

• First hidden layer: 64 neurons with ReLU activation. 

• Dropout layer: Rate of 0.5. 

• Second hidden layer: 32 neurons with ReLU activation. 

• Dropout layer: Rate of 0.3. 

3. Output Layer: Uses the softmax activation function for multi-class classification: [10] 
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where z is the vector of raw outputs from the neural network, The i-th entry in the softmax 

output vector softmax(z) can be thought of as the predicted probability of the test input 

belonging to class “i” and k is the number of classes. 

The model is trained using the Adam optimizer and categorical cross-entropy loss: [11] 

, 

where yi,k is the true label and ˆyi,k is the predicted probability for class k. 

4.3 Model 2: Logistic Regression 

Logistic Regression is employed as a baseline for comparison: 

• Objective: Estimates the probability of class membership using the sigmoid function: 

[12] 

, 

where β0 is the intercept and βi are the feature coefficients. 

• Training: Optimizes the log-loss function: [12] 

 

where n is the number of samples, indexed by i, yi is the true class for index i and y^i is the model 

prediction for the index i. Regularization techniques (e.g., L2 penalty) are applied to prevent 

overfitting risk. 

4.4 Model 3: Random Forest 

The Random Forest model is designed for high performance by leveraging an ensemble of 

decision trees: 

• Structure: Comprises M decision trees, where each tree is trained on a bootstrap sample 

of the data. 

• Prediction: Combines predictions from individual trees using majority voting for 

classification: [13] 

                                                  
where N is the number of data points, fi is the value retured by the model and yi is the actual 

value for data point i. 

• Feature Importance: Evaluates the significance of each feature by measuring the 

decrease in impurity: [13] 

                                                  

where pi is the proportion of class i in the dataset. c is the total number of classes. 

A balance was achieved between performance and computational efficiency by selecting 

hyperparameters like number of trees (100) and maximum depth (10), iteratively by 

experimentation. Later, these parameters were tuned to increase the accuracy of the model from 

85.0% to 87.0%. 
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4.5 Model 4: Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is used for classification with a linear kernel or radial basis 

function (RBF) kernel, depending on complexity of the data: 

• Objective: SVM aims to find the line that maximizes margin between the classes. The 

decision rule for SVM is given by: [14] 

yˆ = sign(wT x + b), 

where w is the weight vector, x is the feature vector, and b is the bias term. 

• Training: The SVM is trained by solving the following optimization problem: [14] 

  subject to yi(w
T xi + b) ≥ 1, ∀i. 

The penalty for misclassification is controlled by the regularization parameter C. 

In the case of non-linear classification, the kernel trick is used to map the data into a higher-

dimensional space. 

4.6 Model 5: K-Means Clustering 

K-Means clustering is a popular unsupervised machine learning model used for grouping data 

points into k clusters: 

• Objective: The task is to find the optimal number of clusters (k) with Elbow Method, that 

means when calculating the within-cluster sum of squares (WCSS) and finding the point with 

the dimensional return. This ensured that the chosen k effectively balanced cluster separation 

without overfitting [15] 

                                                      

The k-means algorithm divides a set of N samples X into K disjoint clusters C, each 

described by the mean uj of the samples in the cluster. 

• Training: K-Means iteratively assigns each data point to the nearest centroid and updates 

the centroids based on the mean of the assigned points until convergence. 

• Cluster Assignment: Each point is assigned to the cluster that minimizes the Euclidean 

distance to the cluster centroid: [16] 

yˆi = argmin||xi − µc||
2 

c 

K-Means does not require labeled data and is therefore an unsupervised method. The 

number of clusters, k, is a hyperparameter chosen by the user. 

4.7 Evaluation Metrics 

All models are evaluated using the following metrics: 

1. Accuracy: Measures overall correctness. 

2. Precision: Evaluates the proportion of true positives among predicted positives: 

                                                    Precision = TP/ (TP+FP) 
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3. Recall: Measures the proportion of true positives among actual positives: 

 Recall = TP / (TP+FN) 

4. ROC-AUC: Is a metric to assess tradeoff between true positive rate (TPR) and false 

positive rate (FPR). 

To be more specific, the overall correctness measure is accuracy and model’s ability to detect 

and identify sampled data loss incidents correctly is defined by the measures of precision and 

recall. 

5 Implementation 

The steps involved in the proposed solution for the application of ML for improving Data Loss 

Prevention is involved in various stages of data preprocessing, feature selection and 

engineering, data balancing and augmentation, model development and evaluation. This part 

presents the last activities of the implementation and shows the deliverables generated, and the 

tools and languages used to fulfill the purpose of this research. 

5.1 Data Preprocessing 

Data preprocessing is crucial in determining the success of a ML model because it underlines 

the entire process. To facilitate quality and standards the raw dataset containing about 40000 

records of cybersecurity attack logs was cleaned and pre-processed. The preprocessing process 

involved: 

• Handling Missing Values: Identified columns with missing values, such as Malware 

Indicators, Alerts/Warnings, Proxy Information, Firewall Logs, and IDS/IPS Alerts, were 

addressed by imputing missing entries with appropriate default values (e.g., replacing 

missing indicators with 0). It was done to represent absence of indicators like malware 

detection or alerts and due to its alignment with the nature of cybersecurity data. Other 

methods, like mean or median imputation, were avoided to prevent manipulating feature 

distributions or introducing artificial patterns. This approach preserved data integrity and 

maintained the contextual relevance crucial for accurate model training. 

• Data Type Conversion: This is because all values under Timestamp column were 

converted to datetime format to extract temporal features. Some changes included the 

conversion of typical dotted-decimal representation of each IP address into integer forms 

for the purpose of numerical processing. 

• Categorical Encoding: Applied Label Encoding to transform categorical variables, such 

as Protocol, Packet Type, Traffic Type, and others, into numerical formats suitable for 

machine learning models. 

• Feature Selection: Columns "IDS/IPS Alerts" and "Proxy Information" were dropped 

during feature selection as they showed minimal variance and lacked predictive value in 

dataset. Removing these features reduced noise and computational complexity, allowing 

models to focus on more relevant attributes, by improving performance. 

5.2 Feature Engineering 

To enhance model’s ability to detect data loss incidents, additional temporal features were 

engineered from Timestamp column: 
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• Year and Month Extraction: Extracted year and month from each timestamp to analyze 

temporal patterns in attack occurrences. 

• Weekday Identification: Determined day of the week for each record to identify any 

weekly trends in attack activities. 

These engineered features offered more information about the timeline in order to capture 

seasonal and cyclic variations in data loss incidents. 

5.3 Data Balancing and Augmentation 

Balancing classes is very important to deal with when creating machine learning models to 

better capture and address all types of cyber threats that may not be seen as frequently. The 

following techniques were employed: 

• Synthetic Minority Over-sampling Technique (SMOTE): By using SMOTE, attack 

features were reduced to match the number of instances in each class of attack. This 

approach helped to reduce the prejudice towards a larger number of classes and improved 

the model on all attack types. For this, a minority class sample is selected and identified 

nearest neighbors from the class. Randomly selected one of the neighbors and generated 

sample along the line segment between two points. 

• Data Augmentation with Noise Addition: By applying selective Gaussian noise 

addition in the numerical features, more datasets were added to the current data. In this 

technique, the noise injection slightly changes the relative distribution of values, which 

improved model robustness against small variations and predictive ability of model. 

SMOTE addressed class imbalance by generating synthetic samples for less-represented attack 

types ensuring all classes had equal representation, which improved model’s ability to detect 

minority class instances. While SMOTE effectively balanced the classes, it may occasionally 

create overfitting or unrealistic samples, especially for complex or highly non-linear data 

distributions. Adding Gaussian noise improved generalization by introducing variability in 

numerical features, reducing overfitting risk. Together, these techniques improved the model’s 

robustness and predictive performance across diverse data loss scenarios. 

5.4 Model Development 

The main part included research and development of models for machines and creating and 

training the corresponding models to precisely identify the data loss events. The process 

entailed: 

• Dataset Splitting: Divided the augmented dataset into training and testing sets using a 

stratified train-test split to preserve class distributions. Specifically, 80% of the data was 

allocated for training, and 20% for testing. 

• Feature Scaling: Applied Standard Scaling to normalize the feature values, ensuring that 

each feature contributed equally to the model’s learning process. 

• Label Encoding for Neural Networks: Converted the target variable into categorical 

format to facilitate multi-class classification using neural networks. 

• Neural Network Architecture: Designed a Sequential neural network model with the 

following architecture: 

– An input layer with 64 neurons and ReLU activation. 
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– A Dropout layer with a rate of 0.5 to prevent overfitting risk. 

– A hidden layer with 32 neurons and ReLU activation. 

– A Dropout layer with a rate of 0.3. 

– An output layer with softmax activation corresponding to the number of attack 

classes. 

• Model Compilation and Training: Trained the model with Adam optimizer and 

categorical cross entropy loss function. I trained the model with 20 different epochs and 

set batch size equal to 256 and a validation split of 20%. 

 

    Figure 2: Neutral Network Model Training  

The trained model provided a better or equal BAC compared to other attack types in using 

a model to interpret various data loss events. 

5.5 Tools and Technologies 

The implementation leveraged a suite of modern tools and programming languages to facilitate 

efficient data processing, model development, and evaluation: 

• Programming Language: Used Python, and it was known to be versatile and 

supporting a great deal of data science and machine learning work. 

• Data Manipulation and Analysis: Used pandas and numpy for loading, cleaning and 

manipulation of data. 

• Data Visualization: Used matplotlib and seaborn for exploratory data analysis and 

attack trend visualization. 

• Machine Learning Libraries: Leveraged scikit-learn for preprocessing, feature 

selection, model evaluation, and implementing SMOTE for data balancing. 

• Deep Learning Framework: Used TensorFlow and Keras for designing, compiling, and 

training the neural network models. 

• Imbalanced Data Handling: Applied imblearn’s SMOTE for addressing class 

imbalance in the dataset. 

• Development Environment: Conducted the implementation in Jupyter Notebook, 

facilitating an interactive and iterative development process. 



16 

5.6 Outputs Produced 

The implementation phase yielded several key outputs essential for the subsequent evaluation 

and analysis: 

• Transformed Dataset: A cleaned, balanced, and augmented dataset comprising 53,712 

instances, ready for training and testing machine learning models. 

• Trained Models: Trained and developed neural network models which are capable of 

classifying various types of data loss incidents accurately. 

• Performance Metrics: Generated evaluation metrics such as accuracy, precision, recall, 

F1 score and ROC AUC score to evaluate model performance comprehensively. 

• Visualization Outputs: Produced different visualizations that line plots, bar charts, pie 

charts and heatmaps to depict the trends of attacks and insights about model performance. 

Collectively, these outputs offer a robust framework for increasing Data Loss Prevention 

through ML techniques, providing a solid foundation on which to ground evaluations of and 

validation for the proposed solutions. 

6 Evaluation 

The aim of this section is to provide an intensive analysis of the results and main findings of 

the study. These findings are discussed at the academic and practitioner perspective. The only 

results that are shown are the most relevant ones that are related to the research questions and 

objectives. An in-depth and rigorous analysis of the results is conducted, utilizing statistical 

tools to critically evaluate and assess the experimental research outputs and their levels of 

significance. 

Visual aids such as tables and plots are employed to illustrate the performance of the 

implemented machine learning models in enhancing DLP. 

6.1 Model Performance Comparison 

In this study, five models were developed and assessed for Data Loss Prevention: Random 

Forest, Logistic Regression, Neural Network, Support Vector Machine (SVM), and KMeans. 

The efficiency of all these models was measured using Accuracy, Precision, Recall, F1-Score, 

and ROC-AUC. 

Table 2: Performance Metrics of Machine Learning Models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1Score 

(%) 

ROC- 

AUC 

Random Forest 85.0 86.0 85.0 85.0 0.97 

Logistic Regression 34.0 34.0 34.0 34.0 N/A 

Neural Network 34.1 34.0 34.1 34.0 N/A 

SVM 34.0 34.0 34.0 34.0 N/A 

K-Means 34.0 34.0 34.0 34.0 N/A 
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6.2 Support Vector Machine (SVM) 

The SVM model achieved performance to a similar degree as Logistic Regression with an 

accuracy of 34.0%. All classes had precision, Recall, and F1-Score that are consistent, 

(indicating limited ability to discriminate between classes). 

6.3 K-Means Clustering 

The K-Means clustering model, typically not used for classification, also showed limited utility 

with an accuracy of 34.0%. Precision, Recall, and F1-Score values were low across all classes, 

indicating poor clustering performance for this use case. 

6.4 Random Forest 

Out of all the models that have been tested and compared in this paper, the Random Forest 

model is the most accurate model. The accuracy of 85.0% affirms that the approach possesses 

high efficacy in performing data loss incident classification correctly. Moreover, the Precision 

and Recall results of 86.0% and 85.0% respectively show that the model has certain strength in 

equal weights of both false positives and false negatives. Lastly, the F1-Score of 85.0% agrees 

with the model’s overall accuracy. Moreover, with the ROCAUC value of 0.97 it can be noted 

that the discriminative ability of the model is perfect. 

6.5 Logistic Regression 

The Logistic Regression model achieved an accuracy of 34.0%, indicating limited effectiveness 

in classifying data loss incidents. The Precision, Recall, and F1-Score for each class were 

consistently around 34.0%, reflecting a uniform but low performance across all classes. 

6.6 Neural Network 

The Neural Network model achieved an accuracy of 34.11%, mirroring the performance of the 

Logistic Regression model. The Precision and Recall scores varied slightly across classes but 

remained relatively low, with an overall F1-Score of approximately 34.0%. 

6.7 Hyperparameter Tuning for Random Forest 

To further enhance the performance of the Random Forest model, hyperparameter tuning was 

conducted using Grid Search with cross-validation k-fold technique used.  The data is divided 

into 3 equally (or almost equally) sized folds. The model is trained on 2 folds and validated on 

the remaining fold, iteratively so that each fold is used as a validation set once. The best 

parameters identified were: 

• max depth: None 

• min samples leaf: 1 

• min samples split: 5 

• n estimators: 200 

The tuned Random Forest model achieved an improved accuracy of 87.0%, with Precision, 

Recall, and F1-Score metrics as detailed below. 
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Figure 2 presents the ROC curve for the tuned Random Forest model, showcasing its 

enhanced discriminative ability. 

 

Figure 3: ROC Curve for Random Forest Model 

6.8 Discussion 

The outcome of model comparison shows that Random Forest yields a higher accuracy than 

both Logistic Regression and Neural Network while using for Data Loss Prevention. In 

particular, the tuned hyperparameters improved Random Forest to 87.0%, where Logistic 

Regression was at 34.0%, and Neural Network 34.11%. The above-represented datasets show 

the effectiveness of the ensemble learning methods in dealing with high dimensional datasets 

of cybersecurity. A paired t-test was applied to assess differences in accuracies of the Random 

Forest model when compared to other models across multiple cross-validation folds. The 

obtained p-values were lower than 0.05, which suggested that there were statistically significant 

differences in performance. McNemar's test was also used to assess classification error rates 

(i.e., confusion matrices). The results showed superiority of Random Forest model which was 

not a random chance but due to its robust ensemble learning mechanism that holds effective 

capturing of interdependencies and non-linear patterns between features in the data. 

6.8.1 Consolidated Confusion Matrix and Model Comparison 

A consolidated confusion matrix for all models (Random Forest, Logistic Regression, Neural 

Network, SVM, and K-Means) has been compiled to compare their classification results in 

detail. The matrix below (Figure 3) shows the overall performance of each model across the 

three classes: DDoS, Intrusion, and Malware. 

The confusion matrix also shows that even though Random Forest has lower accuracy than 

the rest of the models, it has much greater TP and lower FP, which is the reason of such 

difference. The Logistic Regression and Neural Network models show a much worse accuracy 

with regard to False Positives and False Negatives which implies the models’ inefficiency in 

interpreting the dataset intricacies. 
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Figure 4: Consolidated Confusion Matrix for All Models 

6.8.2 Implications for Practitioners 

As much as cybersecurity practitioners are concerned, chaos ensued from the study conducted 

here meant that DLP systems should be developed using ensemble methods according to the 

Random Forest model results acquired here. One of the major strengths of Random Forest is 

its efficiency in handling feature interactivity and the availability of strong performance 

measures that are sufficient to contemplate real-life cybersecurity issues. Moreover, its high 

ROC-AUC shows that it can exhaustively reduce the number of false positive and false 

negative, which is important for the reliability and safeguard of operations. 

6.8.3 Academic Contributions 

From the research standpoint, this paper extends the thin knowledge available in the literature 

regarding the functioning of ML-based DLP systems by discussing the Random Forest model 

in cybersecurity. Comparisons made with other models like simple logistic regression and 

neural network further point out the usefulness of ensemble methods. This comparison also 

forms the basis of future research on more complex ensemble learning methods in the field of 

cybersecurity. 

6.8.4 Model Limitations and Future Work 

However, there are certainly some drawbacks when it comes to this Random Forest model, 

even though the accuracy level achieved so far is quite high. One major limitation of its use is 

its efficiency when used on big data and especially when used in real time analysis. It is possible 

in future work to look at how these computational burdens can be further minimized from 

aspects of model quantization or utilizing diverse, higher scaling ensembling methods. Still, if 

one tries to deal with deeper and more developed modes of neural networks or employ 

expanded configurations of the feature vector, the accuracy is likely to be higher and the 

performance – better. 

Furthermore, evaluating models with additional measures, such as Precision-Recall curves 

or F1-Score distributions, would provide a more comprehensive understanding of model 

performance, especially in cases where the dataset is imbalanced. 

6.8.5 Contextualizing with Existing Research 

The outcomes of this work are aligned with the prior studies in cybersecurity utilizing ensemble 

learning. For instance, Verma and his team have established in their study that Random Forest 
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performs better than conventional models in identifying elaborate cyber threats, as we observed 

in this study. Thus, Random Forest is highly resistant to imbalanced datasets, which is a great 

challenge in Data Loss Prevention. 

This study reinforces the notion that higher-order machine learning techniques, such as 

ensemble learning, are crucial for improving the effectiveness of DLP systems. By comparing 

multiple models and discussing their strengths and weaknesses, this work offers insights into 

areas for future research and the optimization of cybersecurity measures. 

7 Conclusion and Future Work 

This study compares different ML Models in parameters of Data Loss Prevention (DLP) 

implementation in Cyber security: The primary research questions addressed were: (1) What 

ML models achieve the best results when trying to predict whether a potential data lost incident 

took place or not, (2) How do various feature selection and data preprocessing strategies affect 

models' accuracy and efficiency in this regard. 

7.1 Summary of Findings 

The evaluation of three machine learning models—Random Forest, Logistic Regression, and 

Neural Network—revealed significant insights: 

• Random Forest: Achieved an accuracy of 85.0%, which improved to 87.0% after 

hyperparameter tuning. With a ROC-AUC score of 0.97, it demonstrated superior 

performance in classifying data loss incidents compared to the other models. [17] 

• Logistic Regression and Neural Network: Both models exhibited limited effectiveness, 

achieving accuracies of approximately 34%. Their performance metrics indicated 

challenges in accurately capturing the complexities of data loss incidents. [18] 

7.2 Implications 

The superior performance of the Random Forest model underscores the effectiveness of 

ensemble learning methods in DLP applications. For cybersecurity practitioners, adopting 

Random Forest can lead to more accurate and reliable detection of data loss incidents, thereby 

enhancing organizational security posture. Academically, this study contributes to the existing 

literature by empirically validating the advantages of Random Forest over traditional and neural 

network-based approaches in the context of DLP. [19] 

7.3 Limitations 

Despite its strengths, the Random Forest model presents certain limitations: 

• Computational Complexity: The ensemble nature of Random Forest can be resource-

intensive, potentially hindering real-time application in large-scale environments. [20] 

• Feature Dependence: The model’s performance is highly reliant on the quality and 

relevance of the selected features, necessitating meticulous feature engineering. [21] 

7.4 Future Work 

Future research can address these limitations and build upon the current findings through the 

following avenues: 

• Model Optimization: Explore techniques such as model pruning or parallel processing 

to reduce the computational overhead of Random Forest, facilitating real time 

deployment. [22] 
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• Advanced Feature Engineering: Incorporate additional features, such as behavioral 

analytics or temporal patterns, to enhance the model’s ability to detect nuanced data loss 

incidents. [23]  

• Hybrid Models: Investigate the integration of ensemble methods with neural networks 

to capture both linear and non-linear patterns in data loss activities. [24] 

• Dynamic Learning: Implement adaptive learning mechanisms that allow the DLP 

system to evolve with emerging threat patterns, ensuring sustained effectiveness. [25] 

• Cross-Dataset Validation: Validate the Random Forest model across diverse datasets to 

assess its generalizability and robustness in different cybersecurity contexts. [26] 

7.5 Conclusion 

Therefore, the present study was able to show that the Random Forest model had a better impact 

on improving DLP than the Logistic Regression and Neural Network models. Consequently, 

implementing the identified future work will help subsequent studies to refine ML models to 

enhance the resilience and effectiveness of DLP systems and bolster organizations’ protection 

against emerging data leakage risks. 
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