*
\ National

Collegef
Ireland

Configuration Manual for Enhancing
Cybersecurity through AI-Driven Threat
Detection Systems

MSc Research Project
Cyber Security

Harini Srinivasulu
Student ID: 23187921

School of Computing
National College of Ireland

Supervisor: Eugene Mclaughlin

\-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing
Student Name: Harini Srinivasulu
Student ID: 23187921
Programme: MSc in Cyber Security Year: 2024

Enhancing Cyber Security through AI- Driven Threat Detection
Module: Systems

Lecturer: Eugene Mclaughlin
Submission Due
Date: 12-12-2024

Enhancing Cyber Security through AI- Driven Threat Detection
Project Title: Systems

Word Count: 706 Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Harini
Signature:

Date: 12-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, o

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1.

Configuration Manual for Enhancing
Cybersecurity through AI-Driven Threat
Detection Systems

Harini Srinivasulu
Student ID: 23187921

Introduction

This manual provides a comprehensive guide for implementing a machine learning-based
threat detection system using the Network Intrusion Dataset. The goal of this research is to
leverage various machine learning models to classify network traffic as either benign or
malicious, specifically focusing on Distributed Denial of Service (DDoS) attacks.

2.

e & 06 0 0 0o o ()

System Hardware Requirements

Processor (CPU):

m Intel Core i7 or AMD Ryzen 7 (8 cores, 16 threads minimum)

m Preferred: Intel Core 19 or AMD Ryzen 9 for better performance.

Memory (RAM):

m Minimum: 16 GB

m Recommended: 32 GB or more for faster model training, especially for deep learning
tasks.

Storage:

m Minimum: 500 GB SSD for storing datasets, model outputs, and logs.

m Recommended: 1 TB SSD or higher for extensive datasets and efficient 1/O
performance.

GPU (for deep learning models):

® Minimum: NVIDIA GTX 1060 / AMD equivalent for basic model training.

m Recommended: NVIDIA RTX 3060 or higher (e.g., RTX 3080/3090) for faster neural
network training.

Operating System: Windows 10/11, macOS, or Linux (Ubuntu 20.04 or newer preferred).

Software Requirements:

Python 3.7 or newer

pandas (for data handling), numpy (for numerical operations).

matplotlib, seaborn (for data visualization and plotting).

scikit-learn (for model building, classification, evaluation).

tensorflow and keras (for deep learning model development).

sklearn.metrics (for performance metrics such as accuracy, confusion matrix).

warnings (for ignoring warnings), LabelEncoder, Simplelmputer, MinMaxScaler,
StandardScaler, SelectKBest.

Jupyter Notebook, Visual Studio Code, or PyCharm (for better debugging and
development experience).

Anaconda or Miniconda (for environment management and package installation).

4. Dataset Details

Dataset Source:

The dataset used in this project is from Kaggle, specifically the "Network Intrusion Dataset".
It contains network traffic data for different types of attacks (e.g., DDoS, PortScan, and more)
labeled as either BENIGN or DDoS. The dataset is useful for training machine learning models
for intrusion detection and cybersecurity analysis.

Dataset Link: Network Intrusion Dataset on Kagegle

Dataset Description:

e The dataset consists of various network traffic features like flow duration, packet length,
packet count, flags, and other network attributes, making it suitable for detecting different
attack types.

e The data is collected in different scenarios and reflects real-time network traffic patterns,
which includes both normal (BENIGN) and malicious (DDoS) behavior.

File Format: CSV file: Friday-WorkingHours-A fternoon-DDos.pcap ISCX.csv
Features: Includes features such as flow duration, packet length, flow bytes/s, total forward
packets, total backward packets, active time, idle time, and TCP flags.

S. Execution of the Code Implementation

Import Required Libraries
Start by importing the essential libraries required for data manipulation, model building, and
visualization. The following libraries are used:

#import the necessary libaries

import pandas as pd # For data manipulation and analysis

import numpy as np # For numerical operations

import matplotlib.pyplot as plt # For basic data visualizationn

For enhanced data visualization

from sklearn.preprocessing import LabelEncoder #For label encoding categorical variable
from sklearn.prepr ing import C

from sk import SelectKBest, f_classif

from sklearn.imp

from sklearn.mod
from sklearn.nei
from sklearn.ens
from sklearn.lir
from sklearn
import tensorfl
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from sk n.metrics import accuracy_score,classification_report,confusion_matrix # For model evaluation
from sk S 5 #roc_curve plot

import seaborn as

e import SimpleImputer
n import train_test_split #For splitting the data into train and test
hbors import KNeighborsC ier #KNN Classifier
1 fier # Random forest Classifier
ion #lLogistic Regression Classifier
import DecisionTreeClassifier #Decision Tree classifier

lassif

e import RandomFor

w
™ ® M oa M
o

W as

import warnings

r
warnings.filt

Load the Dataset
The dataset can be downloaded from Kaggle and loaded into a pandas DataFrame. This will
allow you to explore and preprocess the data.

#fetch the dataset
dataFrame = pd.read_csv('Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')

#columns in the dataset
dataFrame.columns

Index([" Destination Port’, Flow Duration’, ' Total Fwd Packets’,
' Total Backward Packets', 'Total Length of Fwd Packets’,
' Total Length of Bwd Packets', ' Fwd Packet Length Max',
' Fwd Packet Length Min', ' Fwd Packet Length Mean',
' Fwd Packet Length Std', 'Bwd Packet Length Max',
' Bwd Packet Length Min', ' Bwd Packet Length Mean',
' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow Packets/s',
' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min',
'Fud IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max’',
' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std’',
' Bwd IAT Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Bwd PSH Flags',
' Fwd URG Flags', ' Bwd URG Flags', ' Fwd Header Length’,
' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s',
Min Packet Length', ' Max Packet Length', ' Packet Length Mean’,
' Packet Length Std', ' Packet Length Variance', 'FIN Flag Count’,
' SYN Flag Count’, ' RST Flag Count', ' PSH Flag Count’,
' ACK Flag Count', ' URG Flag Count', ' CWE Flag Count’,
' ECE Flag Count', ' Down/Up Ratio', ' Average Packet Size',
Avg Fwd Segment Size', ' Avg Bwd Segment Size’,
Fwd Header Length.i', 'Fwd Avg Bytes/Bulk', ' Fwd Avg Packets/Bulk’,
' Fwd Avg Bulk Rate', ' Bwd Avg Bytes/Bulk', ' Bwd Avg Packets/Bulk',
'Bwd Avg Bulk Rate', 'Subflow Fwd Packets', ' Subflow Fwd Bytes',
' Subflow Bwd Packets', ' Subflow Bwd Bytes', 'Init_Win_bytes_forward’,
' Init_Win_bytes_backward', ' act_data_pkt_fwd',
min_seg_size_forward', 'Active Mean', ' Active Std', ' Active Max',
' Active Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' Idle Min',
' Label'],
dtype="object")

Explore the Dataset
Before performing any preprocessing, understand the dataset by inspecting the first and last
few rows, dataset info, and basic statistics:

View the first 5 rows of the dataset
dataFrame.head()

Python
Total Total Total Total Fwd Fwd Fwd Fwd
Destination Flow : d B kv: o Length Length Packet Packet Packet Packet . fia for
Port Duration Pa kwts a; kats of Fwd of Bwd Length Length Length Length Al
e AK€ packets Packets Max Min Mean Std
0 54865 3 2 0 12 0 6 6 6.0 0.0
1 55054 109 1 1 6 6 6 6 6.0 0.0
2 55055 52 1 1 6 6 6 6 6.0 0.0
3 46236 34 1 1 6 6 6 6 6.0 0.0
4 54863 3 2 0 12 0 6 6 6.0 0.0

5 rows x 79 columns

Data Cleaning and Preprocessing
e Handle missing values: Replace NaN with zeros or use imputation techniques.
e Handle infinities: Replace any infinite values with NaN, then impute or drop.

Replace infinities with NaN

dataFrame.replace([np.inf, -np.inf], np.nan, inplace=True)
Replace NaNs with @
dataFrame.fillna(@, inplace=True)

e Remove duplicates: Drop duplicate rows to prevent skewing the analysis.

print('Number of duplicates are : ', dataFrame.duplicated().sum())

Number of duplicates are : 2633

Remove duplicates from the DataFrame
dataFrame = dataFrame.drop_duplicates()

Check the number of duplicates after removal
print('Number of duplicates are : ', dataFrame.duplicated().sum())

Number of duplicates are : @

Exploratory Data Analysis (EDA)

Perform an exploratory analysis to gain insights into the dataset. This includes visualizations
of attack types, flow duration, packet length distribution, and more.

Distribution of Threat Attack Types DDoS

120000
100000

80000 1

Count

60000 1

40000 4

20000 4

BENIGN

BENIGN

Threat Attack Type

leg Flow Duration vs Traffic Type (BENIGN vs DDoS)
124
104
)
=
1=
S o8
2
o
g
E
£ 0.6
= =]
]
£ o
304
g)
[
0.2 T
[|
0.0
T T
BENIGN DDoS
Label (Normal vs Attack)

Packet Length Mean Distribution (BENIGN vs DDoS)

3 BENIGN
DDoS

0.008 A

0.006

Density

0.004 -

0.002 -

0.000 -

750 1000 1250 1500 1750
Packet Length Mean (bytes)

Feature Engineering

Label Encoding: Convert categorical labels into numerical values.

#encode the string objects to the categorical values to numerical values
encoder = {}
for i in dataFrame.select_dtypes('object').columns:

encoder[i] = LabelEncoder()

dataFrame[i] = encoder[i].fit_transform(dataFrame[i])

Feature Selection: Use SelectKBest to select the top features.

Impute missing values (replace NaNs with the mean)
imputer = SimpleImputer(strategy="mean')
X_imputed = imputer.fit_transform(x)

Determine the number of columns (features) in your DataFrame
num_columns = dataFrame.shape[1]

Set an appropriate value for k (less than or equal to the number of columns)
k = min(1@, num_columns)

Initialize SelectKBest with the scoring function
k_best = SelectKBest(score_func=f_classif, k=k)

Fit and transform the imputed data to select the top 1@ features
X_new = k_best.fit_transform(X_imputed, y)

Split the Data
Split the dataset into training and testing sets (80% training, 20% testing).

Split the data into features (X) and labels (y)
X = dataFrame[selected_feature_names].values
y= dataFrame[' Label'].values

Split the data into training and testing sets
X_train, X_test, y_train, y test = train_test_split(X,y,test_size=0.20,random_state=0)

print('Training Features Shape:', X_train.shape)
print('Training Labels Shape:', y_train.shape)
print('Testing Features Shape:', X_test.shape)
print('Testing Labels Shape:', y_test.shape)

Training Features Shape: (178489, 19)
Training Labels Shape: (178489,)
Testing Features Shape: (44623, 10)
Testing Labels Shape: (44623,)

Model Initialization & Training

Train several machine learning models and evaluate their performance:
e K-Nearest Neighbors Classifier (KNN):

#Initialize and train one of the K-Nearest Neighbors Model for Classification of Threat attack
knn_classifier = KNeighborsClassifier(n_neighbors=10000)
knn_classifier.fit(X_train,y_train)

L RKNeighborsClassifier

e Decision Tree Classifier:

Initialize and train one of the Decision Tree Model for Classification of Threat attack
dt_classifier = DecisionTreeClassifier(max_depth=2)
dt_classifier.fit(X_train,y_train)

| v DecisionTreeClassifier

DecisionTreeClassifier (max_depth=2) |

e Logistic Regression Classifier:

#Initialize and train one of the (Logistic Regression Model) for Classification of threat attack
logistic_regression_model = LogisticRegression(n_jobs=61)
logistic_regression_model.fit(X_train,y_train)

= LogisticRegression

LogisticRegression(n_jobs=61) |

e Random Forest Classifier:

#Initialize and train one of the (Random Forest Model) for Classification of Threat attack
random_forest_model = RandomForestClassifier(max_depth=3)
random_forest_model.fit(X_train,y_train)

v RandomForestClassifier

andomForestClassifier (max depth=3)

.y_)

e Deep Neural Network (DNN):

#Initialize and train one of the (Deep Neural Network Model) for Classification of Threat attack
dnn_model = Sequential()

dnn_model.add(Dense (128, input_dim=X_train.shape[1], activation='relu'))

dnn_model.add(Dense (64, activation="relu’'))

dnn_model.add(Dense(32, activation="relu'))

dnn_model.add(Dense(1, activation='sigmoid')) # For binary classification; use 'softmax’ for multiclass

Python
Compile the model
dnn_model.compile(optimizer="adam', loss='binary_crossentropy', metrics=['accuracy'])

Python
Train the model
history = dnn_model.fit(X_train, y_train, epochs=20, batch_size=32, validation_split=0.2, verbose=1)

Python

Loss (Lower Means Better) Accuracy (Higher Means Better)

—e— training_loss 1.00
—o— val_loss

—e— training_accuracy
—&— val_accuracy

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 0.0 25 5.0 7.5 10.0 125 15.0 17.5
Epochs Epochs

Model Comparison
After training all the models, compare their performance metrics (accuracy, precision, recall,
F1 score, etc.) to determine which model performs the best for detecting DDoS attacks.

Model Comparison

- 1.00
104 o097 g 098 :

0.84 T 000 0 0 = . 0090909090909== -—

u..ﬁ, == = =

Accuracy

n;_."iq._. - - 494944 B ==

024 —_ 0 0 = . -—

0.0 -

Decision Tree Random Forest

Model

K-Nearest Neighbors Linear Regression Deep Neural Network

Confusion Matrix For Random Forest

Matrix For

Confusion Matrix For Logistic Regression

Matrix For K-

Actual BENIGN
Actual BENIGN
Actual BENIGN
Actual BENIGN

Actual
Actual
Actual
Actual

Actual DDos

Actual DDos
Actual DDos

Actual DDos

0
Predicted BENIGN Predicted DDos.
Predicted Predicted Predicted Predicted

' 0
Predicted BENIGN Predicted DDos. Predicted BENIGN Predicted DDos.

'
Predicted BENIGN Predicted DDos.

This manual provides the necessary steps to load, preprocess, analyze, and model the Network
Intrusion Dataset using machine learning techniques. By following these steps, you can run the
code implementation for a robust threat detection system to classify network traffic as benign
or DDos.

References
Python: https://www.python.org
Dataset Source: Network Intrusion Dataset on Kaggle

