

Configuration Manual

MSc Practicum 2
Master of Science in Cybersecurity

Preetham Charan Sridhar
Student ID: x23183683

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

PREETHAM CHARAN SRIDHAR
…….………

Student ID:

x23183683
………..……

Programme:

MSC Cyber Security
………………………………………………………………

Year:

2024
…………………………..

Module:

MSc Practicum 2
…….………

Lecturer:

VIKAS SAHNI
…….………

Submission
Due Date:

12-12-2024
…….………

Project Title:

Securing 5G IoT Networks: A Machine Learning Framework for Zero-
Trust Intrusion Detection System
…….………

Word Count:
2126 16
……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

PREETHAM CHARAN SRIDHAR
……

Date:

12-12-2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Preetham Charan Sridhar
Student ID: x23183683

1. Introduction

This configuration manual walks through the implementations of machine learning models
for intrusion detection in 5G IoT networks. It details the packages, libraries, and
steps needed for data preprocessing, model training, and evaluation. In fact, this manual
supports replication experiments-including those with hybrid models and Zero Trust
integration-to improve IoT network security.

2. Hardware requirements/environment used.
Cloud Hardware

• RAM – up to 51GB
• Disk Storage - 225.8 GB available for temporary file storage during runtime
• Compute Units - 100 units for operations
• GPU - NVIDIA Tesla P100 or T4 (CUDA-enabled) for accelerated training
• Backend - Python 3 Google Compute Engine
• Internet Connection - High-speed internet for seamless access to the Colab Pro

environment and dataset uploads.

3. Software Requirements

Software tools and environment used,

• Cloud Platform - Google Colab Pro.
• Operating System - Not required locally, runs entirely on Colab Pro backend.
• Programming Language - Python 3.8+ (pre-installed in Colab Pro).
• Development Environment - Jupyter Notebook interface (via Colab Pro).
• Data Integration - Google Drive integration for seamless dataset management.

4. Datasets Management

The datasets (CICIOT2023 and Bot-IoT) are utilized in the research, and these datasets were
uploaded and accessed via Google Drive within Colab Pro.

5. Libraries Imported

The library list is detailed and categorized into Data Loading, Manipulation, and
Preprocessing and Machine Learning Algorithms.

Data Loading, Manipulation, and Preprocessing

2

Libraries and Versions
• Pandas (2.2.2)
• NumPy (1.26.4)
• Scikit-learn (1.5.2)
• XGBoost (2.1.3)
• Matplotlib (3.8.0)
• Seaborn (0.13.2)
• Imbalanced-learn (0.12.4)

6. Data Preparation and Processing stage

CICIOT2023 - Data Preparation and Processing Stage.

Step 1. Mounting and Loading - The data was accessed directly from Google Drive.
Renaming columns for consistency: all in lower case and separated by underscores.
Step 2. Data Cleaning - some irrelevant columns, like the protocol type, have been removed.
Missing values have also been checked and none found.

 Step 1. Mounting and Loading Step 2. Data Cleaning

Step 3. Feature Scaling - This step scales numerical features into a consistent range using
Standardscaler.
Step 4. Class Balancing - The classes were then balanced by SMOTE, after which the class
distributions for all attack categories were equal.

 Step 3. Data Scaling Step 4. Class Balancing

3

Step 5. Feature Correlation - Correlation heatmap has been generated to identify
relationships between the features and removed redundant ones if needed.
Step 6. Label Encoding and Splitting - Labels were mapped to broader categories, encoded
using LabelEncoder.

 Step 5. Feature Correlation Step 6. Labe Encoding

Step 7. Dataset Splitting - The dataset was split into training (80%) and testing (20%) sets.

Step 7. Dataset Splitting

BoT_IoT - Data Preparation and Processing Stage

Step 1. Data Loading - The dataset was loaded from Google Drive using pandas, and its
structure was analysed to understand column names and data types.
Step 2. Data Cleaning – The data cleaning has been done for removing irrelevant columns
(saddr, daddr, proto, etc.) and ARP packets and along with the confirmation of the cleaned
dataset.

 Step 1. Data Loading. Step 2 – Data Cleaning

4

Step 3. Class Distribution Analysis – The below bar chart shows the class distribution of
attack subcategories in the unbalanced dataset (e.g., UDP, TCP, Keylogging, etc.)

Step 3. Class Distribution Analysis

Step 4. Balancing the Dataset – The below code is done for the undersampling the dominant
class (DoS&DDoS) and balancing it with Service_Scan.

Step 4. Balancing the Dataset

Step 5: Label Encoding and Data Splitting – The code preprocesses the dataset by
dropping unnecessary columns and encoding categorical features using one-hot encoding.
Using LabelEncoder, the target variables are converted to numerical values and features are
normalized using StandardScaler. At last, the dataset was split into training and testing sets
(80:20), while maintaining class proportions, and the class distribution is verified with
Counter.

Step 5: Label Encoding and Data Splitting

Step 6. Class Balancing with SMOTE – The Training dataset’s class distribution was
visualized to highlight imbalances. The SMOTE was then applied to balance the classes, and
a bar chart confirmed the uniform distribution of all classes post-oversampling.

5

 Step 6. Class Balancing with SMOTE

Step 7. Feature Correlation Analysis – Heatmap are generated to visualize feature
correlations in both imbalanced and normalized datasets, helping us to identify relationships
between features and reducing redundancy.

Step 7. Feature Correlation Analysis

7. Model Training Process

7.1 Base Classifiers Configuration.

CICIOT2023 - The base classifiers were trained to use the preprocessed dataset, with
specific hyperparameter tuning applied to optimize performance. Logistic Regression used
maximum iterations of 100 and random_state as 42, and where the KNN had n_neighbors of
5 to balance the accuracy and runtime. The Random Forest was using 50 estimators, and a
maximum depth of 10 and parallel processing (n_jobs=-1). Naive Bayes (Gaussian) was
operating on the default setting and the Decision Tree was configured at a depth of 10 to

6

avoid overfitting. All the base classifiers were using the StratifiedKFold (3 splits) for cross-
validation to ensure the model's effectiveness across the multiple folds.

 Logistic Regression K-Nearest Neighbors

 Random Forest Naive Bayes

Decision Tree

BoT_IoT - Random forest was configured with the n_estimators as 10 and fixed
random_state=42 for maintaining the consistency, measuring and training and testing times.
Logistic Regression used maximum iteration of 1000 to ensure convergence, while SVM
applied a linear kernel for computational efficiency. KNN used n_neighbors as 5 to analyze
local data relationships, and Gaussian Naive Bayes used its simplicity for probabilistic
classification.The decision tree were optimized with maximum depth of 10 to prevent from
the overfitting. The base classifiers were evaluated using the 5-fold cross-validation for
effective accuracy comparisons.

 Decision Tree Random Forest

7

 Logistic Regression K-Nearest Neighbors

 Support Vector Naïve Bayes

Cross – Validation for base Classifiers.

Step 9. BoT_IoT - Base Classifiers Configuration.

7.2 Advanced Ensemble and Hybrid Stacking Models

CICIOT2023 - The Advanced Ensemble and Hybrid Stacking Models were configured with
combining base learners and meta-learners. The tuned hybrid model followed DT-CART-
driven by a maximum depth of 10-and XGBoost with 50 estimators and a maximum depth of
6-using logistic regression as a meta-learner and evaluated by 5-fold cross-validation. This
was developed according to the ensemble: Hybrid Stacking Model: DT-CART max. Depth =
10, XGBoost tuned on log loss, and logistic regression-the meta-learner to combine

8

predictions. Stacking Ensemble: XGBoost, Random Forest-50 estimators, max. Depth 6-
decision trees max. Depth 6-logistic regression-stratified 3 fold for evaluation.

Tuned Hybrid Model and Cross validation

Hybrid Stacking Model and Cross Validation

9

Stacking Ensemble and Cross Validation

BoT_IoT- The hybrid model tuned combines a decision tree-CART with XGBoost. It
includes the predictions from DT as extra features for XGBoost. Tuned parameters are
max_depth=20 for DT and max_depth=6, n_estimators=200 for XGBoost. Hybrid Stacking
Model combines DT and XGBoost. It takes predictions coming from DT and XGBoost as
input features for the meta-learner: the logistic regression. The stacking ensemble, therefore,
would combine XGBoost, RF, and DT with a meta-set and stack them onto LR. It uses
predict_proba with 5-fold cross-validation to make the prediction more effective.

Tuned Hybrid Model and Cross validation

10

Hybrid Stacking Model and Cross Validation

Stacking Ensemble and Cross Validation

7.3 Federated Learning Approaches

CICIOT2023 – The Federated approaches include Basic Federated Learning in which the
Decision Tree, Gradient Boosting, and AdaBoost classifiers were trained across multiple
clients with the reduced parameters, using majority voting for predictions. Federated
Ensemble with SMOTE applied SMOTE technique for balancing the dataset, and this is done
before splitting it among clients, with similar models trained and predictions aggregated via
majority voting. Federated Ensemble with Stacking and Majority Voting uses a stacking
ensemble per client, combining the base models like DT, GB, AdaBoost with a Logistic
Regression meta-learner and the final predictions were aggregated through majority voting.
These methods address class imbalance, improve diversity, and enhance federated learning
accuracy.

11

 Basic Federated Learning Federated Ensemble with SMOTE

Federated Ensemble with Stacking and Majority Voting

BoT_IoT – During the basic Federated learning setup, client data was distributed, and
models (DT, Gradient Boosting, AdaBoost) were trained locally with majority voting for
predictions. The SMOTE configuration applied class balancing on client data before model
training and prediction aggregation. In the stacking and majority voting ensemble, a Logistic
Regression meta-learner combined predictions from client models for improved performance.

12

 Basic Federated Learning Federated Ensemble with SMOTE

Federated Ensemble with Stacking and Majority Voting

8. Zero Trust Integration in Federated Learning

Step 1. Client ID Management and Access Control – Unique IDs has been assigned to the
clients using the uuid4 function from the uuid library and the access permission were defined
for the access control.
Step 2: Data Encryption and Decryption - Using the Fernet class, Data encryption was
implemented from the cryptography library. Client data was encrypted before the
transmission to simulate secure communication and decrypted it before training.

13

 Step 1. Client ID Management and Step 2: Data Encryption and Decryption
 Access Control

Step 3. Trust Score Initialization and Dynamic Adjustment – The Initial trust scores are
set to 1.0 for all the clients and these trust scores will be changing dynamically and updated
based on the client model accuracy during training.
Step 4. Secure Aggregation with Trust Filtering – These are then aggregated across trusted
clients, and hence only trusted clients with a threshold ≥ 0.5 can contribute toward the
aggregation process.

 Step 3. Trust Score Initialization Step 4: Secure Aggregation with
 and Dynamic Adjustment. Trust Filtering

Step 5. Decryption Validation and Trust Logging – Decryption success is simulated and
integrated into the trust score computation using weighted metrics (accuracy, consistency,
data integrity). Logs are maintained for all client actions.
Step 6. Dataset Split into Clients – The dataset was split into three clients, with training
features (X_train) and labels (Y_train) divided equally among them.

 Step 5. Decryption Validation and Step 6. Dataset Split into Clients
 Trust Logging

Experiment 1 – Data Poisoning.

Step 7. Simulated Data Poisoning – For the client 1, a small portion of the training labels is
altered randomly to simulate a data poisoning attack.

14

Step 7. Simulated Data Poisoning

Step 8. Recomputing Trust Scores – The poisoned client is assigned a trust score of 0, and
any client with a trust score below 0.5 is flagged as low trust and excluded from aggregation.

Step 8. Recomputing Trust Scores

Experiment 2 - failed decryption and adversarial predictions

Step 9. Simulating Failed Decryption for Client 2 – In experiment, the code assigns the
simulated decryption failure for Client 2, by setting decryption_successful to False and
data_integrity to 0.0 for the affected client.
Step 10. Simulating Adversarial Predictions for Client 3 - Random predictions are
generated for Client 3 to mimic adversarial behavior, and the trust score for this client is
calculated based on its prediction accuracy against the test labels.

 Step 9. Simulating Failed Decryption Step 10. Simulating Adversarial Predictions
 for Client 2. for client 3

Step 11. Recomputing Trust Scores After New Scenarios - Then the trust scores are
recomputed by including the accuracy of adversarial predictions, data integrity in the case of
failed decryption, weighted the adjustments for overall client trust. Clients with the trust
scores less than the threshold limit of 0.7 are flagged and excluded

Step 11. Recomputing Trust Scores After New Scenarios

