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1. Introduction 
 
This configuration manual walks through the implementations of machine learning models 
for intrusion detection in 5G IoT networks. It details the packages, libraries, and 
steps needed for data preprocessing, model training, and evaluation. In fact, this manual 
supports replication experiments-including those with hybrid models and Zero Trust 
integration-to improve IoT network security. 
 

2. Hardware requirements/environment used. 
Cloud Hardware 

• RAM – up to 51GB 
• Disk Storage - 225.8 GB available for temporary file storage during runtime 
• Compute Units - 100 units for operations 
• GPU - NVIDIA Tesla P100 or T4 (CUDA-enabled) for accelerated training 
• Backend - Python 3 Google Compute Engine 
• Internet Connection - High-speed internet for seamless access to the Colab Pro 

environment and dataset uploads. 

3. Software Requirements 
 
Software tools and environment used, 

• Cloud Platform - Google Colab Pro. 
• Operating System - Not required locally, runs entirely on Colab Pro backend.   
• Programming Language - Python 3.8+ (pre-installed in Colab Pro).   
• Development Environment - Jupyter Notebook interface (via Colab Pro).   
• Data Integration - Google Drive integration for seamless dataset management.  

4. Datasets Management  
 
The datasets (CICIOT2023 and Bot-IoT) are utilized in the research, and these datasets were 
uploaded and accessed via Google Drive within Colab Pro. 
 

5. Libraries Imported  
 
The library list is detailed and categorized into Data Loading, Manipulation, and 
Preprocessing and Machine Learning Algorithms. 
 
Data Loading, Manipulation, and Preprocessing 
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Libraries and Versions 
• Pandas (2.2.2) 
• NumPy (1.26.4) 
• Scikit-learn (1.5.2) 
• XGBoost (2.1.3) 
• Matplotlib (3.8.0) 
• Seaborn (0.13.2) 
• Imbalanced-learn (0.12.4) 

 

6. Data Preparation and Processing stage 
 
CICIOT2023 - Data Preparation and Processing Stage. 
 
Step 1. Mounting and Loading - The data was accessed directly from Google Drive. 
Renaming columns for consistency: all in lower case and separated by underscores. 
Step 2. Data Cleaning - some irrelevant columns, like the protocol type, have been removed. 
Missing values have also been checked and none found. 
 

      
             Step 1. Mounting and Loading                       Step 2. Data Cleaning 
 
Step 3. Feature Scaling - This step scales numerical features into a consistent range using 
Standardscaler. 
Step 4. Class Balancing - The classes were then balanced by SMOTE, after which the class 
distributions for all attack categories were equal. 
 

                      Step 3. Data Scaling                               Step 4. Class Balancing 
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Step 5. Feature Correlation - Correlation heatmap has been generated to identify 
relationships between the features and removed redundant ones if needed. 
Step 6. Label Encoding and Splitting - Labels were mapped to broader categories, encoded 
using LabelEncoder. 

   
       Step 5. Feature Correlation                                   Step 6. Labe Encoding 
 
Step 7. Dataset Splitting - The dataset was split into training (80%) and testing (20%) sets. 
 

 
Step 7. Dataset Splitting 

 
BoT_IoT - Data Preparation and Processing Stage 
 
Step 1. Data Loading - The dataset was loaded from Google Drive using pandas, and its 
structure was analysed to understand column names and data types. 
Step 2. Data Cleaning – The data cleaning has been done for  removing irrelevant columns 
(saddr, daddr, proto, etc.) and ARP packets and along with the confirmation of the cleaned 
dataset. 

   
                Step 1. Data Loading.                                          Step 2 – Data Cleaning 
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Step 3.  Class Distribution Analysis – The below bar chart shows the class distribution of 
attack subcategories in the unbalanced dataset (e.g., UDP, TCP, Keylogging, etc.) 
 
 
 

Step 3.  Class Distribution Analysis 
 
Step 4. Balancing the Dataset – The below code is done for the undersampling the dominant 
class (DoS&DDoS) and balancing it with Service_Scan.  
 
 
 
 
 
 
 

Step 4. Balancing the Dataset 
 
Step 5: Label Encoding and Data Splitting – The code preprocesses the dataset by 
dropping unnecessary columns and encoding categorical features using one-hot encoding. 
Using LabelEncoder, the target variables are converted to numerical values and features are 
normalized using StandardScaler. At last, the dataset was split into training and testing sets 
(80:20), while maintaining class proportions, and the class distribution is verified with 
Counter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step 5: Label Encoding and Data Splitting 

 
Step 6. Class Balancing with SMOTE – The Training dataset’s class distribution was 
visualized to highlight imbalances. The SMOTE was then applied to balance the classes, and 
a bar chart confirmed the uniform distribution of all classes post-oversampling. 
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   Step 6. Class Balancing with SMOTE 

 
 
Step 7. Feature Correlation Analysis – Heatmap are generated to visualize feature 
correlations in both imbalanced and normalized datasets, helping us to identify relationships 
between features and reducing redundancy. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Step 7. Feature Correlation Analysis 
 
7. Model Training Process  
 
7.1 Base Classifiers Configuration. 

 
CICIOT2023 - The base classifiers were trained to use the preprocessed dataset, with 
specific hyperparameter tuning applied to optimize performance. Logistic Regression used 
maximum iterations of 100 and random_state as 42, and where the KNN had n_neighbors of 
5 to balance the accuracy and runtime. The Random Forest was using 50 estimators, and a 
maximum depth of 10 and parallel processing (n_jobs=-1). Naive Bayes (Gaussian) was 
operating on the default setting and the Decision Tree was configured at a depth of 10 to 
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avoid overfitting. All the base classifiers were using the StratifiedKFold (3 splits) for cross-
validation to ensure the model's effectiveness across the multiple folds. 
 

     
            Logistic Regression    K-Nearest Neighbors 
 

      
   Random Forest     Naive Bayes 

 
Decision Tree 

 
BoT_IoT - Random forest was configured with the n_estimators as 10 and fixed 
random_state=42 for maintaining the consistency, measuring and training and testing times. 
Logistic Regression used maximum iteration of 1000 to ensure convergence, while SVM 
applied a linear kernel for computational efficiency. KNN used n_neighbors as 5 to analyze 
local data relationships, and Gaussian Naive Bayes used its simplicity for probabilistic 
classification.The decision tree were optimized with maximum depth of 10 to prevent from 
the overfitting. The base classifiers were evaluated using the 5-fold cross-validation for 
effective accuracy comparisons. 
 

   
        Decision Tree                                       Random Forest 
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        Logistic Regression                      K-Nearest Neighbors 
 

  
        Support Vector                                                           Naïve Bayes 
 

 
Cross – Validation for base Classifiers. 

 
Step 9. BoT_IoT - Base Classifiers Configuration. 

 
7.2 Advanced Ensemble and Hybrid Stacking Models 
 
CICIOT2023 - The Advanced Ensemble and Hybrid Stacking Models were configured with 
combining base learners and meta-learners. The tuned hybrid model followed DT-CART-
driven by a maximum depth of 10-and XGBoost with 50 estimators and a maximum depth of 
6-using logistic regression as a meta-learner and evaluated by 5-fold cross-validation. This 
was developed according to the ensemble: Hybrid Stacking Model: DT-CART max. Depth = 
10, XGBoost tuned on log loss, and logistic regression-the meta-learner to combine 
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predictions. Stacking Ensemble: XGBoost, Random Forest-50 estimators, max. Depth 6-
decision trees max. Depth 6-logistic regression-stratified 3 fold for evaluation. 

  
Tuned Hybrid Model and Cross validation 

 

  
Hybrid Stacking Model and Cross Validation 
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Stacking Ensemble and Cross Validation 

 
BoT_IoT- The hybrid model tuned combines a decision tree-CART with XGBoost. It 
includes the predictions from DT as extra features for XGBoost. Tuned parameters are 
max_depth=20 for DT and max_depth=6, n_estimators=200 for XGBoost. Hybrid Stacking 
Model combines DT and XGBoost. It takes predictions coming from DT and XGBoost as 
input features for the meta-learner: the logistic regression. The stacking ensemble, therefore, 
would combine XGBoost, RF, and DT with a meta-set and stack them onto LR. It uses 
predict_proba with 5-fold cross-validation to make the prediction more effective. 
 

  
Tuned Hybrid Model and Cross validation 
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Hybrid Stacking Model and Cross Validation 

 

  
Stacking Ensemble and Cross Validation 

 
7.3 Federated Learning Approaches  
 
CICIOT2023 – The Federated approaches include Basic Federated Learning in which the 
Decision Tree, Gradient Boosting, and AdaBoost classifiers were trained across multiple 
clients with the reduced parameters, using majority voting for predictions. Federated 
Ensemble with SMOTE applied SMOTE technique for balancing the dataset, and this is done 
before splitting it among clients, with similar models trained and predictions aggregated via 
majority voting. Federated Ensemble with Stacking and Majority Voting uses a stacking 
ensemble per client, combining the base models like DT, GB, AdaBoost with a Logistic 
Regression meta-learner and the final predictions were aggregated through majority voting. 
These methods address class imbalance, improve diversity, and enhance federated learning 
accuracy. 
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           Basic Federated Learning                             Federated Ensemble with SMOTE                 
 

 
Federated Ensemble with Stacking and Majority Voting 

 
BoT_IoT – During the basic Federated learning setup, client data was distributed, and 
models (DT, Gradient Boosting, AdaBoost) were trained locally with majority voting for 
predictions. The SMOTE configuration applied class balancing on client data before model 
training and prediction aggregation. In the stacking and majority voting ensemble, a Logistic 
Regression meta-learner combined predictions from client models for improved performance. 
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              Basic Federated Learning                    Federated Ensemble with SMOTE 
 

 
Federated Ensemble with Stacking and Majority Voting 

 
8. Zero Trust Integration in Federated Learning 
 
Step 1. Client ID Management and Access Control – Unique IDs has been assigned to the 
clients using the uuid4 function from the uuid library and the access permission were defined 
for the access control.  
Step 2: Data Encryption and Decryption - Using the Fernet class, Data encryption was 
implemented from the cryptography library. Client data was encrypted before the 
transmission to simulate secure communication and decrypted it before training.  
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   Step 1. Client ID Management and           Step 2: Data Encryption and Decryption 
                  Access Control 
 
Step 3. Trust Score Initialization and Dynamic Adjustment – The Initial trust scores are 
set to 1.0 for all the clients and these trust scores will be changing dynamically and updated 
based on the client model accuracy during training. 
Step 4. Secure Aggregation with Trust Filtering – These are then aggregated across trusted 
clients, and hence only trusted clients with a threshold ≥ 0.5 can contribute toward the 
aggregation process. 

  
     Step 3. Trust Score Initialization               Step 4: Secure Aggregation with 
            and Dynamic Adjustment.                               Trust Filtering  
 
Step 5. Decryption Validation and Trust Logging – Decryption success is simulated and 
integrated into the trust score computation using weighted metrics (accuracy, consistency, 
data integrity). Logs are maintained for all client actions. 
Step 6. Dataset Split into Clients – The dataset was split into three clients, with training 
features (X_train) and labels (Y_train) divided equally among them. 
 

    
    Step 5. Decryption Validation and                     Step 6. Dataset Split into Clients 
                    Trust Logging 
 
Experiment 1 – Data Poisoning. 
 
Step 7. Simulated Data Poisoning – For the client 1, a small portion of the training labels is 
altered randomly to simulate a data poisoning attack.  
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Step 7. Simulated Data Poisoning 

 
Step 8. Recomputing Trust Scores – The poisoned client is assigned a trust score of 0, and 
any client with a trust score below 0.5 is flagged as low trust and excluded from aggregation. 
 

 
Step 8. Recomputing Trust Scores 

 
Experiment 2 - failed decryption and adversarial predictions 
 
Step 9. Simulating Failed Decryption for Client 2 – In experiment, the code assigns the 
simulated decryption failure for Client 2, by setting decryption_successful to False and 
data_integrity to 0.0 for the affected client. 
Step 10. Simulating Adversarial Predictions for Client 3 - Random predictions are 
generated for Client 3 to mimic adversarial behavior, and the trust score for this client is 
calculated based on its prediction accuracy against the test labels. 
 

  
   Step 9. Simulating Failed Decryption      Step 10. Simulating Adversarial Predictions  
                    for Client 2.                                                     for client 3 
 
Step 11. Recomputing Trust Scores After New Scenarios - Then the trust scores are 
recomputed by including the accuracy of adversarial predictions, data integrity in the case of 
failed decryption, weighted the adjustments for overall client trust. Clients with the trust 
scores less than the threshold limit of 0.7 are flagged and excluded 

 
Step 11. Recomputing Trust Scores After New Scenarios 


