
 
 

 
 
 
 
 
 
 
 
 
 

 

Enhancing Security in Electric Vehicle 

Charging Stations Through Advanced 

Anomaly Detection Systems 
 
 
 
 

 

MSc Research Project 
 

MSc Cybersecurity 
 
 

 

Donnel Shinto 
 

Student ID: X23154748 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Dr Arghir Nicolae Moldovan



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student 

Name: 

 

Donnel Shinto 

……. …………………………………………………………………………………………………………… 

 

Student ID: 

X23154748 

……………………………………………………………………………………………………………..…… 

 

Programme: 

MSc in Cybersecurity 

……………………………………………………………… 

 

Year: 

2024 

………………………….. 

 

Module: 

 

MSc Research Project 

………………………………………………………………………………………………………….……… 

 

Supervisor: 

Dr Arghir Nicolae Moldovan 

………………………………………………………………………………………………………….……… 

Submission 

Due Date: 

December 12, 2024 

………………………………………………………………………………………………………….……… 

 

Project Title: 

Enhancing Security in Electric Vehicle Charging Stations Through 

Advanced Anomaly Detection Systems 

………………………………………………………………………………………………………….……… 

Word Count: 

7018                                                   19 

……………………………………… Page Count …………………………………………….…….. 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template. To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

Donnel Shinto 

……………………………………………………………………………………………………………… 

 

Date: 

December 12, 2024 

……………………………………………………………………………………………………………… 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, 

both for your own reference and in case a project is lost or mislaid.  It is 

not sufficient to keep a copy on computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 
 

 

 
 

Enhancing Security in Electric Vehicle Charging 

Stations Through Advanced Anomaly Detection 
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Abstract 

In response to the increase of electric vehicles (EVs), there has been rapid deployment 

of electric vehicle charging stations (EVCS) in order to serve the needs of sustainable 

transportation. But incorporating EVCS within power grids and network infrastructures 

creates potentially severe cybersecurity vulnerabilities. To address these challenges, this 

research develops a comprehensive anomaly detection framework based on machine 

learning approaches for boosting the security and reliability of EVCS. The study uses 

power consumption, network traffic, and hosts events datasets and classifies anomalies in 

binary and multiclass tasks using algorithms including Random Forest and K-Nearest 

Neighbours (KNN). Large amounts of preprocessing and feature selection were applied 

on the datasets. Results demonstrate that Random Forest outperforms KNN and is the most 

adaptable to feature reduction. KNN performs well in binary tasks but decreases in 

multiclass tasks. Analysis of host events data showed near perfect accuracy, indicating 

that removing predictive features can improve efficiency of models. This work contributes 

a novel scalable anomaly detection framework, provides understanding of the performance 

and importance of algorithms, and presents practical applications in EVCS security. The 

results improve resilience of charging infrastructures and motivate further research in the 

anomaly detection domain for critical systems. 

 
 

1 Introduction 

1.1 Background 

Electric vehicles (EVs), as an alternative to fuel engines, are growing rapidly. Supporting the 

ever increasing rate of adoption of electric vehicles is important in helping to reduce 

greenhouse gas emissions and fight climate change, and EV charging stations are crucial to 

that effort. However, with the expansion of this infrastructure the security and reliability of 

charging stations will have to be ensured. Although these systems are beneficial, potential 

vulnerabilities in the systems bring up a number of issues such as unauthorized access, energy 

theft, and disruption resulting in large scale collapse of power distribution networks. As such, 

the demand for state of the art anomaly detection solutions for EV charging stations has never 

been more needed. EV charging stations can experience a multitude of anomalies caused by 

malicious cyber-attacks, faulty components, or by unpredictable user behaviour(Root, n.d.). 

The existence of such anomalies can undermine its safety and reliability at the same time. 
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Therefore, timely detection of these anomalies is required for proper functioning and safety, 

and also for protecting the users from possible harms.  

1.2 Objective 

The objective of this research is to develop a complete anomaly detection framework for 

electric vehicle charging stations. The project utilises machine learning algorithms to 

accurately classify benign and malicious activities and improve EVCS security and reliability. 

The study uses Random Forest and K-Nearest Neighbours (KNN) to evaluate multiple datasets 

and to analyse how well these models perform in guessing anomalous events on binary and 

multiclass classification tasks. 

To effectively detect anomalies, this research utilizes the CICEVSE2024 dataset which has 

three subsections: power consumption, host events, network traffic data(EVSE Dataset 2024 | 

Datasets | Research | Canadian Institute for Cybersecurity | UNB, n.d.). The datasets each give 

a different view of how EV charging stations are operated and them combined gives a larger 

threat coverage. This research uses Weka for data analysis and model development to 

determine which of the machine learning techniques can be used effectively to detect anomalies 

in various operational aspects of a charging station. 

The specific research question addressed in this study is: 

How can machine learning techniques be used to implement anomaly detection systems for 

Electric Vehicle charging stations? 

In order to answer this research question, the study uses Weka Workbench to analyse power 

consumption, host event data and network traffic data. A GUI based tool like Weka allows us 

to examine pros and cons of the tool used in our study and to improve overall effectiveness of 

our proposed anomaly detection framework. 

1.3 Contributions 

- Dataset Analysis - Analysed the potential for anomaly detection with a diverse dataset 

including power consumption, network traffic and host events data. Datasets have been 

pre-processed and refined to guarantee high quality input to machine learning models. 

- Algorithm Evaluation and Comparison - The performance of Random Forest and K-

Nearest Neighbours (KNN) algorithms were implemented and compared on binary and 

multiclass classification tasks. Highlighted the strengths and weakness of each 

algorithm with different feature configuration. 

- Insights into Feature Importance - Evaluated the effect feature reduction had on model 

performance and found that by keeping key attributes, major performance improvement 

in anomaly detection is possible. 

 

2 Related Work 
 

In recent years, there have been many advances in anomaly detection, most notable with respect 

to cybersecurity and the network system. IoT devices, electric vehicle charging station (EVCS) 

and rapid increase in smart grids make it more important than ever to ensure that anomaly 
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detection systems are operating optimally. This section presents a critical review of related 

works to provide an insight on the strengths, limitations, and relevance of current developments 

for the development of advanced anomaly detection frameworks. 

According to Abdiyeva Aliyeva and Hematyar , the integration of AI in anomaly detection has 

transformed network security by allowing us to identify threats with a higher degree of 

precision. In Intrusion Detection Systems (IDS) anomaly detection is a key component. 

Machine learning techniques including Naive Bayes, Support Vector Machines (SVM), K-

Nearest Neighbours (KNN), and Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) have played a big role in improving detection. SVM may be hybridised with 

Decision Tree, or with Neural Networks and Fuzzy Clustering, thus increasing accuracy and 

reducing false positives. As an example, the CNN-LSTM models scored 99.98% accuracy on 

the ISCX2012 dataset. The effectiveness of these methods is validated using evaluation metrics 

including precision, ROC curves, and F1 scores. But there are still difficulties such as data 

imbalance and setting correct anomaly thresholds. Future directions are then discussed on real-

time adaptive learning and applying AI driven anomaly detection better support critical 

industry systems. (Abdiyeva-Aliyeva & Hematyar, 2023). 

Network anomaly detection using deep learning architectures such as Fully Connected 

Networks (FCNs), Variational Autoencoders (VAEs), and Sequence-to-Sequence (Seq2Seq) 

models were studied by Malaiya et al. Furthermore, by evaluating Seq2Seq models on multiple 

datasets, with over 99% accuracy on all, their findings showed that these models are ideal for 

handling high dimensional data. Although the models were robust, their dependency on large, 

labelled datasets and the computationally intensive nature of the problem resulted in a barrier 

to real time application. In addition, while the study analysed diverse public datasets, the 

dataset specific optimisations proved important, however the application of optimisations to 

newer datasets was also uncertain. Given that, additional research is needed for applying the 

techniques to other datasets(Malaiya et al., 2019). 

In 2021, Nassif et al. performed a systematic literature review on machine learning (ML) 

models for anomaly detection, over 290 papers from 2000 to 2020. Techniques were 

categorized as supervised, semi-supervised and unsupervised, with unsupervised being the 

most used because they work on the least input labelled data. Although the scope is 

comprehensive, the study did not evaluate the performance of these models in settings where 

the models are subject to real time constraints, important factor to consider when designing 

applications of cybersecurity. Further, though unsupervised models serve well, they also tend 

to produce more false positives, which in turn require the need for hybrid approaches which 

combine supervised and unsupervised techniques in an effort to reduce false positives and 

increase reliability(Nassif et al., 2021). 

An anomaly detection in communication networks using ensemble learning approach based on 

hybrid algorithms like Adaboosting and Bagging was presented by Oleiwi et al. For datasets 

such as NSL-KDD and CICIDS2017 their system reached accuracies of 99.6%. Feature 

selection methods showed improved performance in their integration. Additionally, the 

approach relies on manually engineered features which makes the approach not suitable for 

high dimensional features or data streams that are evolving rapidly. To maintain the 
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effectiveness of ensemble learning against these challenges, we need to incorporate automated 

feature engineering techniques(Oleiwi et al., 2022). 

Anomaly detection for EVSE networks was explored using classical and ensemble learning 

methods by Hegde et al. In their analysis, they showed that the ensemble methods could do 

better than classical techniques to classify attack patterns. In spite of the improvement, the 

practicality of the models’ dependency on pre-processed features and the lack of real time 

evaluation, there is a need for other practical solutions. Furthermore, the study also proved 

quite informative about the vulnerabilities of EVSEs, but it didn’t consider newer threats, such 

as  latest attacks on charging protocols. Advanced training techniques could be incorporated in 

order to improve the robustness of EVSE network anomaly detection systems(Hegde et al., 

2024). 

For an AutoML based defender for industrial control systems, Vasan et al focused on lowering 

the domain expertise needed to deploy ML models. They showed that their framework yielded 

robust performance on various datasets including EVCS datasets achieving accuracy over 

94.38%. However, transparency and interpretability, which are key factors in the security 

environments, were seriously affected by the reliance on AutoML. Furthermore, AutoML 

frameworks are computationally intensive, thereby adding to the difficulty of incorporating 

these into machine learning systems on resource constrained environments. Future work should 

also consider AutoML solutions that meet both accuracy and efficiency.(Vasan et al., 2024). 

Federated learning (FL) and deep swarm particle optimization was employed by the researchers 

Ullah et al to secure intermittent IoVs. Their method achieved data privacy as well as improved 

detection performance, particularly for imbalanced datasets. Although it worked, it was 

computationally resource intensive and suffered from communication securities, so was never 

a good candidate for large scale deployments. A great direction for future research is enhancing 

federated learning frameworks to be able to handle diverse data(Ullah et al., 2024). 

The authors Purohit & Govindarasu developed an anomaly detection system (FL-EVCS) for 

EVCS, based on federated learning. On average, the system achieved high accuracy 97% and 

preserved data privacy by sharing the model parameters not the raw data. But, federated 

learning brought complexities to model and necessary performance tradeoffs between privacy 

and detection speed. In addition, the results cannot be generalised across geographically 

distributed EVCS networks due to limited comprehensive testing. Finally, future studies should 

explore federated architectures that are capable of fitting in various infrastructure 

settings(Purohit & Govindarasu, 2024). 

In intrusion detection systems, Kostage at el tackled the problem of data imbalance by 

generating synthetic data using GANs. Based on their results they found that a substantial 

performance improvement over traditional oversampling techniques. However, the 

computational cost of GAN training is very high and the possibility of learning to generate 

unrealistic samples restricts its wider applicability. Meanwhile, GANs can increase dataset 

balance but are vulnerable to collapse and hard to handle complex attack patterns, which calls 

for further GAN architecture research. The exploration of the combination of GANs with 

reinforcement learning can be useful to create more realistic synthetic data(Kostage et al., 

2024). 
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The CICEVSE2024 dataset comprising of power consumption, network traffic, and host events 

data in EVSE environments was introduced by Buedi et al. The dataset is comprehensive 

enough for anomaly detection tasks, yet its availability for only simulated scenarios leaves 

questions open about it fit for use in real world deployments. Additionally, the narrow scope 

of the attack considered on the dataset limits the usefulness of this dataset in evaluating models 

against potential unknown adaptive threats. In future, it would be useful to extend the scope of 

this dataset by recording a wider range of attack patterns in various forms so as to better suit 

practical use(Buedi et al., 2024). 

 

 
Paper Name  Objective  Methodology  Results   Challenges  Datasets 

(Abdiyeva-

Aliyeva & 

Hematyar, 2023) 

Proposes AI based 

solutions to predict 

and detect network 

anomalies.  

K nearest neighbours 

(KNN), support 

vector machines 

(SVM), and neural 

networks.  

Talks about 

enhanced 

anomaly 

detection 

accuracy and 

real time 

evaluation. 

 

High computation 

al  

complexity. 

 

-NSL KDD 

- UNSW 

NB15 

(Malaiya et al., 

2019)  

To evaluate deep 

learning models for 

network anomaly 

detection. 

The study used FCNs, 

VAEs, and Seq2Seq 

models on public 

datasets. 

Seq2Seq with 

LSTM 

achieved over 

99% accuracy.

   

Handling 

limitations of 

traditional 

methods.  

- Kyoto 

Honeypot 

-NSL KDD 

- UNSW 

NB15 

- IDS2017 

- Mawilab 

(Oleiwi et al., 

2022) 

Proposes a hybrid  

ensemble  

learning (EL) 

system to improve 

anomaly detection 

accuracy in 

communicati on 

networks.   

Random  

Forest 

,SVM,Adaboost.  

99.6% 

    

Dependence on 

labeled data for 

training,  

and computation 

al cost of EL 

models.  

-NSL KDD 

- UNSW 

NB15 

- CIC 

IDS2017 

(Nassif et al., 

2021)  

  

Provides a 

systematic review of 

machine learning 

techniques for 

anomaly detection.    

Analyses 29 distinct 

ML models, 

comparing 

performanc e across 

supervised, 

semisupervised, and 

unsupervise d 

methods. 

    

Identifies  

SVM and 

PCA as the 

most 

frequently 

used models . 

    

Lack of consistent 

performanc e 

metrics and 

reliance on 

outdated  

datasets in many 

studies.  

 

N/A 

 (Buedi et al., 

2024) 

Create a 

comprehensive 

dataset for EV 

charging station 

security  

 Multiple machine 

learning algorithms 

 91.3%  Lack of suitable 

datasets for EV 

charging station 

cybersecurity 

CIC 

EVSE2024 

(Vasan et al., 

2024) 

Develop an 

AutoML-based ICS 

security defender 

GLM, GBM, RF, DL, 

XGBoost 

94.38% High 

computational 

needs, model 

optimization. 

CIC 

EVSE2024 

(Purohit & 

Govindarasu, 

2024) 

Federated Learning-

based anomaly 

detection for EVCS 

DNN, Federated 

Learning 

97% Privacy concerns, 

network diversity. 

CIC 

EVSE2024 
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(Hegde et al., 

2024) 

Improve EVSE 

anomaly detection 

using classical and 

ensemble learning 

KNN, SVM, Logistic 

Regression, XGBoost, 

AdaBoost, Random 

Forest 

100% Inconsistent 

classification in 

classical models. 

CIC 

EVSE2024 

(Kostage et al., 

2024) 

Use GANs to 

balance imbalanced 

datasets for IDS 

WGAN-GP, CGAN, 

CTGAN, CWGAN-

GP 

 GAN complexity 

and computational 

demands 

CIC 

EVSE2024,  

CIC IoT 2023 

(Ullah et al., 2024) Develop FL-based 

IDS for IoVs with 

DSPO for feature 

selection 

FL, DSPO, DNN with 

SGD 

99.46% Scaling FL, 

optimal feature 

selection 

CIC 

EVSE2024,  

CIC IoT 2023 

Table1: Summary table of Literature Review 

 

 

3 Research Methodology 

3.1 Data Collection 

The data used for this research is the CICEVSE2024 dataset from the repository of University 

of New Brunswick. The dataset was generated using a real EV charging station and a raspberry 

pi module which was programmed to emulate the behaviour of an EV charging station. The 

dataset consists of power consumption, network traffic and host events data at both normal and 

malicious conditions. 

Power Consumption Data - This dataset consists of the time-series data of the consumption of 

power at the charging station. It is used in establishing abnormal consumption patterns that 

might reflect the occurrence of energy theft or failure within any device. 

Host Events Data - This dataset logs system-level events, such as recon, Cryptojacking, benign 

activities etc at EV charging stations. Host events will also be monitored for unauthorized 

access and other suspicious activities. 

Network Traffic Data - This consists of network packets exchanged between the EV chargers 

and central systems. Thereafter, network traffic analysis detects possible cyber-attacks, such as 

DDoS or man-in-the-middle attacks. 

 

3.2 Tools and Techniques 
 

Weka 

Weka (Waikato Environment for Knowledge Analysis) is popular and powerful open source 

software for machine learning and data mining(Weka 3 - Data Mining with Open Source 

Machine Learning Software in Java, n.d.). Weka is a comprehensive collection of tools for data 

preprocessing, classification, regression and association rule mining and visualization that has 

been developed by the University of Waikato. The tool is implemented in Java and has a user-

friendly GUI, as well as command line and Java API functionalities. The tool allows both 

novice and experienced users to easily take advantage of it. 

Key Features of Weka 
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Preprocessing Tools - Many filters for data cleaning, normalization, and transformation are 

contained in Weka, making it possible to pre‐process the data before applying machine learning 

algorithms. 

Machine Learning Algorithms - Weka offers a wide range of algorithms like Naive Bayes, 

SVM, KNN, Decision Trees etc. Without programming expertise these algorithms can be 

directly applied on to the datasets. 

Evaluation Metrics - Robust tools for model evaluation are also included, such as cross 

validation, confusion matrices, precision, recall, F1 score and ROC analysis. 

Visualization - It provides visualization tools to explore datasets, understand distributions and 

model outputs to interpret results. 

Support for ARFF - Datasets are in the ARFF format (Attribute-Relation File Format) which 

are easy to create and edit. In addition, it supports import of data from CSV and other standard 

format. 

Weka and Python are the two tools used to implement machine learning models using this 

dataset. Python offers more tools and options when it comes to machine learning. Weka on the 

other hand is easy to use with its simple graphical interface. Weka was utilised to build and 

evaluate all three parts of the dataset. Python on the other hand was primarily used to merge 

individual csv files of Network Traffic dataset and to clean Host Events dataset. 

3.3 Data Preprocessing 

Power Consumption: 

Data Cleaning: Initially, the dataset was cleaned by removing duplicate entries and checking 

for missing values including misaligned data. 

Feature Engineering: Numerical features like shunt_voltage, bus_voltage_V, current_mA, 

power_mW were normalised to have them on a similar scale.  

Network Traffic: 

Merging of CSV Files – The network traffic files were separated as charging, idle and 

malicious. These set of files were merged to form a single CSV file. The original files each had 

86 columns. The merged dataset has 88 columns the two additional attributes being label and 

class group which was added using python 

Removal of Columns – InfoGainAttributeEval function of Weka was used to calculate the 

information gain of each column in the dataset. All columns with a gain below 0.1 was 

removed. Information Gain was calculated for remaining columns and evaluation were done 

on features with gains greater than 0.2, 0.5 and 1. 

Feature Scaling – The dataset features were standardised to get more accurate results from the 

machine learning model. 

Host Events 

Dataset Cleaning – The dataset was cleaned by removing duplicates and adding missing values. 

Some rows were corrupted where values were misplaced into different columns. These 

irregularities were fixed using python. 
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3.4 Data Transformation 
 

Transformation techniques tailored for specific dataset characteristics were made to prepare 

datasets for the analysis. In the case of Power Consumption, we measured how feature removal 

affected the classification performance. We then used the transformed datasets for anomaly 

detection in multiple classification tasks. For the Network Traffic, the features having values 

greater than 0.2, 0.5 and 1.0 were chosen based on the information gain threshold. It enabled 

us to train the model by only relying on the most informative attributes, to optimize the 

performance and reduce complexity. Host Events feature selection was conducted by removing 

columns that were highly correlated to the classes. This helped decreasing risk of overfitting. 

We split the datasets into training (70%) and testing (30%) subsamples in order to test our 

model. 

3.5 Data Mining and Model Development 

Two machine learning algorithms Random Forest and K nearest neighbours (KNN) were 

employed for mining patterns and classifying resulted anomalies. Because of its robustness and 

its ability to deal with high dimensional data, Random Forest was chosen. KNN was chosen 

for its simplicity and effectiveness in local pattern recognition, especially for binary tasks. All 

datasets were explored by applying these algorithms across binary and multiclass classification 

tasks with configurations adjusted with respect to the specific dataset(What Is the Difference 

between the Three Machine Learning Models?, n.d.). 

Class Configurations for Power Consumption Dataset 

Label – Evaluated the efficiency to distinguish between benign/attack. 

Attack – To classify different types of attacks. 

Attack Groups – Broader classification of attacks into groups. 

Class Configurations for Network Traffic Dataset 

Two classifications were used: Label and Class Group.  

Models were evaluated for varying feature selection thresholds. 

Class Configurations for Network Traffic Dataset 

Label – To find the binary classification between attack/benign 

Attack – To classify different types of attack. 

Scenario – To group attacks into different classes.  

3.6 Evaluation 
 

Performance Metrics: 

Accuracy: It refers to the percentage of correctly classified instance. 

Precision: True positives to predicted positive. 

Recall: Number of true positives out of actual positives. 

F1 Score: Precision and recall harmonic mean. 

ROC Area: It evaluates the trade-offs between sensitivity and specificities. 
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Train-Test Split:70% of each dataset was used for training and 30% for testing. Cross validation 

was not performed to focus on static evaluation. 

 

Comparative Analysis: 

The power consumption dataset was grouped by target class (Label, Attack, and Attack Group), 

where the classification performance was evaluated over configurations with different levels 

of feature removal. Similarly host events data was also grouped based on target class. The 

performance over Information Gain thresholds was compared for the network traffic dataset. 

 

 

4 Design Specification 
 

The methodology integrates preprocessing, model training and model evaluation to the system. 

Host Events data was cleaned using python. Python was also used to combine multiple CSV 

files of the network traffic dataset into one analysable file. Each dataset was further subjected 

to Weka to perform feature scaling, normalisation and attributes selection. Evaluation measure 

such as Precision, Accuracy, Recall and F1Score were used to measure the performance 

consistently across the datasets. 

 

 

Figure1: Workflow Diagram 

5 Implementation 
 

5.1 Network Traffic 
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The network traffic dataset used for anomaly detection had 88 features. The result of merging 

and preprocessing using python introduced two additional columns which are label and class 

group. Then Weka workbench was used to build machine learning model and analyse 

anomalies. Due to the large size of the dataset Weka’s memory had to be increased 8GB to 

avoid runtime problems. This upgrade allowed to execute feature selection and model training 

smoothly.  

Feature Selection 

Feature Selection was performed based on the Information Gain (IG) which is a widely used 

method for calculating the relevance of each feature from the target dataset(What Is 

Information Gain, n.d.). Thresholds of IG greater than 0.2, 0.5 and 1.0 were used to filter 

features. This feature selection resulted in the building of six distinct models. 

- Label with IG > 0.2. 

- Label with IG > 0.5 

- Label with IG > 1.0 

- Class Group with IG > 0.2 

- Class Group with IG > 0.5 

- Class Group with IG > 1.0 

Label represents the different type of network traffic to the EV charging stations. The Class 

group categorises these labels into charging, idle and malicious. 

These thresholds were chosen so that we could systematically understand the effect of the 

model’s classification performance in the presence of different degrees of feature importance. 

The lower thresholds included a greater number of features, offering better input for the 

models, but high thresholds sacrificed the least significant features for purposes of 

computational efficiency and the elimination of noise in the dataset. 

All models were trained with the Random Forest algorithm in Weka as it is robust and efficient 

when dealing with large datasets with high dimensional features. Because of its capacity to 

manage complex interactions among features, as well as its robustness to overfitting, Random 

Forest was chosen for this task. The following settings were employed for Random Forest: 

Number of Trees (I): 100 

Minimum Instances per Leaf (M): 1 

Seed (S): 1 for reproducibility 

Test Mode: Sampled into 70% training and 30% testing data. 

The dataset was split into 70% train and 30% test. It was split so that models would be trained 

on a wide range of data and would have enough remaining to test performance. Accuracy, 

precision, recall, F1 score, and confusion matrices were defined as models’ evaluation metrics 

to evaluate models effectiveness in classifying anomaly. 

5.2 Power Consumption 
 

Features like shunt voltage, bus voltage, current, and power measurements were features in the 

power consumption dataset used for anomaly detection in electric vehicle charging stations. 
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The time column was removed in preprocessing as it did not help in building the model. The 

dataset was categorized into three target classes: Label, Attack and Attack-Group. These 

classes were evaluated by systematically removing certain features from the dataset. Four 

models were implemented for each target class, resulting in a total of 12 models. 

 

Feature Selection and Preprocessing 

Initial Features: The original dataset was a time series dataset with voltage, current and power 

information. Removing time column, as it did not bring significant improvement to the 

classification tasks. 

Classes: The dataset was divided into the three classes. 

- Label: Indicates whether status is benign or attack. 

- Attack: Specifies the type of attack. 

- Attack Group: Broadly categorizes attacks into groups. 

Evaluations were performed for each class by iteratively removing different combinations of 

columns like State, Interface, and other class specific features. The intention of this approach 

was to find the effect of feature deletion on model performance. Removing these features 

systematically allowed us to gain some understanding of which features are most important for 

anomaly detection. 

Two machine learning algorithms KNN and Random Forest were used to analyse power 

consumption dataset. These algorithms were applied to three classification tasks, Label, Attack 

and Attack Group, to detect and classify anomalies in electric vehicle charging stations. We 

also removed time column and columns which could act as predictors for different classes to 

avoid over fitting. For example, in Label classification task, we didn’t use attack type, attack 

group as they may act as predictors. 

Random Forest was selected for its robustness and due to its ability to work with high 

dimensional data. Simplicity and effectiveness of KNN to capture local patterns were exploited 

for the performance comparison with Random Forest. These models were trained on 70% of 

the dataset, then evaluated on the remaining 30% by metrics like accuracy, precision, recall, 

F1 score and ROC area. KNN brought an extra dimension and can be especially helpful in 

cases where Random Forest performance drops significantly. 

5.3 Host Events 

Random Forest models were used to find anomalies in host events. The dataset contained 

features representing kernel events, with classifications performed across three distinct target 

classes: Attack, Attack Scenario Types, and Binary classification. The columns for each 

classification task had to be systematically removed to prevent the models from overfitting as 

the data corrupted the models. The columns Attack and Scenario were excluded for the Label 

class, as they could serve as predictors. In a similar fashion Label and Scenario columns were 

dropped for classifying Attack Types. For the Attack Scenario Types, the Attack and label 

columns were removed. The idea behind this preprocessing strategy was to ensure that models 

are not overfit on remaining features to ensure increased accuracy. 
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We chose Random Forest as the main algorithm because of its good performance and 

robustness with high dimensional data. We split the dataset into 70% training and 30% for 

testing to assess model performance. For the Random Forest classifier 100 trees were used, 

minimum one instance per leaf and seed value 1 for reproducibility was used. The models 

showed consistent performance even when possibly predictive features were removed. 

 

6 Evaluation 

6.1 Network Traffic 

Setting higher IG thresholds lowered the number of features significantly which made the 

model training and testing faster without loss of accuracy. The importance of good feature 

selection is thus emphasized for improving computational efficiency at a minimal loss of 

predictive performance. The highest classification performance was achieved by all the models 

with IG > 1.0, which means that a relatively small number of highly relevant features are often 

sufficient for accurate anomaly detection. 

 
Configuration Features 

Selected 

Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Precision Recall F1 Score 

Class Group with 

IG > 0.2 

31 99.9977% 0.0023% 0.9999 0.9999 0.9999 

Class Group with 

IG > 0.5 

20 99.9977% 0.0023% 0.9999 0.9999 0.9999 

Class Group with 

IG > 1.0 

9 99.9982% 0.0018% 1.0000 1.0000 1.0000 

Label with IG > 0.2 31 99.9943% 0.0057% 0.9998 0.9998 0.9998 

Label with IG > 0.5 20 99.9956% 0.0044% 0.9999 0.9999 0.9999 

Label with IG > 1.0 9 99.9999% 

 

0.0001% 1.0000 1.0000 1.0000 

Table 2: Results of Network Traffic Data 

The network traffic dataset was evaluated using feature selection thresholds based on 

information gain (IG) for two classification tasks: Class Group and Label. Results show 

excellent performance across all configurations, with all models attaining near perfect 

classification accuracy and classification metrics. In case of Class Group classification, the IG 

> 0.2 and IG > 0.5 configurations kept 31 and 20 features, respectively, and obtained the same 

accuracy of 99.9977% correctly classified instances and a precision, recall and F1 Score of 

0.9999. IG > 1.0 configuration that retained only 9 features performed slightly better, obtaining 

99.9982% correctly classified instances and perfect precision, recall, and F1 score of 1.0000. 

This shows that the reduced feature set retained the most important attributes with as much as 

less noise as possible while still achieving high classification accuracy. 

For the Label classification, in the case of the IG > 0.2 configuration, we obtained 99.9943 % 

correctly classified instances and a precision, recall and F1 scores of 0.9998. IG > 0.5 with 20 

features yielded 99.9956% accuracy and IG> 1.0 with 9 features resulted in 99.9999% correctly 

classified instances with perfect precision, recall and F1 score. Dimensionality reduction with 

information gain is shown effective to optimize model performance and reduce computational 

complexity. 
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6.2 Power Consumption 
 

Label Classification Results 

 

Algorithm Configuration Correctly 

Classified (%) 

Incorrectly 

Classified (%) 

Precision Recall F1 Score ROC Area 

Random 

Forest 

Label (All 

Columns) 

100 0 1.000 1.000 1.000 1.000 

Random 

Forest 

Label (Attack, 

Attack Group 

Removed) 

100 0 1.000 1.000 1.000 1.000 

Random 

Forest 

Label 

(Interface, 

Attack, Attack 

Group 

Removed) 

94.9464 5.0536 0.948 0.949 0.948 0.969 

Random 

Forest 

Label (State, 

Interface, 

Attack, Attack 

Group 

Removed) 

94.0443 5.9557 0.938 0.940 0.939 0.960 

KNN Label (All 

Columns) 

100 0 1.000 1.000 1.000 1.000 

KNN Label (Attack, 

Attack Group 

Removed) 

100 0 1.000 1.000 1.000 1.000 

KNN Label 

(Interface, 

Attack, Attack 

Group 

Removed) 

93.7813 6.2187 0.936 0.938 0.936 0.933 

KNN Label (State, 

Interface, 

Attack, Attack 

Group 

Removed) 

92.8937 7.1063 0.926 0.929 0.927 0.920 

Table 3: Power Consumption binary classification results 

Attack Classification Results 

 

Algorithm Configuration Correctly 

Classified (%) 

Incorrectly 

Classified (%) 

Precision Recall F1 Score ROC Area 

Random 

Forest 

Attack (All 

Columns) 

91.8009 8.1991 0.897 0.918 0.904 0.983 

Random 

Forest 

Attack (Label, 

Attack Group 

Removed) 

72.8151 27.1849 0.714 0.728 0.719 0.917 

Random 

Forest 

Attack 

(Interface, 

Label, Attack 

Group 

Removed) 

63.4132 36.5868 0.619 0.634 0.624 0.893 

Random 

Forest 

Attack (State, 

Interface, 

Label, Attack 

Group 

Removed) 

60.181 39.819 0.585 0.602 0.591 0.885 

KNN Attack (All 

Columns) 

91.1648 8.8352 0.894 0.912 0.900 0.976 

KNN Attack (Label, 

Attack Group 

Removed) 

72.2571 27.7429 0.709 0.723 0.713 0.897 
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KNN Attack 

(Interface, 

Label, Attack 

Group 

Removed) 

59.9988 40.0012 0.590 0.600 0.592 0.857 

KNN Attack (State, 

Interface, 

Label, Attack 

Group 

Removed) 

53.8235 46.1765 0.528 0.538 0.531 0.839 

Table 4: Power Consumption attack classification results 

 

Attack Group Classification Results 

 

Algorithm Configuration Correctly 

Classified (%) 

Incorrectly 

Classified (%) 

Precision Recall F1 Score ROC Area 

Random 

Forest 

Attack Group 

(All Columns) 

100 0 1.000 1.000 1.000 1.000 

Random 

Forest 

Attack Group 

(Attack, Label 

Removed) 

79.0165 20.9835 0.795 0.790 0.788 0.925 

Random 

Forest 

Attack Group 

(Interface, 

Attack, Label 

Removed) 

69.2272 30.7728 0.696 0.692 0.691 0.894 

Random 

Forest 

Attack Group 

(State, 

Interface, 

Attack, Label 

Removed) 

65.8475 34.1525 0.656 0.658 0.653 0.872 

KNN Attack Group 

(All Columns) 

100 0 1.000 1.000 1.000 1.000 

KNN Attack Group 

(Attack, Label 

Removed) 

78.4238 21.5762 0.787 0.784 0.783 0.914 

KNN Attack Group 

(Interface, 

Attack, Label 

Removed) 

65.7492 34.2508 0.659 0.657 0.657 0.858 

KNN Attack Group 

(State, 

Interface, 

Attack, Label 

Removed) 

59.2905 40.7095 0.589 0.593 0.590 0.813 

Table 5: Power Consumption attack group classification results 

 

Comparison between Random Forest and KNN provides some important insights into the 

performance of these algorithms when set up under different configurations. For tasks that have 

a binary classification (Label class), both algorithms performed well obtaining perfect accuracy 

and perfect F1 scores when all features are retained. By this result, we can see how the binary 

classification is simple as opposed to a more difficult multiple classification problem where 

the model has to discriminate only between benign and attack events. 

Random Forest was able to maintain a higher performance level as features were removed 

when compared to KNN. For example, with the Label class with several columns eliminated, 

Random Forest attained an accuracy rate of 94.04% and KNN got 92.89%. The Random Forest 

is better than KNN and has the capability to capture the complex feature interaction from 

combining multiple decision trees. On the other hand, KNN is a distance dependent algorithm 
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which, as the feature space is reduced and datapoints become less distinguishable, decreases in 

effectiveness. 

There were extreme differences in performance between Random Forest and KNN for 

multiclass tasks like Attack and Attack Group. For all features, Random Forest performed best 

in the Attack classification getting 91.80% accuracy, and KNN got 91.16%. But as features 

were removed the performance of KNN decreased drastically compared to Random Forest. For 

example, Random Forest managed to maintain accuracy of 60.18% in the configuration when 

state, interface, attack group and label features were removed, while KNN dropped to 53.82%. 

The decrease demonstrates that KNN relies on a larger feature set. These differences are further 

shown by the Attack Group classification. With all features retained, Random Forest and KNN 

got a perfect accuracy of 100%. However, as we removed features Random Forest performed 

better. When state, interface, attack and label columns are removed from the configuration, 

Random Forest achieves accuracy of 65.84% and KNN reduces to 59.29%.  

Random Forest is shown to be more stable algorithm for this dataset in the multiclass tasks and 

smaller feature configuration. The KNN is good for data having lot of features but turns out to 

be bad on most complex tasks. These results underscore the importance of choosing the right 

algorithm depending on the nature of the problem as well as the nature of the dataset. 
 

6.3 Host Events 
 

The results of three classification, namely, Label, Attack Types, and Attack Scenario Types are 

presented below. Near perfect performance was achieved by the Label (Binary) classification 

with an accuracy of 99.67% and Kappa statistic of 0.9931. Similarly, precision and F1 scores 

were high, confirming the good performance of differentiating between benign and attack 

events. Attack Types were 87.51%accurate with precision and recall fluctuating for different 

attack types. Cryptojacking turned out to be a perfect class, and while ICMP fragmentation’s 

performance was lower, it could still be improved. In Attack Scenario Types classification, the 

algorithm achieved an accuracy of 98.37% and a Kappa statistic of 0.9774, with only minimal 

misclassification across the scenarios. 

 
Classification Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Precision Recall F1 Score ROC Curve 

Label (Binary) 99.6757 0.3243 0.997 0.997 0.997 1.000 

Attack 87.5135 12.4865 0.883 0.875 0.876 0.994 

Scenario 98.3784 1.6216 0.984 0.984 0.984 1.000 

Table 6: Host Events classification results 

 

This table provides the performance metrics for each of the classifications. For Label, a 

binary classification task, the accuracy and consistency among metrics were highest. An 

accuracy of 99.67% and a Kappa statistic of 0.9931 shows the reliability of the binary 

classification model for distinguishing benign and attack events. In other words, the features 

that were not related with the class labels were also sufficient to extract the key patterns and 
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make the accurate classification. The precision and recall further serve to show that benign 

and attack classes were identified without high error and hence a very high F1 score of 0.997. 

On the other hand, the Attack Types and Attack Scenario Types multiclass classification 

tasks showed slightly worse results, especially for Attack Types classification. Results 

indicate accuracy of 87.51%, and a Kappa statistic of 0.8374, demonstrating the increased 

challenge in differentiating among several attack types. The precision values were also varied 

across classes and we have obtained perfect precision and recall for cryptojacking attack 

whereas other attack types like ICMP fragmentation had a lower precision and recall. 

However, this indicates that it is harder to detect some attack types, maybe because of data 

imbalance or lack of distinct features. We achieve an accuracy of 98.37% and Kappa statistic 

of 0.9774 for the Attack Scenario Types classification. The precision and F1 scores were also 

consistently high for all the scenarios. From the results, it appears the model can accurately 

portray the overall picture of attack scenarios. 

 

 
Figure 2: Confusion metrics for Attack Types 

The table shows that overall, the binary classification tasks are easier and attain better 

performance metrics than the multiclass tasks. We could observe that the accuracy, precision, 

and recall of those multiclass classifications decrease especially with regard to accuracy. 

However, the performance across all models has been consistently good, verifying the 

preprocessing and strategies used in this study. 

 

6.4 Discussions 

An important strength of this framework is that it achieves consistent classification 

performance even after feature reduction. For example, in the network traffic dataset, by 

eliminating features with a pre specified information gain thresholds (IG > 1.0) there was 

minimal loss of accuracy and a reduction in computational complexity. Random Forest exhibits 

a consistent performance across binary as well as multiclass tasks further enhancing its 

robustness. The same was true for the host events dataset. The removal of predictive classes 

resulted in better model performance. Another strength of the methodology is that it can be 

scaled. Feature selection techniques, including information gain for network traffic, and feature 
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removal for host events, show the flexibility of the framework to different datasets. As a result, 

the framework can be extended to other critical infrastructure like smart grid or IoT systems. 

Despite the strength the process of evaluation also highlighted some limitations. K-Nearest 

Neighbours (KNN) performed well in cases of binary tasks, but performance decreased for 

multi class especially when the number of features was decreased. Further, Random Forest 

showed superior performance, however its computational requirements especially in large 

datasets may be problematic for real time deployment. Another problem is to address the issues 

of class imbalance in the datasets. In some configurations, minority classes displayed a worse 

recall as well as precision. Therefore, we need to apply advanced techniques like oversampling 

or ensemble methods in order to solve the class imbalance problem as it may seriously hurt the 

performance of the model.  

6.5 Comparison With Past Papers 
 

Study Dataset Used Algorithms  Classification Type Performance Metrics 

This Study Power Consumption  Random Forest 

KNN 

Binary 

Multiclass 

Binary; 

Accuracy – 100% 

ROC Curve – 1.000 

Multiclass; 

Accuracy – 91.800% 

ROC Curve – 0.983 

(Buedi et al., 2024) Power Consumption 

(HPC) 

KNN 

Random Forest  

Binary 

Multiclass  

Binary; 

Accuracy – 91.3% 

Multiclass; 

Accuracy – 78.8% 

(Buedi et al., 2024) Host Events Adaboost 

XGBoost 

SVM 

Binary 

Multiclass 

Binary; 

Accuracy – 91.88% 

Multiclass; 

Accuracy – 71.9% 

Table 7: Comparison with past papers 

 
 
 

 

7 Conclusion and Future Work 
 

This work developed a comprehensive anomaly detection framework using multiple datasets 

and machine learning algorithms to enhance the EVCS security. Analysis was done on power 

consumption, network traffic and host events data to discover its anomaly detection capability 

using random forest and K-Nearest Neighbours (KNN) algorithms on binary and multiclass 

classification tasks. This work demonstrated that Random Forest performed better than KNN 

and is also robust in an environment with much smaller feature set. KNN worked well for 

binary classification, but for multiclass the performance decreased especially when number of 

features were reduced. Furthermore, an analysis of host events data reinforces the importance 

of efficient automated feature removal to avoid overfitting and guarantee consistent model 

performance. Overall, the study demonstrates that issues in an EVCS are most effectively 

detected by preprocessing, feature engineering, and the choice of algorithm. The analysis over 
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datasets and algorithms offers a solid basis to increase the resilience and security of charging 

infrastructures. 

Future works based on the result of this research should build upon the development of more 

advanced methodology for the improvement of anomaly detection in EVCS. Improving feature 

engineering through techniques like principal component analysis (PCA), or autoencoders may 

increase efficiency of the system. Other possibilities for improving this model include deep 

learning models such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs). We can further improve by adding new attributes such as user logs and other such 

details. Adding Random Forest to deep learning might be a hybrid approach to improving the 

model to handle more complex data. In addition, the proposed framework can be extended to 

other relevant critical infrastructure such as a smart grid or to an IoT ecosystem. 
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