

Configuration Manual

MSc Research Project Master of Science in Cyber Security

> Albin Shaju Student ID: 23215496

School of Computing National College of Ireland

Supervisor: Prof. Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To use author's written or electronic work is illegal (plagiarism) and may result in disconaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
Master of Science in Cyber Security Programme: MSc Research Project Module: Prof. Jawad Salahuddin Lecturer: Submission Due Date: Exploring Machine Learning Approaches for Robust Anomaly Project Title: Detection and Responsive Security in IoT Frameworks 680 Word Count: Page Count: I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in disc action. Albin Shaju Signature: 12 December 2024 Date: Attach a completed copy of this sheet to each project (including multiple copies)	
Module: Module: Prof. Jawad Salahuddin Lecturer: Submission Due Date: Exploring Machine Learning Approaches for Robust Anomaly Project Title: Detection and Responsive Security in IoT Frameworks 680 Word Count: Page Count: I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in discaction. Albin Shaju Signature: 12 December 2024 Date: Attach a completed copy of this sheet to each project (including multiple of the copies)	
Module: Prof. Jawad Salahuddin Lecturer: Submission Due Date: Exploring Machine Learning Approaches for Robust Anomaly Project Title: Detection and Responsive Security in IoT Frameworks 680 Responsive Security in IoT Frameworks 680 Page Count: I hereby certify that the information contained in this (my submission) is information of the project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in discaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
Lecturer: Submission Due Date: Exploring Machine Learning Approaches for Robust Anomaly Project Title: Detection and Responsive Security in IoT Frameworks 680 Responsive Security in IoT Frameworks 680 Page Count: I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in disc action. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
Thursday, 12 December 2024 Exploring Machine Learning Approaches for Robust Anomaly Project Title: Detection and Responsive Security in IoT Frameworks 680 Word Count: I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in discaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
Project Title: Detection and Responsive Security in IoT Frameworks 680 Word Count: Page Count: I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in discaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
Word Count: Page Count: I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in discaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
I hereby certify that the information contained in this (my submission) is info pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To us author's written or electronic work is illegal (plagiarism) and may result in discaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
pertaining to research I conducted for this project. All information other than recontribution will be fully referenced and listed in the relevant bibliography section rear of the project. ALL internet material must be referenced in the bibliography section. Stude required to use the Referencing Standard specified in the report template. To use author's written or electronic work is illegal (plagiarism) and may result in disconaction. Albin Shaju Signature: 12 December 2024 Date: PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a completed copy of this sheet to each project (including multiple copies) □	e other iplinary
copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Albin Shaju Student ID: 23215496

1 Introduction

The purpose of this configuration manual is to give the complete description of setting up the experimental setup and implementing the proposed intrusion detection system (IDS) using machine learning and deep learning models. It then presents the technical details, software requirements, and step by step processes to reproduce its research environment in a flawless manner. It divides into sections on experimental setup, tools and technologies, and implementation steps. It has included detailed steps for importing the libraries, preprocessing data and training and testing of machine learning model (SVC, XGBoost, ConvLSTM). This manual also details the hardware and software specifications of the system used for this project. The main goal is to create a comprehensive guide that allows researchers and practitioners to easily reproduce the results and to continue building on the work.

2 Hardware Configuration

The configuration of the system used for this project is given below:

Processor: AMD Ryzen 7 5700U with Radeon Graphics @1.80 GHz

RAM: 24 GB SSD: 1 TB HDD: 500 GB OS: Windows 11

System Type: 64-bit operating system, x64-based processor

3 Technologies and Software used

The software and technologies that were used in this project are:

- Anaconda Navigator 2.6.3
- Jupyter Notebook 7.2.2
- Python 3.9.20
- Pickle

• TensorFlow: 2.8.2

• Scikit-learn: 0.24.2

• XGBoost: 2.1.3

• Pandas: 1.3.5

NumPy: 1.21.5

• Matplotlib: 3.5.3

• Seaborn: 0.11.2

• Yagmail: 0.15.293

4 Other Requirements

CICIoT2023 Dataset(IoT Dataset 2023 | Datasets | Research | Canadian Institute for Cybersecurity | UNB, n.d.)

Email Account for Notifications: A valid email id is needed to setup the system to send notifications when malicious traffic is detected.

5 Implementation

5.1 Initial steps

- Step 1: Anaconda navigator was installed in the system and configured for the project.
- Step 2: Created a new environment in anaconda as myproject and installed Jupyter Notebook in it.
- Step 3: Installed python and other necessary libraries in the environment.
- Step 4: The dataset was downloaded from its website.

Figure 1: Jupyter Notebook Homepage

Figure 2: File Structure

5.2 Preprocessing

- Step 5: A new notebook was created for preprocessing the dataset.
- Step 6: The libraries required for the program were imported.
- Step 7: Loaded 2 parts of the dataset as it was a very large dataset and required more computing capabilities and time. Both datasets were analysed and combined.
- Step 8: Analyzed and visualized the dataset to identify class imbalances.(CICIoT2023/01-Data_Exploration.lpynb at Main · Plumpmonkey/CICIoT2023 · GitHub, n.d.)
- Step 9: Filtered and balanced the dataset by retaining specific labels and samples.(*Ensemble_learning/CIC_IOT_Dataset2023_dataset_preprocessing.Md at Main · Nickjeffrey/Ensemble_learning · GitHub,* n.d.)
- Step 10: MinMaxScaler was used to normalize feature values.
- Step 11: The dataset was spit into two as training (80%) and testing (20%) subsets.

```
[1]: import warnings
warnings.filterwarnings("ignore")

import pandas as pd
pd.set_option("display.max_columns",None)
pd.set_option("display.max_rows",None)
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams["font.size"]=15
from sklearn.preprocessing import MinMaxScaler
import pickle
import os
from sklearn.model_selection import train_test_split
```

Figure 3: Importing Libraries

```
[2]: #Loading dataset
df1 = pd.read_csv("Dataset/part-00000-363d1ba3-8ab5-4f96-bc25-4d5862db7cb9-c000.csv")
df2 = pd.read_csv("Dataset/part-00168-363d1ba3-8ab5-4f96-bc25-4d5862db7cb9-c000.csv")
[3]: df1.shape
[3]: (238687, 47)
[4]: df2.shape
[4]: (234745, 47)
[5]: df1.head()
```

Figure 4: Analysing the Dataset

```
#Data Extraction
# label list
label_list = ['BenignTraffic', 'DDoS-ICMP_Flood', 'DDoS-UDP_Flood', 'DDoS-TCP_Flood',
              'DDoS-PSHACK_Flood', 'DDoS-SYN_Flood', 'DDoS-RSTFINFlood', 'DDoS-SynonymousIP_Flood']
# Filtering the DataFrame to keep only labels in the label_list
df = df[df['label'].isin(label_list)]
# Ensure each label has at least 11081 records
valid_labels = df['label'].value_counts()[df['label'].value_counts() >= 11081].index
# Filter again to keep only valid labels
df = df[df['label'].isin(valid_labels)]
# For each label, keep only the first 11081 records
df = df.groupby('label').head(11081)
print(df['label'].value_counts())
DDoS-RSTFINFlood
DDoS-ICMP_Flood
DDoS-SynonymousIP_Flood
                          11081
DDoS-SYN_Flood
                          11081
DDoS-PSHACK Flood
                           11081
DDoS-TCP Flood
                          11081
DDoS-UDP Flood
                           11081
BenignTraffic
                           11081
Name: label, dtype: int64
```

Figure 5: Filtering and balancing the dataset

Figure 6: Saving the preprocessing model and Splitting the Data

5.3 Model Training

- Step 12: Created a new notebook for model training.
- Step 13: Loaded the preprocessed training and testing datasets.
- Step 14: Imported necessary libraries and trained the models.
- Step 15: Generated classification reports and confusion matrices for each model.
- Step 16: Saved all trained models for future use.

```
#importing necessary libraries
      warnings.filterwarnings("ignore")
      import pandas as pd
      import numpy as np
import matplotlib.pyplot as plt
      %matplotlib inline
      import seaborn as sns
       import pickle
      from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
      for dirname,_,filenames in os.walk('splitted_data'):
           for filename in filenames:
                print(os.path.join(dirname,filename))
       splitted_data\X_test.csv
       splitted_data\X_train.csv
       splitted_data\y_test.csv
      splitted_data\y_train.csv
[2]: #Loading the split datasets
      X_train = pd.read_csv('splitted_data/X_train.csv')
X_test = pd.read_csv('splitted_data/X_test.csv')
y_train = pd.read_csv('splitted_data/y_train.csv')
y_test = pd.read_csv('splitted_data/y_test.csv')
      print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)
       (70918, 39) (17730, 39) (70918, 1) (17730, 1)
```

Figure 7: Loading Libraries and Preprocessed Dataset

```
[7]: #SVC algorith
from sklearn.svm import SVC
svc_model = SVC(kernel='linear', C=0.01)
svc_model = svc_model.fit(X_train.values, y_train.values.ravel())
```

Figure 8: Training SVC Model

Figure 9: Training CLSTM Model

```
[32]: # Best XGBoost model
    xgb_model = xgb_random_search.best_estimator_
    print("Best Parameters for XGBoost:", xgb_random_search.best_params_)

Best Parameters for XGBoost: {'n_estimators': 200, 'max_depth': 3, 'learning_rate': 0.1}

[33]: # Train and evaluate the XGBoost model
    xgb_model.fit(X_train, y_train)
    xgb_predictions = xgb_model.predict(X_test)
```

Figure 10: Training and Evaluating XGBoost Model

5.4 Response System Implementation

- Step 17: Created a new notebook for the response system.
- Step 18: Loaded the pre-trained XGBoost model, selected features, and scaler.
- Step 19: Implemented an email notification function using yagmail.
- Step 20: Developed blocklist verification to skip already-blocked IPs.
- Step 21: Created a prediction function to classify incoming traffic and log results.
- Step 22: Tested the inference system using network traffic data.

```
[6]: def send_email_notification(sender_email, app_password, recipient_email, ip_address, predicted_label, probability_score)
              yag = yagmail.SMTP(user=sender_email, password=app_password)
              subject = f"Alert: Suspicious Traffic Detected ({predicted_label})"
              contents = (
                  f"Suspicious traffic detected:\n\n"
                  f"IP Address: {ip_address}\n"
                  f"Predicted Label: {predicted_label}\n"
                  f"Probability Score: {probability_score}\n\n"
                  f"Please take appropriate actions."
              yag.send(to=recipient_email, subject=subject, contents=contents)
              print(f"Email notification sent to {recipient email}.")
          except Exception as e:
             print(f"Failed to send email: {e}")
[22]: def prediction(input_data, features, model, scaler, output_csv='predictions_log.csv'):
          # Drop 'ip_address' if present
          if 'ip_address' in input_data.columns:
              ip_address = input_data['ip_address'].iloc[0]
              input data = input data.drop('ip address', axis=1)
              ip_address = 'Unknown'
          # Check if the predictions log exists and if the IP address is blocked
          if os.path.exists(output_csv):
             blocked_ips = pd.read_csv(output_csv)['ip_address'].unique()
              if ip_address in blocked_ips:
                  print(f"IP address '{ip_address}' is already in the blocklist.")
                  return f"IP address '{ip_address}' is blocked."
          # Extract and scale features
          input_data_multiclass = input_data[features]
          input_data_multiclass_scaled = scaler.transform(input_data_multiclass.values)
```

Figure 11: Email Notification Function

```
[22]: def prediction(input_data, features, model, scaler, output_csv='predictions_log.csv'):
    # Drop 'ip_address' if present

if 'ip_address' in input_data.columns:
    ip_address = input_data['ip_address'].iloc[0]
    input_data = input_data.drop('ip_address', axis=1)

else:
    ip_address = 'Unknown'

# Check if the predictions log exists and if the IP address is blocked
    if os.path.exists(output_csv):
        blocked_ips = pd.read_csv(output_csv)['ip_address'].unique()
        if ip_address in blocked_ips:
            print(f"IP address '{ip_address}' is already in the blocklist.")
            return f"IP address '{ip_address}' is blocked."
```

Figure 12: Blocklist Verification

```
[30]: # Load the input file and perform the prediction
      user_input_filepath = "user_input/user_input_0/DDoS-SYN_Flood_test (3).csv"
      df = pd.read_csv(user_input_filepath)
      df.head()
                                                  Protocol
         ip_address flow_duration Header_Length
                                                           Duration
                                                                        Rate
                                                                                 Srat
                                                     Type
      0
             8.8.8.8
                                0
                                              54
                                                                 64 2.366215 2.36621
[31]: # Call the prediction function
      prediction(df, selected_features, model, scaler)
      Class Index: 4
      Class Label: DDoS_SYN_Flood
      Probability Score: 100.00%
      Email notification sent to errorguy000@gmail.com.
```

Figure 13: Prediction and Alert Function Implementation

Figure 14: Email Alert

References

- CICIoT2023/01-Data_Exploration.ipynb at main · plumpmonkey/CICIoT2023 · GitHub. (n.d.). Retrieved December 12, 2024, from https://github.com/plumpmonkey/CICIoT2023/blob/main/01-Data_Exploration.ipynb
- ensemble_learning/CIC_IOT_Dataset2023_dataset_preprocessing.md at main · nickjeffrey/ensemble_learning · GitHub. (n.d.). Retrieved December 12, 2024, from https://github.com/nickjeffrey/ensemble_learning/blob/main/CIC_IOT_Dataset2023_dataset_preprocessing.md
- IoT Dataset 2023 | Datasets | Research | Canadian Institute for Cybersecurity | UNB. (n.d.). Retrieved December 12, 2024, from https://www.unb.ca/cic/datasets/iotdataset-2023.html