===

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Master of Science in Cyber Security

Albin Shaju
Student ID: 23215496

School of Computing
National College of Ireland

Supervisor: Prof. Jawad Salahuddin

‘-—
National College of Ireland \ National

MSc Project Submission Sheet CollegeOf
c Project Submission Shee I
reland
School of Computing
Student Albin Shaju
) T= 1 1.1 1= PP
23215496
Y 0] e =T o 1 o 1 0 TSP R
Master of Science in Cyber Security 2024
Programmee: ... Year:ceeiiiiiieeeennn,
MSc Research Project
10 T Y LU <RSP
Prof. Jawad Salahuddin
0= ot o] o= SR
Submission Thursday, 12 December 2024
Due Date:

Exploring Machine Learning Approaches for Robust Anomaly
Project Title: Detection and Responsive Security in IoT Frameworks

Word Count: ... Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Albin Shaju

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | M
copies)

Attach a Moodle submission receipt of the online project]
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, ™

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Albin Shaju
Student ID: 23215496

1 Introduction

The purpose of this configuration manual is to give the complete description of setting up the
experimental setup and implementing the proposed intrusion detection system (IDS) using
machine learning and deep learning models. It then presents the technical details, software
requirements, and step by step processes to reproduce its research environment in a flawless
manner. It divides into sections on experimental setup, tools and technologies, and
implementation steps. It has included detailed steps for importing the libraries, preprocessing
data and training and testing of machine learning model (SVC, XGBoost, ConvLSTM). This
manual also details the hardware and software specifications of the system used for this project.
The main goal is to create a comprehensive guide that allows researchers and practitioners to
easily reproduce the results and to continue building on the work.

2 Hardware Configuration
The configuration of the system used for this project is given below:

Processor: AMD Ryzen 7 5700U with Radeon Graphics @1.80 GHz
RAM: 24 GB

SSD:1TB

HDD: 500 GB

OS: Windows 11

System Type: 64-bit operating system, x64-based processor

3 Technologies and Software used
The software and technologies that were used in this project are:

e Anaconda Navigator 2.6.3
e Jupyter Notebook 7.2.2

e Python 3.9.20

e Pickle

e TensorFlow: 2.8.2

e Scikit-learn: 0.24.2

e XGBoost: 2.1.3

e Pandas: 1.3.5

e NumPy: 1.21.5

e Matplotlib: 3.5.3
e Seaborn: 0.11.2
e Yagmail: 0.15.293

4 Other Requirements

CICloT2023 Dataset(/oT Dataset 2023 | Datasets | Research | Canadian Institute for
Cybersecurity | UNB, n.d.)

Email Account for Notifications: A valid email id is needed to setup the system to send
notifications when malicious traffic is detected.

5 Implementation

5.1 |Initial steps

Step 1: Anaconda navigator was installed in the system and configured for the project.

Step 2: Created a new environment in anaconda as myproject and installed Jupyter Notebook
in it.

Step 3: Installed python and other necessary libraries in the environment.

Step 4: The dataset was downloaded from its website.

[@ localhost:8888/tree @ 2| ¥ A o a
—t
Z Jupyter
File View Settings Help
m Files | @ Running
~New % Upload | C
./
O Name - Last Modified File Size
O = Aa My project 24 days ago - |
O = Al ML Project 3 months ago
O = AndroidstudicProjects 9 months ago
O = ApkProjects 9 months ago
O = Completed Project yesterday
O = contacts 2 years ago
O @8 Creative Cloud Files last year
O ® Desktop 2 years ago
|
O = pocuments 13 days ago
|
O =8 Downloads yesterday
O @8 eclipse-workspace 2 years ago
O ®env 9 months ago
O = Favorites 2 years ago
O @ getting-started 2 years ago
O = Links 2 years ago
O = Mmusic 2 years ago
O = myproject 2 days ago
O = OneDrive last year
O @ OpenvPN last year -

Figure 1: Jupyter Notebook Homepage

e - Completed Project
=2 Marme
(] Bm Dataset
(] e models
— Bm splitted_data
— B user_input
=]
O - =]
O - =]
O =l
O - [9] Testing with blocking.ipynk
2 -] Testing.ipynb
— EHH normalized_data.csw
— EHH predictions_log.csw

Figure 2: File Structure

5.2 Preprocessing
Step 5: A new notebook was created for preprocessing the dataset.
Step 6: The libraries required for the program were imported.

Step 7: Loaded 2 parts of the dataset as it was a very large dataset and required more computing
capabilities and time. Both datasets were analysed and combined.

Step 8: Analyzed and visualized the dataset to identify class imbalances.(CICloT2023/01-
Data_Exploration.lpynb at Main - Plumpmonkey/CICloT2023 - GitHub, n.d.)

Step 9: Filtered and balanced the dataset by retaining specific labels and
samples.(Ensemble_learning/CIC_IOT_Dataset2023_dataset_preprocessing.Md at Main
Nickjeffrey/Ensemble_learning - GitHub, n.d.)

Step 10: MinMaxScaler was used to normalize feature values.
Step 11: The dataset was spit into two as training (80%) and testing (20%) subsets.

r1l: import warnings

warnings . filterwarnings{"ignore™)

import pandas as pd

pd.set option{"displaw.max_ columns" ,None)
pd.set _option{"displaw.max_rows"_,None)

Admport numpy as np

import matplotlib.pwvplot as plt

Hmatplotlib inline

plt.rcParams["font.size"]=15

from sklearn.preprocessing import MinMaxScaler
iAdmport pickle

Aimport os

FfFfrom sklearn.model selection import train_test split

Figure 3: Importing Libraries

[2]: #loading dataset
dfl = pd.read_csv("Dataset/part-808008-363d1ba3-8ab5-4f96-bc25-4d5862db7ch9-cBOB.csv™)
df2 = pd.read_csv("Dataset/part-80168-363d1ba3-8ah5-4f96-bc25-4d5862db7ch9-cBOB.csv™)
[2]: dfl.shape
[3]: (238687, 47)
df2.shape

(234745, 47)

[5]: dfl.head()

Figure 4: Analysing the Dataset

1: #Data Extraction
Label Llist
label list = ['BenignTraffic’, 'DDoS-ICMP_Flood', 'DDoS-UDP_Flood', 'DDoS-TCP_Flood',
'DDoS-PSHACK _Flood', 'DDoS-5YM _Flood', '"DDoS-RSTFINFlood®, 'DDoS-SynonymousIP_Flood']

Filtering the DataFrame to keep only labels in the label Llist
df = df[df['label’].isin(label list)]

Ensure each label has at least 11081 records
valid_labels = df['label’].value_counts()[df['label'].value_counts() >= 11681].index

Filter again to keep only valid Labels
df = df[df['label’'].isin(valid_labels)]

For each label, keep only the first 11081 records
df = df.groupby('label’').head(11081)

print{df['label'].value_counts(})

DDoS-RSTFINFlood 11881
DDoS-ICMP_Flood 11681
DDoS-SynonymousIP_Flood 11681
DDoS-SYN_Flood 11681
DDo5-PSHACK_Flood 11681
DDoS-TCP_Flood 11681
DDo5-UDP_Flood 11681
BenignTraffic 11681

Mame: label, dtype: inte4

Figure 5: Filtering and balancing the dataset

#Saving the preprocessing model
with open(file="models/scaler.pkl", modez"wb") as file:
pickle.dump(obj=scaler, file=file)

#saving the feature selection data
normalized_df.to_csv("normalized_data.csv", index=False)

normalized_df.shape

(88648, 40)

#Data Splitting
X = normalized_df.drop(labels='label’, axis=1)
vy = normalized_df[["'label’

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random state=z42, stratify=zy)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

(70918, 39) (17730, 39) (7@918, 1) (17738, 1)

Figure 6: Saving the preprocessing model and Splitting the Data

5.3 Model Training
Step 12: Created a new notebook for model training.

Step 13: Loaded the preprocessed training and testing datasets.

Step 14: Imported necessary libraries and trained the models.

Step 15: Generated classification reports and confusion matrices for each model.
Step 16: Saved all trained models for future use.

[1]: #importing necessary Libraries
import warnings

warnings.filterwarnings{"ignore™)

import os

import pandas as pd

import numpy as np

import matplotlib.pwvplot as plt

Ematplotlib inline

import seaborn as sns

import pickle

from sklearn.metrics import accuracy_ score,classification_report,confusion_matrix

fFor dirname,_,filenames in os.walk({'splitted_data'):
Ffor fTilename in filenames:

print(os.path.join{(dirname, filename))

splitted data’X_test.csw
splitted_

splitted_datal\y_test.csw
splitted_dataly_train.csw

data\X_train.csw

#loading the split datasets

X_train = pd-.read_csv("splitted_data/X train.cswv")
X _test = pd.read csv('splitted data/X test._cswv')
v_train = pd.read_csv("splitted_data/yv train.cswv')
v_test = pd.read_csv("splitted data/y test.csv’')

print{X train.shape,X_ test.shape,y_ train.shape,y test_.shape)

(70918, 39) (17730, 39) (7918, 1) (1773e, 1)

Figure 7: Loading Libraries and Preprocessed Dataset

#5VC algorith
from sklearn.svm import SWV(
svc_model = SVC(kernel='linear', C=8.81)

svc_model = svc_model.fit(X train.values, y train.values.ravel())

Figure 8: Training SVC Model

#traing clstm model
history = clstm model.fit(
x=x_train,
y=y_train,
batch_size=32,
epochs=18,
validation data=(x_test,y test),

callbacks=ReducelLROnPlateau(monitor="val accuracy', patiencez2, min_1r=0)

Figure 9: Training CLSTM Model

Best XGBoost model
xgb_model = xgb_random_search.best _estimator_

print("Best Parameters for XGBoost:", xgb random_search.best params_)

Train and evaluate the XGBoost model
xgb model.fit(X_train, y_train)
xgb_predictions = xgb _model.predict(X_test)

Best Parameters for XGBoost: {'n_estimators': 208, 'max_depth': 3, 'learning_rate':

0.1}

Figure 10: Training and Evaluating XGBoost Model

5.4 Response System Implementation
Step 17: Created a new notebook for the response system.

Step 18: Loaded the pre-trained XGBoost model, selected features, and scaler.
Step 19: Implemented an email notification function using yagmail.

Step 20: Developed blocklist verification to skip already-blocked IPs.

Step 21: Created a prediction function to classify incoming traffic and log results.
Step 22: Tested the inference system using network traffic data.

try:
yag = yagmail.SMTP(user=sender_email, password=app_password)
subject = f"Alert: Suspicious Traffic Detected ({predicted_label})"
contents = (
f"Suspicious traffic detected:\n\n"
f"IP Address: {ip_address}\n"
f"Predicted Label: {predicted_label}in"
f"Probability Score: {probability_score}\nin"
f"Please take appropriate actions.”
)
yag.send(to=recipient_email, subject=subject, contents=contents)
print(f"Email notification sent to {recipient_email}.")
except Exception as e:
print(f"Failed to send email: {e}")

def prediction(input_data, features, model, scaler, output_csv='predictions_log.csv'):
Drop 'ip address' if present
if "ip_address' in input_data.columns:

ip_address input_data| 'ip_address'].iloc[®@

input_data = input_data.drop('ip_address', axis=z1)
else:

ip_address = 'Unknown

Check if the predictions log exists and if the IP address is blocked
if os.path.exists(output_csv):
blocked_ips = pd.read_csv(output_csv)['ip_address'].unique()
if ip _address in blocked_ips:
print(f"IP address '{ip_address}' is already in the blocklist.")
return f"IP address '{ip address}' is blocked."

Extract and scale features

input_data_multiclass = input_data[features

input_data_multiclass_scaled = scaler.transform(input_data_multiclass.values)

def send_email notification(sender_email, app_password, recipient_email, ip_address, predicted_label, probability score):

Figure 11: Email Notification Function

def prediction(input_data, features, model, scaler, ocutput csv='predictions leg.csv'):
Drop 'ip address' if present
if 'ip_address' in input_data.columns:
'l.iloc[@

input_data = input_data.drop('ip_address', axis=1)

ip_address = input_data['ip_address

else:

ip_address = 'Unknown'

Check if the predictions leog exists and if the IP address is blocked
if os.path.exists(output_csv):
blocked_ips = pd.read_csv(output_csv)['ip_address'].unique()
if ip_address in blocked ips:
print(f"IP address '{ip_address}' is already in the blocklist.")
return T"IP address '{ip address}' is blocked.™

Figure 12: Blocklist Verification

Load the input file and perform the prediction

user_input_filepath = "user_input/user_input_@/DDoS-SYMN_Flood_test (3).csw"
df = pd.read_csv(user_input_filepath)
df.head()

. . Protocol .

ip_address flow_duration Header_Length Type Duration Rate Sraf
0 8.8.8.8 0 54 6 64 2.366215 2.36621

Call the prediction function

prediction{df, selected features, model, scaler)

Class Index: 4

Class Label: DDoS_S¥N_Floed

Probability Score: 188.806%

Email notification sent to errorguy@08@gmail . com.

Figure 13: Prediction and Alert Function Implementation

< =B W

Alert: Suspicious Traffic
Detected (DDoS SYN_ Flood)

Inbox

o albinshaju.ie@gm... 118 AM
To me ~

Suspicious traffic detected:

IP Address: 8.8.8.8

Predicted Label: DDoS_SYN_Flood
Probability Score: 100.00%%

Please take appropriate actions.

Figure 14: Email Alert
7

References

CICloT2023/01-Data_Exploration.ipynb at main - plumpmonkey/CI1C10T2023 - GitHub.
(n.d.). Retrieved December 12, 2024, from
https://github.com/plumpmonkey/CICl0T2023/blob/main/01-Data_Exploration.ipynb

ensemble_learning/CIC_10T_Dataset2023_dataset_preprocessing.md at main -
nickjeffrey/ensemble_learning - GitHub. (n.d.). Retrieved December 12, 2024, from
https://github.com/nickjeffrey/ensemble_learning/blob/main/CIC_10T_Dataset2023_dat

aset_preprocessing.md

loT Dataset 2023 | Datasets | Research | Canadian Institute for Cybersecurity | UNB. (n.d.).
Retrieved December 12, 2024, from https://www.unb.ca/cic/datasets/iotdataset-
2023.html

