

Configuration Manual

MSc Research Project

Cyber Security

WAHAJ RASHID

Student ID: X23197960

School of Computing

National College of Ireland

Supervisor: ROHIT VERMA

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Wahaj Rashid

……. ………

Student ID:

X23197960

………..……

Programme:

MSc CYB JAN24

………………………………………………………………

Year:

2024-2025

…………………………..

Module:

MSc Research Practicum

…….………

Lecturer:

Rohit Verma

…….………

Submission

Due Date:

12-12-2024 @ 02:00pm

…….………

Project Title:

ANALYSIS OF AUTOMATED ZERO TRUST AWS HOME NETWORK FOR CONFIDENTIALITY
AND AUTHENTICATION ISSUES
…….………

Word Count:

1245 12

……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:
……

Date:

12-12-2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Wahaj Rashid

Student ID: x21397960

1. INTRODUCTION

This configuration manual provides a step-by-step procedure recreate a Zero Trust AWS

environment to address confidentiality and authentication issues in a home network.

2. SYSTEM CONFIGURATION

2.1. SYSTEM HARDWARE

MODEL NAME HP EliteBook 735 G6

SYSTEM TYPE WINDOWS 11 64-BIT OPERATING

SYSTEM, X64-BASED PROCESSOR

PROCESSOR AMD Ryzen 5 Pro

RAM 16GB

HARD DISK 512GB

2.2 SOFTWARE REQUIREMENT

For Admin - Local System

Software Version Type

Visual Studio Code (VSCODE) v1.85.1 IDE - Code Editor

Visual Studio Code v1.74 IDE - Code Editor

Terraform CLI v1.9.7 Infrastructure as Code Tool

Amazon Web Services (AWS CLI) v2.18.5 Command Line Interface for AWS

Amazon Web Service Management

Console

N/A Web-Based Cloud Management

Console

Python v3.12.3 Programming Language

Pip v24.1.2 Python Package Installer

2

Twingate Console for Admin N/A Zero Trust Network Management

Console

For Users - Mobile devices

Software Version Type

Twingate Client v2024.311 Zero Trust Network Client

Termius v5.9.5 SSH and SFTP Client

3. INSTALLATION AND SETUP

For Local System - Admin

• Create AWS Account (We are using Free Tier)

• Any IDE of your choice like VS Code

• Download and Install AWS CLI: v2.18.5. (Installing or updating to the latest

version of the AWS cli - AWS command line interface, n.d.)

o Verify after installation by running AWS --version

o To configure Run AWS configure

o Enter AWS Access Key ID

o Enter AWS Secret Key ID

▪ Retrieve access and secret key ids from AWS IAM user

▪ Go to AWS account > IAM > Users > Create User > Create

Access Key as shown in Fig. 1

Fig 1. IAM user with access key

o Enter region eu-west-1

o Enter output format json

Run AWS IAM list-users to verify if its connected as shown in Fig. 2

3

Fig.2 Verify if AWS cli is connected to our AWS account

• Download and Install Terraform: v1.9.7 make sure you add its path to

environmental variable in after installation(Install | terraform | hashicorp

developer, n.d.)

• Verify if its install by running Terraform --version

Enter code in main.tf file to create provider as shown In Fig. 3 use credentials from IAM

users

Fig.3 Configuration of AWS Provider

• Create Twingate network on web management console (Twingate, n.d.)

Go to Admin Console > Settings > Generate API Token and paste it in code

with network name to establish a connection between Twingate Admin/Client

and configure it in code as shown in Fig 4, Fig 5

Fig. 4 Generate API Token for Provider

4

Fig. 5 Configure Twingate

• Create SSH key using SSH-keygen and use its location path in code as shown

in Fig. 6 we will use it in our EC2 resource as shown in Fig. 7

Fig.6 Configure SSH for AWS Instance

Get any free image for AWS instance with AMI Catalog from AWS and paste its ID in code

as shown in Fig. 7. AMI Catalog An AMI is a template that contains the software

configuration (operating system, application server, and applications) required to launch your

instance as shown in figure .The installed EC2 instance will be using to deploying our

services as shown in Fig. 8

Fig.7 Virtual Machine Image for EC2 Instance

5

Fig.8 AWS EC2 Instance configuration

Rest of the code for twingate connection is same as AWS connection only the values will be

different basic setup is available at (How to use terraform with AWS and twingate | docs, n.d.)

After pasting code and validating that all required elements will be installed and configured

after deployment and to deploy user need to run following commands.

• Run terraform in it to initializes a working directory that contains installed

plugins for required providers and configuration files. Make sure you change

the path of SSH key according to your environment before deployment.

• After that run terraform validate to spot and verify any error

• After that terraform plan to view the changes in infrastructure without

deploying the code

• At Last run terraform apply to deploy the code and it will configure

everything that has mentioned in the code and sent invite to the users with

access as shown in Fig. 9 and Fig 10 also you can use the whole group of

people to send invite at once through trust list

6

Fig. 9 Mentioned Users with their assigned roles

Fig. 10 Accessed user get Invitation as mentioned in code

4. POST DEPLOYMENT STEPS

Admin Needs to Verify the desired environment for the user’s device by using Twingate

Management Web Console as shown in Fig 11

7

Fig 11 Desired environment for trusted device

Admin Need to verify user device as well as shown in Fig 12. After verifying devices

multiple security elements would be enabled for the user like Biometric, HD Encryption and

Anti-Virus scan etc.

Fig 12 Verify/Unverified user with security elements

User open application twingate client and if user and its device is verified by the admin then

user will go through MFA first and after that user could set Biometric password less Login

for ease. Client copy IP of desired resource Client open Termius (Termius - SSH platform for

mobile and desktop, n.d.) and paste IP with SSH key that was shown in Fig. 6 to successfully

access the resource through terminal as shown in the Fig 13 and Fig 14

8

Fig 14 User authentication process with biometric

S3 bucket was generated by the time of deployment and a separate log file will generate logs

if we perform any action in the bucket like create update or upload files in bucket as shown in

Fig 15

Fig 15 Automated bucket logs to monitor the main S3 Bucket

Data in the file is encrypted by AES256 with Twingate Policies by default as shown in figure

and it could be further enhanced by using AWS KMS as shown in Fig 16 just by running

AWS s3 cp lgf.txt s3://wahaj123xyz/ --sse AWS:kms

9

Fig 16 Encryption type from AES256 to KMS

Defined policies in code for ACL will not let other users to access the file but it could be

update according to the user desire as shown in Fig 17.

Fig 17 Integrated ACL to restrict public access

5. ANALYSIS AND EVALUATION STEPS

To analyze and evaluate we used python scripts to generate some data and compare some of

them to find the one with better results .

To track the time taken to encrypt and decrypt kms file use code mentioned below in a file

that you will create by using sudo nano kms_time_tracker.py and after saving it run

python3 kms_time_tracker.py to execute as shown in Fig 18.

10

Fig 18 Evaluating time to encrypt and decrypt S3 file using KMS

import subprocess
import time
import os

S3 Bucket Name
bucket_name = 'wahaj123xyz'

Function to get the list of files in the S3 bucket
def list_files():
 result = subprocess.run(
 ["AWS", "s3", "ls", f"s3://{bucket_name}/", "--recursive"],
 stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
 files = result.stdout.strip().splitlines()
 return [file.split()[-1] for file in files] # Extract file paths

Function to measure the time it takes to upload (encrypt) a file
def measure_encryption_time(file_path):
 start_time = time.time()
 subprocess.run(
 ["AWS", "s3", "cp", f"{file_path}", f"s3://{bucket_name}/", "--sse", "AWS:kms", "--sse-kms-key-id", "82e53ae6-81a7-474b-afcc-
e33652d5cad3"],
 stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
 end_time = time.time()
 return end_time - start_time

Function to measure the time it takes to download (decrypt) a file
def measure_decryption_time(file_path):
 start_time = time.time()
 subprocess.run(
 ["AWS", "s3", "cp", f"s3://{bucket_name}/{file_path}", f"{file_path}", "--sse", "AWS:kms", "--sse-kms-key-id", "82e53ae6-81a7-474b-afcc-
e33652d5cad3"],
 stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
 end_time = time.time()
 return end_time - start_time

Main function to iterate over all files and measure encryption/decryption times
def main():
 files = list_files()
 for file in files:
 print(f"Processing file: {file}")

 # Measure encryption time
 encryption_time = measure_encryption_time(file)
 print(f"Encryption time for {file}: {encryption_time:.2f} seconds")

 # Measure decryption time
 decryption_time = measure_decryption_time(file)
 print(f"Decryption time for {file}: {decryption_time:.2f} seconds")

if __name__ == "__main__":
 main()

11

In the same way paste the code mentioned below to monitor the resources in EC2 to compare

the public and private instance to measure performance while uploading big files as shown in

Fig 19.

Fig 19 Public VS Private EC2 instance while uploading big files in S3 bucket

12

REFERENCES

How to use terraform with AWS and twingate | docs (n.d.). Available at:

https://www.twingate.com/docs/terraform-AWS (Accessed: 11 December 2024).

Install | terraform | hashicorp developer (n.d.) Install | Terraform | HashiCorp Developer.

Available at: https://developer.hashicorp.com/terraform/install (Accessed: 11 December

2024).

Installing or updating to the latest version of the AWS cli - AWS command line interface

(n.d.). Available at: https://docs.AWS.amazon.com/cli/latest/userguide/getting-started-

install.html#getting-started-install-instructions (Accessed: 11 December 2024).

Termius - SSH platform for mobile and desktop (n.d.). Available at: https://termius.com/

(Accessed: 11 December 2024).

Twingate (n.d.). Available at: https://auth.twingate.com/signup-v2 (Accessed: 11 December

2024).

import psutil

import time

def get_cpu_usage():

 cpu_usage = psutil.cpu_percent(interval=1)

 return cpu_usage

def get_memory_usage():

 memory_info = psutil.virtual_memory()

 return memory_info.percent

def get_disk_usage():

 disk_info = psutil.disk_usage('/')

 return disk_info.percent

def get_network_usage():

 network_info = psutil.net_io_counters()

 return network_info.bytes_sent, network_info.bytes_recv

def display_usage():

 print("Checking EC2 resource usage...\n")

 while True:

 cpu = get_cpu_usage()

 memory = get_memory_usage()

 disk = get_disk_usage()

 network_sent, network_recv = get_network_usage()

 print(f"CPU Usage: {cpu}%")

 print(f"Memory Usage: {memory}%")

 print(f"Disk Usage: {disk}%")

 print(f"Network Sent: {network_sent / (1024 * 1024):.2f} MB")

 print(f"Network Received: {network_recv / (1024 * 1024):.2f} MB")

 print("\n---")

 time.sleep(5) # Update every 5 seconds

if __name__ == "__main__":

 display_usage()

