

Configuration Manual

MSc Research Project

MSc in Cybersecurity

Farhanahmad Quraishi

Student ID: x23165367

School of Computing

National College of Ireland

Supervisor: Diego Lugones

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Farhanahmad Quraishi

Student ID:

x23165367

Programme:

MSc in Cybersecurity

Year:

2024-25

Module:

Practicum Part 2

Lecturer:

Diego Lugones

Submission Due

Date:

12/12/24

Project Title:

Enhancing Zero-Day Malware Detection in Enterprise Networks

Using Behavior-Based Machine Learning Models

Word Count:

 2213 Page Count: 25

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Farhanahmad Quraishi

Date:

12/12/24

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Farhanahmad Quraishi

Student ID: x23165367

1. Introduction
This configuration manual provides step-by-step guidance for implementing a behavior-based

machine learning model to enhance zero-day malware detection in enterprise networks. The

document covers data preprocessing, feature engineering, model training, evaluation, and

hybrid approach implementation. It is designed to facilitate reproducibility and provide

insights into the hybrid model's development and performance.

2. System Requirements and Libraries

The implementation requires a system with at least 16GB of RAM and a multi-core processor

for efficient data handling and model training. The code is written in Python and utilizes

libraries such as numpy, pandas, scikit-learn, xgboost, lightgbm, tensorflow, and matplotlib.

Ensure the latest versions of these libraries are installed to maintain compatibility and

performance.

3. Data Execution Explanation

3.1. Import the Libraries

Section Description

joblib Used for saving and loading models efficiently.

warnings Suppresses unnecessary warning messages.

numpy and pandas Provides numerical and data manipulation capabilities.

seaborn Enhances visualizations for data analysis.

tqdm Adds progress bars to loops.

matplotlib Used for creating detailed plots and charts.

xgboost, lightgbm Includes two machine learning classifiers for testing and comparison.

tensorflow.keras Build neural network models for deep learning.

sklearn Provides tools for preprocessing, modeling, and evaluating machine learning.

mpl.rcParams Adjusts the resolution of visualizations to high quality.

warnings.filterwarnings Turns off warnings to improve code readability during execution.

2

Figure 1: Imported libraries and frameworks necessary for data preprocessing, visualization, and

implementing machine learning models

3.2. About the Dataset

Section Description

np.memmap Loads large datasets (X_train and y_train) without overloading memory.

n_samples, n_features Calculates the number of samples and features for reshaping the dataset.

X_train.reshape Reshapes the dataset to the required structure for machine learning models.

pd.DataFrame Converts the reshaped dataset into a pandas DataFrame for better handling.

label_mapping Maps numeric labels (0, 1) to descriptive categories ("benign", "malicious").

EMBER.head() Displays the first few rows of the dataset for verification.

Figure 2: Loading, reshaping, and mapping labels for the training dataset into a structured DataFrame.

3

Figure 3: The head() display of the dataset.

3.3. Basic Analysis and EDA

Figure 4: Printing the dimensions of the dataset to confirm its structure (rows, columns).

Figure 5: Displaying the data types of each column in the dataset for verification and analysis.

Figure 6: Presenting a summary of the dataset, including column details, data types, and memory usage.

4

Figure 7: Statistical summary of numerical columns showing distribution and range of dataset features.

Section Description

EMBER.describe()
Generates a statistical summary of numerical columns, including count, mean,
standard deviation, min, max, and percentiles.

print/display Displays the summary statistics for easy analysis of numerical data.

Figure 8: Counting and removing null values to ensure a clean and complete dataset for analysis.

5

Figure 9: Identifying and removing duplicate rows to ensure dataset integrity and reduce redundancy.

Section Description

EMBER.duplicated().s

um() Counts the number of exact duplicate rows in the dataset.

EMBER.drop_duplica

tes(inplace=True) Removes duplicate rows to ensure dataset uniqueness.

EMBER.shape Displays the updated shape of the DataFrame after duplicate removal.

print
Outputs the number of duplicates and updated DataFrame shape for

confirmation.

Figure 10: Removing constant columns with a single unique value to optimize the dataset for analysis.

Section Description

EMBER[col].nunique()

== 1 Identifies columns with only one unique value (constant columns).

constant_columns Stores the list of constant columns to be removed.

EMBER.drop(columns=

constant_columns) Removes constant columns to reduce redundant data.

del EMBER Deletes the original DataFrame to free up memory after cleaning.

print
Displays the number of removed columns and the updated shape of the cleaned

dataset.

6

3.4. EDA

Figure 11: Performing Incremental PCA on large datasets in chunks for memory-efficient dimensionality

reduction.

Section Description

chunk_size Sets the size of data chunks for processing to optimize memory usage.

IncrementalPCA Initializes Incremental PCA to reduce feature dimensions in small chunks.

tqdm Tracks progress of PCA fitting and transformation with visual progress bars.

pca.partial_fit() Fits PCA incrementally to chunks of the dataset for dimensionality reduction.

pca.transform() Applies the PCA transformation to reduce features for each data chunk.

np.vstack Combines transformed chunks into a single array with reduced dimensions.

print Outputs the shape and data type of the reduced feature set for verification.

Figure 12: Combining reduced features with labels and saving the processed dataset to a CSV file for

further analysis.

7

Section Description

EMBER_cleaned['label'].

values Extracts labels from the cleaned dataset as a NumPy array.

pd.DataFrame Creates a DataFrame for the PCA-transformed data with meaningful column names.

EMBER_Processed['labe

l'] Adds the label column back to the reduced feature dataset.

to_csv Saves the processed data with labels to a CSV file for further use.

print Confirms successful saving of the reduced data to a file.

Figure 13: Loading the processed dataset from a CSV file and verifying its structure and sample content.

Figure 14: Displaying the class distribution in the label column to understand data balance.

8

Figure 15: Visualizing the distribution of benign and malicious samples in the dataset with a bar chart.

Section Description

EMBER['label'].value_co

unts() Counts the number of samples in each class of the label column.

sns.countplot Visualizes the distribution of labels in the dataset with a bar chart.

plt.title, plt.xlabel,

plt.ylabel Adds a title and labels to the plot for better understanding.

plt.show() Displays the plot showing the label distribution.

9

Figure 16: Visualizing the distribution of numerical features to understand data spread and density.

Figure 17: Boxplots of numerical features by label, highlighting potential outliers in the dataset.

Figure 18: Correlation heatmap of sampled features showing relationships between variables in the

dataset.

Section Description

EMBER.columns[:50] Selects a sample of 50 features for correlation analysis.

EMBER[sample_features

].corr() Computes the correlation matrix for the selected features.

sns.heatmap Visualizes the correlation matrix as a heatmap.

plt.title Adds a title to the heatmap for better context.

plt.show() Displays the heatmap to analyze feature relationships.

10

3.5. Data Preparation

Figure 19: Preparing the dataset by separating features and labels, splitting into training and testing sets,

and scaling the features.

Section Description

EMBER.drop(columns=[

'label']) Separates features from the label column.

map({'benign': 0,

'malicious': 1}) Converts label strings into numerical values (0 for benign, 1 for malicious).

train_test_split Splits the dataset into training (80%) and testing (20%) subsets.

StandardScaler Scales the features to have zero mean and unit variance for consistency.

scaler.fit_transform Fits the scaler to training data and applies transformation.

scaler.transform Applies the same transformation to testing data for uniform scaling.

print Confirms the shapes of the prepared training and testing sets.

11

3.6. Gradient Boosting Machine (GBM)

Figure 20: Evaluating the Gradient Boosting model with a confusion matrix and classification report for

prediction accuracy.

12

Section Description

label_names Defines descriptive names for the labels ("Benign" and "Malicious").

GradientBoostingClassifi

er Initializes the Gradient Boosting model with a fixed random state for reproducibility.

gb.fit(X_train, y_train) Trains the Gradient Boosting model using the training dataset.

gb.predict(X_test) Makes predictions on the test set using the trained model.

confusion_matrix Computes the confusion matrix for the predictions.

classification_report Generates a detailed report of precision, recall, F1-score, and accuracy.

ConfusionMatrixDisplay Visualizes the confusion matrix as a heatmap.

plt.show() Displays the classification evaluation results and confusion matrix.

3.7. Light GBM Model

Figure 21: Evaluating the LightGBM model performance using a confusion matrix and classification

report.

13

Section Description

label_names Defines descriptive names for the labels ("Benign" and "Malicious").

LGBMClassifier Initializes the LightGBM model with a fixed random state for consistency.

lgbm.fit(X_train, y_train) Trains the LightGBM model on the training dataset.

lgbm.predict(X_test) Generates predictions for the test dataset.

confusion_matrix Computes the confusion matrix for evaluating predictions.

classification_report Provides detailed metrics: precision, recall, F1-score, and accuracy.

ConfusionMatrixDisplay Visualizes the confusion matrix as a heatmap for class-specific performance.

plt.show() Displays the classification metrics and the confusion matrix plot.

3.8. XGBoost

Figure 22: Evaluating the XGBoost model performance using a confusion matrix and classification

report.

Section Description

label_names Defines descriptive names for the labels ("Benign" and "Malicious").

14

XGBClassifier
Initializes the XGBoost model with a fixed random state and specific evaluation

metric.

xgb.fit(X_train, y_train) Trains the XGBoost model using the training dataset.

xgb.predict(X_test) Generates predictions for the test dataset.

confusion_matrix Computes the confusion matrix to evaluate prediction accuracy.

classification_report Produces metrics such as precision, recall, F1-score, and accuracy.

ConfusionMatrixDisplay Visualizes the confusion matrix as a heatmap to assess class-specific performance.

plt.show() Displays the classification metrics and confusion matrix plot.

3.9. Random Forest

15

Figure 23: Evaluating the Random Forest model performance using a confusion matrix and classification

report.

16

3.10. Hybrid Model

17

Figure 24: Evaluating the hybrid model combining anomaly detection and supervised classification using

a confusion matrix and performance metrics.

Section Description

X_train_autoencoder Selects benign samples for unsupervised training with the autoencoder.

autoencoder Defines a neural network to compress (encode) and reconstruct (decode) data.

autoencoder.compile
Configures the autoencoder for training using the Adam optimizer and mean squared

error loss.

autoencoder.fit Trains the autoencoder using only benign samples for reconstruction.

get_anomaly_scores Computes reconstruction errors (anomaly scores) for input data.

18

hrf =

RandomForestClassifier
Trains a Random Forest classifier on the entire labeled dataset for supervised

classification.

classification_scores Predicts probabilities for malicious labels using the Random Forest classifier.

np.column_stack Combines anomaly scores and classification scores into a feature matrix for fusion.

anomaly_threshold
Sets a threshold for anomaly detection based on the 95th percentile of benign

anomaly scores.

final_predictions Makes final predictions by combining anomaly and classification thresholds.

confusion_matrix and

classification_report Evaluates the hybrid model using confusion matrix and classification metrics.

ConfusionMatrixDisplay Visualizes the confusion matrix to assess hybrid model performance.

3.11. Model Comparison

19

Figure 25: Visualizing and comparing evaluation metrics for multiple models to assess their performance

and efficiency.

Section Description

models Holds model names and their corresponding predictions on the test set.

accuracy_score,

precision_score, etc. Calculates evaluation metrics (Accuracy, Precision, Recall, F1-Score).

confusion_matrix
Extracts true negatives, false positives, false negatives, and true positives for each

model.

false_positive_rate Computes the False-Positive Rate (FPR) using the confusion matrix.

detection_times,

response_times Simulates detection and response times to calculate MTTD and MTTR.

pd.DataFrame(model_me

trics).T Converts metrics for all models into a DataFrame for better comparison.

plt.bar Plots metrics as grouped bar charts for visual comparison across models.

plt.legend, plt.xticks Enhances plot readability by adding legends and aligning model names on the x-axis.

plt.tight_layout Adjusts layout to prevent label overlap.

plt.show() Displays the bar chart showing metric comparisons.

20

Figure 26: Identifying the best model based on metrics, saving the model, and exporting the testing

dataset to a CSV file for analysis.

3.12. IDS

Figure 27: Code snippet initializing library imports and logging configuration for monitoring file system

events.

21

Section Description

Imports Libraries
The script imports required Python libraries like os, time, joblib,

etc.

Logging Setup Configures logging to save alerts in a file called ids_alerts.log.

Observer Sets up tools for monitoring filesystem events using watchdog.

Figure 28: Code snippet for loading the Random Forest model and initializing TTD and TTR variables.

Section Description

Load Model Checks if the saved Random Forest model exists and loads it.

Error Handling Exits the program if the model file is not found.

Log Model Load Status
Logs and prints a confirmation when the model loads

successfully.

Initialize Time Variables
Creates lists to store Time-to-Detect (TTD) and Time-to-Respond

(TTR) values.

22

23

Figure 29: Code snippet for detecting and processing new files, predicting threats, and responding to

malicious samples with time tracking.

Section Description

Class Definition

(NewFileHandler) Handles new file detection and logs file creation events.

Event Handling

(on_created) Detects new files, logs them, and triggers file processing.

File Processing

(process_file)
Reads files, checks format, ensures feature compatibility, and

makes predictions using the model.

Threat Detection
Identifies malicious samples, logs alerts, and calculates Time to

Detect (TTD).

Response Action
Moves detected malicious files to a quarantine directory and

calculates Time to Respond (TTR).

Mean Calculations

(MTTD, MTTR)
Computes Mean Time to Detect and Respond based on logged

times.

Error Handling Catches and logs errors during file processing or response actions.

24

Figure 30: Code snippet to initialize directory monitoring, start observing file events, and manage

termination gracefully.

Section Description

Directory Setup Ensures the directory incoming_data exists, creating it if necessary.

Event Handler Initialization Initializes the NewFileHandler to monitor file creation events.

Observer Configuration Sets up the Observer to watch the directory for changes.

Start Monitoring Starts the observer and logs the monitoring activity.

Graceful Termination
Handles KeyboardInterrupt to stop the observer and cleanly exit

monitoring.

References

EMBER Dataset (n.d.) EMBER is a benchmark dataset for malware detection. Available at:
https://github.com/elastic/ember [Accessed: 2 October 2024].

Imbalanced-learn Documentation (n.d.) Imbalanced-learn: Techniques for imbalanced
datasets. Available at: https://imbalanced-learn.org/stable [Accessed: 10 October 2024].

Joblib Documentation (n.d.) Joblib: Tools for efficient saving and loading of Python objects.
Available at: https://joblib.readthedocs.io [Accessed: 20 October 2024].

LightGBM Documentation (n.d.) LightGBM: High-performance gradient boosting for large
datasets. Available at: https://lightgbm.readthedocs.io/en/latest [Accessed: 10 October 2024].

https://github.com/elastic/ember
https://imbalanced-learn.org/stable
https://joblib.readthedocs.io/
https://lightgbm.readthedocs.io/en/latest

25

Matplotlib Documentation (n.d.) Matplotlib: Creating detailed plots and visualizations.
Available at: https://matplotlib.org/stable/contents.html [Accessed: 10 October 2024].

NumPy Documentation (n.d.) NumPy: Numerical computing for large datasets. Available at:
https://numpy.org/doc [Accessed: 10 October 2024].

Pandas Documentation (n.d.) Pandas: Data manipulation and analysis. Available at:
https://pandas.pydata.org/pandas-docs/stable [Accessed: 10 October 2024].

Scikit-learn Documentation (n.d.) Scikit-learn: Tools for data preprocessing, modeling, and
evaluation. Available at: https://scikit-learn.org/stable/documentation.html [Accessed: 10
October 2024].

Seaborn Documentation (n.d.) Seaborn: Simplifying statistical data visualizations. Available
at: https://seaborn.pydata.org [Accessed: 10 October 2024].

TensorFlow Documentation (n.d.) TensorFlow: Deep learning and neural network models.
Available at: https://www.tensorflow.org [Accessed: 15 October 2024].

Tqdm Documentation (n.d.) Tqdm: Adding progress bars to loops in Python. Available at:
https://tqdm.github.io [Accessed: 10 October 2024].

XGBoost Documentation (n.d.) XGBoost: Scalable, distributed gradient boosting. Available
at: https://xgboost.readthedocs.io/en/stable [Accessed: 10 October 2024].

https://matplotlib.org/stable/contents.html
https://numpy.org/doc
https://pandas.pydata.org/pandas-docs/stable
https://scikit-learn.org/stable/documentation.html
https://seaborn.pydata.org/
https://www.tensorflow.org/
https://tqdm.github.io/
https://xgboost.readthedocs.io/en/stable

