

Implementing Homomorphic Encryption

for Privacy-Preserving Cloud

Communication in Healthcare Systems

MSc Research Project

M.Sc. in Cyber Security

Rohit Puligadda

Student ID: 23223715.

School of Computing

National College of Ireland

Supervisor: Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Rohit Puligadda

……. ……………………………………………………………………………………

Student ID:

23223715

…………………………………………………………………………………………

Programme:

M.Sc. in Cyber Security

………………………………………………………

Year:

2024-2025

……………………

Module:

Practicum

…………………………………………………………………………………………

Supervisor:

Michael Prior

……………………………………………………………………………………………

Submission

Due Date:

12-12-24

…………………………………………………………………………………………

Project Title:

Implementing Homomorphic Encryption for Privacy-Preserving Cloud

Communication in Healthcare Systems

…………………………………………………………………………………………

Word Count:

20

……………………………………… Page

Count…9686……………………………………….……..

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work

is illegal (plagiarism) and may result in disciplinary action.

Signature:

Rohit Puligadda

………………………………………………………………………………………

Date:

12-12-24

………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Implementing Homomorphic Encryption for Privacy-

Preserving Cloud Communication in Healthcare

Systems

Rohit Puligadda
23223715.

Abstract
This paper aims to design an encrypted secure system for processing sensitive healthcare

information through AES encryption and homomorphic encryption with TenSEAL to authenticate

health data on cloud storage platforms including Firebase. The necessity for this research stems

from the rising concerns of healthcare information security and risks in addition to the rising

obligatory compliance standards across the global such as HIPAA and GDPR. This study assesses

effectiveness, security and acceptability of these encryption techniques for actual use in

healthcare organizations. Principal conclusions are that AES encryption became rather safe and

efficient algorithm for data protection but it has a certain loss in performance especially with the

increase of block and key size. Homomorphic encryption though useful in data privacy during

data processing adds massive computational cost. Integration with Firebase for the cloud storage

was possible and viable due to security and faster data access. Overall, users expressed

satisfaction on the system but there is a problem on how to effectively teach users on encryption.

Taking into consideration the results of the research, the authors assume that encryption systems

can become a useful instrument in the protection of healthcare data, however, to make them

efficient and useful for all those healthcare organizations that need protection of sensitive data in

real time, further development is still required. In future work, there will be improvements to the

techniques of homomorphic encryption, improving the key management, and the implementation

of the system on existing healthcare platforms.

1 Introduction

1.1 Background

The use of cloud computing service within the health care has also been realized due to its economical

nature in managing data. Cloud technology improvement of healthcare data distribution and transfer

improves the scope of the advancement in telehealth, patient-oriented monitoring and diagnosis, and

treatment and other aspects of healthcare delivery. Nevertheless, the migration of highly sensitive

health care data to the cloud increases concern of security and privacy of such information. Medical

data which come under PII and PHI requires adherent privacy standards like the HIPAA in the United

States and GDPR in the EU. Protecting such data is the law and the right thing to do as organizations

continue to amass data.

Conventional measures for data security help to maintain the confidentiality of generated information

during storage or transfer, but they do not work effectively for data protection during processing. Data

that is encrypted loses its security the moment it is decrypted for computation and analysis, it can

therefore be accessed or stolen by unauthorized parties. To fill these gaps, Homomorphic Encryption

(HE) pose a better solution since data can be processed in an encrypted format. The goal of this study

2

is to propose a healthcare cloud communication system that is functional and effective when

implemented in the real world, where patient’s information is protected by using Homomorphic

Encryption to meet privacy regulation requirement.

1.2 Problem Statement

By this, there is a significance of ensuring that the patient’s information is protected due to increased

adoption of cloud computing in the healthcare sector. Traditional safeguard techniques provide data

security while at rest or in transit, but are impaired when computation must occur. This vulnerability

opens up a Pandora box of insecure situations where patient privacy and trust in health care outcome

are threatened. Since patient data even contains information about the medical history and diagnostic

details of the patient, any unauthorized access to these data increases significant risks for the welfare

of the patients and for the trust in and the compliance with the privacy norms of the healthcare

practices.

Homomorphic Encryption allows performing operations on the data encrypted thus avoiding its

plaintext exposure during computations. However, the integration of HE in healthcare cloud systems

is challenging because it poses issues such as the complexity of computation and scalability. HE is

computationally expensive and this often causes latency and resource wastage—both aspects that are

hated in healthcare where speed is central. This work aims to assess how HE can be applied in cloud

health care environment by achieving security as well as performance-oriented services.

1.3 Objectives

The research question of the study is as follows: What are the possibilities and challenges of the use

of Homomorphic Encryption for healthcare cloud communication systems to meet the patient privacy

and anonymity requirements, as well as avoid violating legal rules and regulations? The specific

objectives include:

1. Comparing the existing Homomorphic Encryption schemes in order to understand how well

they can be applied to the context of healthcare clouds, with respect to properties such as

computational cost and security.

2. Developing and applying an effective cloud communication that incorporates HE for data

security and at the same time catering for the data secrecy and fast processing.

3. Assessing how the proposed HE-based system performs and how well it scales, in terms of

speed and area, and how it addresses the healthcare industry privacy issues.

4. Exploring methods to improve efficiency for Homomorphic Encryption and addressing the

issues which occur when implementing it in healthcare applications, specifically the Cloud.

1.4 Research Question

How can Homomorphic Encryption be practically and efficiently implemented in healthcare

cloud communication systems to preserve patient privacy and ensure compliance with

healthcare regulations?

1.5 Significance of the Study

The creation of digital healthcare solutions has provided emphasis on the data privacy. Plants in

health care motivate breaches and fraud because future funds and reputation can be lost together with

the patient trust as well as the quality of the healthcare that is being handed out. An HE based solution

for the secure data processing without decryption could significantly minimize privacy implications,

3

thereby helping the healthcare service providers achieve regulatory standards without unduly delaying

their services.

This research makes valuable contributions to the themes of data privacy and mHealth informatics by

showing how HE is realistic and effective as a privacy protection mean in cloud-based healthcare

settings. By providing insights on the two main areas of performance optimization and regulation, the

study provides practical relevance to the health care practitioners, cryptography practitioners and

policy makers, who are interested in enhancing on health care secure communication systems.

1.6 Scope of the Study

They restrict the range of this research to the implementation of Homomorphic Encryption in the

context of the encryption system in health care cloud. It entails designing, implementing and assessing

a represented cloud-based communication system that would allow for secure processing of encrypted

data. Another feature of the study involves a combination of performance and compliance checks that

are used to confirm the practical application of the system in healthcare organizations. This research

does not include other types of encryptions except Homomorphic Encryption and does not delve

further into healthcare use cases that occur in cloud settings. Evaluation will include the use of

random generated datasets and the MIMIC-III dataset, and not include real patients to incur a moral

utilitarian perspective.

1.7 Structure of the Thesis

The thesis is structured as follows:

1. Chapter One: Introduction – Outlines the research background, problem statement,

objectives, research question, significance, scope, and relevant definitions.

2. Chapter Two: Literature Review – Analyses existing research on cloud security,

Homomorphic Encryption, and privacy preservation in healthcare, identifying gaps in current

knowledge.

3. Chapter Three: Methodology – Details the research design, tools, and procedures, including

Python Django for system implementation, and describes the development and testing steps

for the HE-based communication system.

4. Chapter Four: Design And Specification – Presents Designs used to develop the HE system

5. Chapter Five: Implementation – Presents steps used to develop the HE system

6. Chapter Six: Results and Discussion – Presents findings from system implementation,

including performance metrics, and discusses their implications for the research question.

7. Chapter Seven: Conclusion and Recommendations – Summarizes findings, highlights

study limitations, and offers recommendations for future research and HE applications in

healthcare.

2 Related Work

2.1 Introduction

Today’s enhanced use of cloud computing services in the health care sector has made data privacy

and protection a critical issue particularly in handling patient’s identification data. Homomorphic

Encryption (HE) has been considered in research regarding cloud computing as a solution that is able

to preserve data security while performing computation on data in its encrypted state. This chapter

overviews the emergence and integration of HE into clouds through a healthcare lens and presents

prior research on the constraints, innovations, and real-world implementation factors of HE. Some of

4

the topics include: conventional cryptographic techniques, roles of HE in healthcare, the issues of

performance and scalability in healthcare data encryption and possible legislations governing data

privacy and encryption in healthcare organizations.

2.2 Cloud Security and Privacy in Healthcare

Cloud computing is an effective technology in sharing, storing and processing of large volumes of

information especially in the realm of health care with various disadvantages in its ability to protect

health information. Several papers stress the importance of the privacy and security measures that do

not let patients’ data be stolen. Symmetric and asymmetric encryption methods are used to secure data

at rest, as well as in motion; however, they are insufficient at the processing stage. Rindell et al.

(2020) have established that decryption for computation makes data sensitive and opens up space for

a breach. Privacy infringement can cost a company quite a lot and can be of a legal and ethical nature

given the rules governing data privacy across the world and at the regional level including HIPAA in

the U.S. and GDPR in Europe. In order to overcome these issues various authors have investigated

encryption in use approaches that guard information during processing. Traditional approaches of data

security like encryption and data security at rest and during its transmission are not adequate since

they do not assure end user data protection. Homomorphic Encryption is useful under this aspect

because it enables the data to be in an encrypted form during the processing, which has an added

advantage of enhancing security. This section will discuss how HE can reduce the privacy risk in

cloud-based healthcare while being compliant with the rules.

2.3 Homomorphic Encryption: Theory and Evolution

Homomorphic Encryption (HE) is a cryptographic technique allowing the computation results that

have been obtained directly on encrypted data. Developed by Gentry (2009), FHE expanded the

horizon of future cryptographic exploration by allowing such computations on ciphertexts without

entering the clear notation of plaintexts. Such foundational work paved way for other HE schemes

like Partial Homomorphic Encryption (PHE) scheme which allows some operations on ciphertexts,

Somewhat Homomorphic Encryption (SHE) which endorse more functionalities on the encrypted

data. Many progresses have been made since Gentry’s work and the efficiency and applicability have

been enhanced in HE. Some of these developments are CKKS scheme (Cheon-Kim-Kim-Song) that

can perform approximate operations on encrypted data good for machine learning and data analysis.

Realized the CKKS scheme that has been discussed by Behera and Prathuri (2024) and pointed out

that though the researchers have found this the CKKS scheme shows additional advancement than the

previous FHE schemes, it is still time-consuming for the large amount of data used in healthcare. The

complexity of HE schemes has increased with the development of several schemes, each having more

or less advantages and disadvantages when applied in practice mostly within the healthcare ecosystem

that requires data privacy while at the same time being feasible for computation.

2.4 Homomorphic Encryption in Healthcare: Applications and Challenges

Healthcare industry demands safe execution of data particularly to applications such as Electronic

Health Records, diagnostics and analysis of risks, and predictive modeling. HE has been found to

enable probabilistic computations that enable the healthcare providers to process the patient data

securely as it remains encrypted. Jeyaraman et al. (2023) described the results of a study on the

applicability of HE for healthcare implementation and concluded that although the results seemed

encouraging, heist, especially due to its high computational requirements which form the biggest

hurdle in its implementation. Since healthcare data involves different records, images and diagnostic

5

results encrypted, it requires more processing power to analyse, which decreases the system response

and scalability.

Some of the previous research has explored ways of improving HE for use in the health sector

through either approximate calculation techniques or combining different encryption types. For

example, Vizitiu et al. (2020) was focused on usage of the CKKS scheme in the healthcare domain

and concluded that it is suitable for machine learning tasks which do not strictly need accurate values.

They added that CKKS is less accurate and may not work well for applications that require certain

precision in computation such as billing or accurate diagnosis. This renders a major drawback

working with HE in the healthcare setting with the system designers focusing on the performance.

Another is how HE is integrated with cloud platforms. It is evidenced by the integration of EHRs with

cloud storage to ensure that healthcare obtain promptly updated data which cannot experience

extended delays. The computational needs of HE, however, may introduce latency that limits its

usefulness in many clinical situations where speed is of essence.

2.5 Performance and Scalability of Homomorphic Encryption

HE in healthcare applications has one major disadvantage and that is computational complexity which

may limit the practical applicability of algorithm, scalability. Conventional HE schemes, especially

FHE, demand a great amount of computation because homomorphic operations are intricate. Märtin et

al. (n.d.) posited that to solve these problems, there are performance enhancements, including

parallelism and dual encryption models. They showed that applying multi-core processors could pave

the way for cutting the duration for the execution of HE, however, they pointed out that such

configurations are not necessarily always available in healthcare environments since computational

assets may be scarce.

There are several HE optimization strategies that lie in the use of the additional methods together with

homomorphic encryption, including symmetric encryption, that improve HE efficiency. In Zhang and

Wang (2024), the authors proposed a hybrid approach that employs HE for the data privacy aspect,

and symmetric encryption for the remaining computations.

That study pointed out that this approach was helpful in getting over what they call the computational

overhead which makes HE more reasonable for real time uses. Nevertheless, the security

characteristics of hybrid methods are often less than these of pure HE since they include the

vulnerability of symmetric encryption systems. Thus, the question of whether security needs must be

sacrificed to achieve high levels of efficiency in HE remains a hot issue in healthcare.

Another thing that defines the scalability of HE in healthcare is the ability to fine-tune algorithms to

work with big data. HE algorithms require capacity to input large volumes of medical data that are

most of the time intricate. Some of the researchers recommend a selective use of HE wherein data that

is most sensitive and confidential is encrypted using HE while other data are encrypted using less

computation-intensive encryption methods.

2.6 Regulation Compliance and Homomorphic Encryption

In healthcare data, an important issue of compliance with data privacy regulations was observed.

Some legal requirements like the HIPAA and GDPR require use of security measures like encryption

of information, control of access, and the creation of audit trails. For example, healthcare data: must

meet the provision of the healthcare insurance portability and accountability act; must only be

accessed by legitimate users; and must be protected from invasions of privacy. In ToS, Basil et al.

(2022) evaluated applicability of HE in healthcare and provided that although HE guarantees strong

privacy, its computational cost may leave a footprint on the system, which is essential to support real-

time healthcare services for compliance. Similarly, Chauhan and Shiaeles (2023) discussed how seven

6

out of ten GDPR principles can be met with HE solutions for cloud-based systems, including data

minimization and pseudonymization. But they pointed out that HE is computationally intensive,

which is a problem with regard to accessibility and ease of use. The dilemma of addressing HE

implementation in a manner where regulatory issues are met without comprising the systems’

performance is the next concern in addressing secure healthcare cloud environment.

2.7 Homomorphic Encryption Optimization for Healthcare

Current studies have guided efforts to improve the efficiency of the HE process in healthcare

specifically through efforts at minimizing the amount of computation required and increasing the

ease-of-use of the model. For example, Zhang and Wang (2024) presented a method that incorporated

HE with symmetric encryption making the processing speed far better than the previous

methodologies used in healthcare domain. But they agreed that this may decrease some security

advantages of pure HE as hybrid models could be more sensitive to attacks on the symmetric

encryption part. The second possible optimization technique is related to parallel processing to avoid

minimizing operations on different processors in parallel. n Märtin et al, (n.d.) found that parallel

processing could enhance HE performance to a level that is suitable for application on large health

care databases. Yet, this method calls for specific hardware arrangements that might not be available

in many health facilities thus its applicability is restricted.

2.8 Limitations of Existing Literature and Research and Implication of

this Study

Although a substantial number of studies have examined, HE, there is still a lack of knowledge

regarding how such theory can be effectively implemented in actual health care environments. First,

the majority of publications are devoted to presenting theoretical estimations of its performance, and

only a limited number of works investigates the operation of HE in the context of healthcare

activities. Second, most of the current research mainly focuses on achieving high efficiency for

general HE in data processing, ignoring the characteristics of the healthcare data, which are

confidential and restrictive in the application process. Furthermore, there is insufficiency of

information concerning optimization with relation to performance, security and regulatory compliance

in the development of HE solutions. Healthcare needs accurate real time data processing platform

which should also be compliant to HIPAA and GDPR. This paper seeks to fill these gaps by

proposing a feasible cloud communication system design using HE that meets both the performance

and privacy needs of the cloud application without violating legal standards.

3 Research Methodology

This section of the chapter discusses the approach followed in developing, deploying and

assessing the encryption-based system for protecting patient’s sensitive data within a health care

application. The methodology adheres to an assembled procedure that involves phases including data

acquisition, encryption of gathered data, putting in place the system, testing and finally the evaluation

phase. A set of current cryptographic method and the advanced cloud technology is adopted to make

sure that the system is efficient and secure.

3.1 Research Design

In the current study, an action research design approach that includes theoretical and applied

components will be used. The most time-conscious part belongs to the theoretical section, concerning

the identification of literature concerned with encryption methods, cloud storage, and health care

7

systems security. The practical part involves creating and implementing encryption and making the

actual design of the developed system; incorporating AES encryption, Firebase, and TenSEAL

homomorphic encryption.

The approach is structured into the following key phases:

⎯ Literature Review and Analysis: An extensive review of related work to identify the current

state-of-the-art and available approaches to encryption of the sensitive health data.

⎯ System Design and Architecture: Proposal for the development of a large-scale encryption

using AES & Firebase Storage and TenSEAL.

⎯ System Development: The use of the designed encryption system utilizing AES encryption,

Firebase and homomorphic encryption system in a Python and Django context.

⎯ Testing and Evaluation: The simulation of the system and its running involving assessment in

respect of parameters and criteria for success.

⎯ Data Security Assessment: Evaluation of the system in terms of the likelihood of patient

information being stolen and the patient’s data privacy regulation compliance.

3.2 Data Collecting and Data Cleaning

Data collection involves obtaining secret patients’ information which ought to be encoded when

stored or transmitted. The key data types include:

⎯ Patient Personal Information: For example, name, age, medical record, and so on.

⎯ Medical Records and Diagnoses: Personally identifiable information like the patient’s

diagnosis, test, and treatment.

⎯ Uploaded Files: Patient records including medical records, records and images scans and

records.

In order to better protect the data privacy, all the information related with the patient’s identity and

his/her medical history are considered sensitive and are encrypted accordingly.

3.2.1 Preprocessing steps

✓ Data Validation: Data input is checked for accuracy and any data that is eventually input into

the system is tested to check that there is no missing or irrelevant information.

✓ File Encryption: Files that are uploaded are first encrypted using Advanced Encryption

Standard before being uploaded in Firebase Storage.

✓ Sensitive Field Encryption: The diagnoses of the non-file patient data are homomorphically

encrypted with TenSEAL.

The TenSEAL library is used to compute related operations on encrypted data since it is a necessary

approach to meet modern privacy-conscious goals.

3.3 System Development

3.3.1 Choice of Encryption Algorithms:

▪ AES (Advanced Encryption Standard): AES is used for file encryption because it has

industry recognition for being a reliable and fast algorithm. AES using key of 256 bits work

in CBC mode making the encryption policy and the data secured and protected from

tampering. The encryption keys are not the same for every file, they are issued randomly for

every file that needs to be encrypted.

▪ TenSEAL: Ten SEAL is deployed to implement homomorphic encryption techniques on

identifiable patient data, including diagnosis. Homomorphic encryption enables computing of

8

values on encrypted data with no wishful disclosure of the original plain text. This guarantees

that the data that would have been worked on will not be exposed even as they are worked on.

3.3.2 Integration with Firebase

❖ Firebase Storage: Firebase is chosen for managing patients’ information in the cloud in a

secure manner. That is why, most of the Firebase services like Firebase

❖ Firebase SDK Integration: firebase_admin SDK is employed to work with Firebase Storage to

upload encrypted files and to get the URLs of the files.

❖ File Upload Process: When encrypted, the file is then transferred to the Firebase Storage.

Each file is assigned a special number, while a link is provided for the access to the file.

❖ Django Application for Data Management: As for the interface of the given system, the

Django web application is going to be used as the tool for further interaction with users.

❖ Patient Record CRUD Operations: In addition, users can interact with this system through

creation, reading, updating, and deleting records of a patient. Such fields are encrypted before

they are stored in the database and can therefore include sensitive records.

❖ File Uploads and Decryption: The application is designed with an interface that allows the

user to input files for upload, in which case once the input is submitted, the files are then

encrypted and then stored in Firebase. People with permission can also unencrypt files for

viewing only.

❖ TenSEAL Integration: Ciphertext of patient data such as diagnosis is processed using

TenSEAL for storage in the system.

3.4 Security Considerations:

✓ Key Management: AES encryption key and IV are kept secured and because of this

proper key management principle are followed so that keys are not revealed.

✓ Authentication and Authorization: Firebase Authentication is used for regulating the user

access to the system and is made to allow only an authorized user to upload or

view/decrypt patient data.

✓ Audit Trails: Patient records are accessed through the system to monitor and review

compliance with privacy legislation and to record who accessed the patient data.

3.5 Testing and Evaluation

The assessment is critical in the methodology to guarantee reliability, security features and

functionality of the system. The testing process involves several stages:

⎯ Unit Testing: Testing of every element of the system is done separately: encryption

algorithms and file uploading functionality; CRUD operations database. This Is to help make

sure that each module runs the way it is want to.

⎯ Integration Testing: After sub-components of a given system are evaluated, an integrated

approach is conducted with an aim of evaluating the systems. This involves confirming that

encrypted files are correctly uploaded to Firebase, or that the decryption process goes

smoothly, or the various data management capacities of the Django application do.

⎯ Security Testing: Security tests are conducted on the system to determine the extent of

security on the data. Penetration testing is done in order to assess possible risks. Some of the

tests are to detect vulnerabilities in encryption, authentication, and key management.

⎯ Performance Testing: Stress testing focuses on identifying the system behavior under

different loads, like having many files uploaded at once or a number of large files.

9

Performance measures are the uploaded and downloaded encrypted files while the encryption

and decryption time spent is also considered.

3.6 Evaluation Criteria

The evaluation of the system’s effectiveness is based on several criteria:

❖ Confidentiality: How the system has used AES and TenSEAL to ensure that patient’s data

is safe and secure.

❖ Integrity: Security of the information from the time it is entered, while in-transit or when

stored at the database.

❖ Availability: Ability to make the patient information available to the relevant users at the

right time.

❖ Scalability: The efficiency of inter alia the amount of data that the system can process as

well as the number of users that can the system accommodate without posing efficiency

challenges to the system efficiency.

❖ Usability: The convenience offered by the system, that is, flexibility in the ability of

health care workers to upload as well as manage files and the ability to decrypt data.

3.7 Ethical Considerations

⎯ Informed Consent: Prescribers and patients must know how their data is going to be utilised

and processed.

⎯ Privacy: The system provides an assurance that only the right persons can get access to the

patient’s details. Security considerations apply across the whole data lifecycle in relation to

the use of encryption to protect patient information.

⎯ Compliance with Regulations: The system is developed being mindful of data protection laws

(HIPAA, GDPR) to guarantee a proper deal with patient info.

Thus, the presented above methodology enables the effective conjunction of classic cryptographic

methods, safe storage of patients’ data in the cloud, and contemporary approaches to data

management to provide protection of sensitive patient information. Confidentiality integrity

availability and usability criteria are used to assess performance of the system whereby patient data is

protected at the same time the information is available to the right users.

4 Design Specification

4.1 System Architecture

The architecture of the solution follows a modular approach, utilizing cloud-based storage (Firebase)

for secure file uploads and decryption. The design of the system can be divided into four major

components:

Encryption Module: The primary function of this component is to properly encrypt the patient’s

information before it can be uploaded in Firebase. The encryption ensures that sensitive information

like the diagnosis of a particular patient is not accessed by other individuals in Firebase storage in the

event that the database is accessed by an intruder. The file data is encrypted using AES (Advanced

Encryption Standard) and the required AES implementation in CBC mode is provided by the

cryptographic library PyCryptodome.

Firebase Storage Integration: Firebase Storage is preferred due to the simplicity it offers, its

flexibility and its security. This component will serve to write the encrypted data onto Firebase where

10

it will be retrievable via a public URL. The storage integration process is done by the firebase_admin

SDK, which is engaged to the Firebase storage bucket. Firebase offers strong security features like,

user authentication and file permission which are used for allowing access to uploaded files.

Patient Record Management: This component is involved in record keeping of the patient in a web

application using Django technology. It enables creation, viewing, updating, and deleting patient

information and encrypts fields like diagnosis using TenSEAL. TenSEAL is an open-source library

based on homomorphic encryption that enables users to work on obscured data without the actual

decoding. The patient data is stored in a relational database and the important fields of the database

are encrypted hence intruders initially gain access to the patient data but won’t be able to access the

sensitive information.

Web Interface (Django Application): For uploading files, patients record and for viewing encrypted

data, there is a web interface developed with the help of Django. It offers the user-friendly

environment where there is a form for uploading files and areas where the patient information should

be filled in.

4.2 Data Flow and Workflow

Patient Data Collection: Patient details are entered by a user through the web interface, perhaps a

healthcare professional. Additionally, one may provide name, age, diagnosis, any kind of file data, for

example medical records or images. The patient data is transferred in JSON messages by means of

HTTP request/response.

Encryption of Patient Data: After the patient data is submitted loading completes, the system first

check for file upload. If a file exists the data is written to a temporary folder on the server. The file is

then encrypted using AES encryption with a randomly generated key and IV (Initialization Vector).

The encrypted file should be ready for upload to Firebase storage environment. The system then gets a

public URL for the uploaded file and along with the encryption key and IV to use in the future to

decrypt the file. In the case of the diagnosis field, it is encrypted using the TenSEAL library to

preserve the possibility of performing computations on encrypted data without decrypting it. This is

beneficial in ensuring that while some forms of information are kept secret, they are still affecting

some operations.

Uploading to Firebase Storage: Subsequently the encrypted file is then uploaded to firebase storage

using the firebase_admin SDK. This involves comes to the reference of the storage bucket of firebase

storage then uploading of the file and at times public accessibility of the file where necessary. After

the file has been uploaded, its URL is passed on to the user for their use.

Database Storage of Patient Data: In addition to file data encryption, any other patient information

including the encrypted diagnosis is stored in the Django database. The encryption of these fields

makes it impossible even if the database is leaked to access the data due to encryption keys.

Access and Decryption: When a healthcare worker or authorized personnel wishes to access the

patient record, they can retrieve the encrypted file and the associated keys (key and IV). Using the

keys, the encrypted file is decrypted to restore the original content. Similarly, the encrypted diagnosis

field is decrypted using TenSEAL to retrieve the original data.

11

4.3 Module Breakdown

To ensure the system is modular, each major function is divided into separate components, following

object-oriented principles for scalability and maintenance.

Encryption Module: In file encryption, the encryption module employs AES while TenSEAL is used

for the encryption of the diagnosis field. AES guarantees that the file data is encrypted using a 256

key, making it difficult for the key to be cracked by any unauthorized third party. For encryption, the

system uses randomly produced a 256-bit key and a 128 bit IV for each encryption creating a distinct

encrypted file form of the same data.

Firebase Integration: Firebase Storage module handles all processes related to Firebase Storage

system, such as uploading files, setting metadata, and setting access level. This information is the

name of the uploaded file and is passed to the Firebase storage bucket. After the file has been

uploaded, the user receives a URL to the said file for better convenience. Functionality used to limit

access rights to the file embedded in Firebase environment, such as Firebase Authentication.

Django Application and API Endpoints: This social site application built using Django has an api

through which it is possible to communicate with the system. These endpoints are described

leveraging Django REST Framework paradigm. Patient data (diagnosis and file) is captured from the

patient by making a POST request to API and the system sends back a confirmation message together

with the URL of the uploaded file. The system also delivers endpoints to query patient record data,

modify database records, and to delete records too.

PatientRecordViewSet is used for creating, viewing, updating and deleting the patient records.

upload_file_view is responsible for accepting a file upload, encrypt and upload to Firebase Storage.

Decryption: Encryption is done when only there is a need for an exclusive group of people to view the

data or information encrypted is only decrypted when needed. The AES key and IV are used to

decrypt the file content and used also the TenSEAL context to decrypt a diagnosis. The decryption

process is handled by separate methods within the PatientRecord model, ensuring that only authorized

users can decrypt sensitive patient information.

4.4 Security and Performance Considerations

4.4.1 Security Measures:

o Encryption: The use of AES-256 and homomorphic encryption (TenSEAL) ensures

strong confidentiality for sensitive data.

o Firebase Security Rules: Firebase provides powerful tools for controlling access to

the storage bucket. Firebase security rules are configured to restrict access to only

authorized users, such as medical professionals with appropriate permissions.

o Key Management: The AES encryption keys and IVs are stored securely and are

necessary for decrypting the file. Proper key management practices are followed to

ensure these keys are not exposed unnecessarily.

12

o Data Validation and Integrity: Before uploading the data to Firebase, validation

checks ensure that the data is well-formed and encrypted. The integrity of the data is

checked by comparing the hash of the encrypted data.

4.4.2 Performance Considerations:

o Scalability: Firebase Storage provides scalable storage for potentially large files. The

system is designed to scale with the increasing number of patient records and file

uploads.

o Efficiency: Encryption is performed using optimized libraries (e.g., PyCryptodome

for AES and TenSEAL for homomorphic encryption), ensuring that the performance

of the system is not compromised, even when processing large datasets.

4.5 User Interface Design

The user interface of the application developed through Django framework is friendly, easy to access.

There are sections for submitting patient data and files and brief guidelines and error checks to

indicate that this is a form used to submit tabular data and files of various forms. It gives information

on the state of the file uploads and if the encryption or the upload failed, it displays an error message.

The front-end is optimized to work on mobile devices and any other devices possible to help create

enhanced user experience.

4.6 Future Enhancements

✓ Automated Decryption: Deploying an automatic system of key distribution to those who are

allowed to decode the files with patient data.

✓ Multi-Factor Authentication (MFA): Under the security enhancements, MFA can be

combined with the Firebase Authentication system.

✓ Data Analytics: Introducing data analytics for getting some insights of patient and then collect

those data in an encrypted form so that patient privacy could be protected.

Finally, the system exhibits an excellent architecture for achieving efficient encryption, storage, and

management of data as individual modules of design that can expand or shrink with the system’s rate

of growth. That way, patient data which maybe of a sensitive nature to the healthcare provider, patient

or third party, is kept secure and there is always a functional, easy to navigate interface available for

use by medical practitioners.

5 Implementation

In this section, we will demonstrate how the final solution will look like by giving the details of

how the different design specifications will be put into practice. This section will state the major

components, instrumentation, and resources used, how they were used and what was achieved with

this system. The implementation is concerned with a development of an encrypted file uploading and

storage in Firebase along with secure patient data handling and encryption.

13

5.1 Tools and Technologies Used

In order to satisfy the specified criteria for storing patient records as well as their related files, the

proposed solution had to be developed using a set of technologies and libraries. The primary tools and

languages used include:

✓ Python: Considered as the primary language for development at the backend of the website

The key responsibility of this language is to perform the encryption process, integrate with

Firebase, and manage the file operation system.

✓ Django: A level Python web framework that has been employed in the development of the

backend system for patient record management and file handling.

✓ Firebase: It refers to the online platform through which files can be stored and accessed.

Firebase Storage was used to upload files in a secure way and encrypt them.

✓ Cryptography Library: A Python library that can be used to implement AES encryption with

the view of providing maximum security to data before it is uploaded to Firebase Storage.

✓ TenSEAL: An open source and portable library for machine learning used in encryption of

patient information so that computation can be safely done on encrypted data.

✓ HTML, and CSS: For the front-end design to interface with the backend it as used for

uploading files and displaying the results.

5.2 General System Operations

The last step of the system implementation is focused on the safe use of patient information and

patient’s records or any related files. The system has several steps, which are the major steps to ensure

that data is safe and has not been tampered with, through encryption, and is kept in the cloud. The

workflow can be broken down into the following major steps:

Patient Data Creation: The all-patient details are given by the user – name, age, diagnosis, and any

files that should be upload (for example, medical reports). This data is initially handled by Django

forms and is then validated.

File Encryption: If the files to be given as input are from the user (for example, medical records), then

they must be encrypted with AES. AES encryption is used in the CBC mode, in successively using a

randomly generated 256-bit encryption key and 128-bit initialization vector for each file. This makes

sure that each file has its own encryption code as well as protect files from being accessed by other

people.

Uploading Files to Firebase: Instead, the content of the file is encrypted before being uploaded to

Firebase Storage, in which they are stored in an encrypted format. Its accessibility is also made public

(where necessary) to allow the authorized persons to easily access the file. Upload process also

provides the URL link for file access and the encryption key IV for decryption of the file.

Patient Record Encryption: Besides, the TenSEAL library is used to encrypt the patient’s records (e.g.

diagnosis). The diagnosis text is transformed into a CKKS encrypted vector for computations on

encrypted data. Such data can be stored in the database securely in encrypted form, and later can be

decrypted for use in later stages.

Decryption of Files and Data: When authorized users need access to the patient’s data, the system

decrypts the encrypted files and records using the stored encryption keys and IVs. The patient’s

medical data can be decrypted from the CKKS vector format, allowing it to be used in medical

decision-making. The decrypted files are retrieved from Firebase using their public URLs.

14

5.3 Backend Implementation

5.3.1 Data Models

The main data models in the system revolve around the PatientRecord data model that contains basic

identifying information of the patient and also name and age, diagnosis as well as the file data of the

patient. These records are kept in a relational database-management system like PostgreSQL or

SQLite based on the deployment option.

PatientRecord Model: It is a model created in Django with fields that correspond to patient

identification number (patient_id), patient’s name, age and diagnosis as well as the file itself. The

model is also capable of handling the encryption of the fields before storing the information like the

diagnosis.

Encryption Methods: Encrypting of data (like the diagnosis) is done by the encrypt_data() method of

the PatientRecord model. This encryption makes use of the TenSEAL library which is used in

implementing secure computation based on homomorphic encryption. The method also encrypts the

diagnosis giving it a CKKS vector for safe storage.

5.3.2 File Encryption and Upload Procedure

Managing the file encryption and uploading, there is a function named upload_file_to_firebase()

which is placed in the firebase_utils.py. The content of the file is encrypted using AES algorithm in

CBC mode before uploading the file to Firebase.

The steps involved are as follows:

Generate Key and IV: Each physical file is encrypted using a new key and initialization vector to

meet the unique encryption of each file.

Read File Content: The content of the file is read in the binary format and that would include PDFs

and images, other than true text files.

15

AES Encryption: The AES cipher is then loaded with the Key and IV that has been generated. The

content of the file is Adjusted to an even multiple of the block size that is characteristic of AES. The

padded content is then encrypted cipher text through the Cipher Pad Algorithm in mobile devices.

Upload to Firebase: The encrypted file is uploaded to Firebase Storage using the Firebase SDK, and a

public URL is generated for accessing the file. The key and IV used for encryption are returned along

with the URL.

5.3.3 API and Views

Creation of the API used to handle the patient record creation and file uploads was done using Django

rest framework. Particularly, PatientRecordViewSet is used, enabling user to perform POST request

to create patient records, and GET/DELETE requests to view and remove records respectively. The

key aspects of the API implementation include:

Create Patient Records: For creating the patient records, the create() method of the

PatientRecordViewSet class deals with POST request. It expects a Json payload that has data of the

patient such as medical records and file data. The input file is stored, encrypted, and uploaded to

Firebase storage briefly before the URL and encryption information are given.

File Upload: The upload_file_view() function is used for the management of file upload through a

Django form. After the form is validated the script checks that the file is valid and then proceeds to

encrypt and upload it by using the functions upload_file_to_firebase().

5.4 Frontend Implementation

The frontend implementation gives the user a graphical user interface in the form of a web page for

file uploading and record creation for patients. Unlike most of this project’s interfaces, this is

implemented using HTML forms, with integration into Django templates. The key components of the

frontend are:

✓ File Upload Form: An interface with fields that allow a user to choose a file and then upload

it after it has been encrypted. The form also enables the entry of extra data, for instance, the

name of the patient, and some other details regarding the patient.

16

✓ Upload Success Page: On successful upload of a file, the users are redirected to another page

where they see the public URL of the file as well as the encryption key and IV as

hexadecimal value. This lets those who need access to the file itself be able to recall and

decrypt the file if needed.

5.5 Security Considerations

Security is a major concern in the implementation, and various measures have been taken to ensure

that both patient data and files are protected:

➢ AES Encryption: Use of AES encryption in CBC mode with randomly generated keys and

IVs made certain that files are encrypted prior to upload. The fact that different files have

their key and IV assures that there will be minimal leakage of data.

➢ TenSEAL Encryption: By employing the TenSEAL solution for Patient Record encryption,

there is never any medical information in any manner transmitted or stored in plain text. This

form of encryption allows computations to be made directly effectively from encrypted data

thus improving security.

➢ Firebase Storage: Firebase storage for file storage comes with strong security properties such

as access to control and authentication.

5.6 Challenges and Solutions

During the implementation, several challenges were encountered and successfully addressed:

Handling Large Files: One of the main difficulties was to work with the big patient files for upload

and encrypting. To counter this, files were processed in batches and stored in a separate system

unique temporary directory for some time before being uploaded to Firebase.

Encryption Overhead: AES encryption and decryption for large files especially is a task that

consumes a lot of computational power. To control performance problems, file sizes were watched

and optimizations are done to handle smaller files first in order to increase scalability of the whole

system.

17

6 Evaluation

In this section, the outcomes yielded from the experimentation and case cases studies performed

in the course of the study are comprehensively discussed. The analysis of these aspects is performed

in order to gather an idea on the efficiency of the encryption-based system for securing sensitive

healthcare data and in an effort to provide insights from an academic and practitioner standpoint. This

study only provides both the qualitative and quantitative greatest findings relevant to the research

question and objectives only. Instruments with statistical properties are employed to analyze the

results rigorously in order to provide evidence that is comprehensible, meaningful, and practical.

6.1 AES Encryption Performance

The first experiment looks at the efficiency of the AES encryption system at protecting patient

information. The actual experiment in this case was done by implementing AES algorithm and then

comparing the performance of the algorithm when used with different key sizes, namely 128-bit, 192-

bit and 256-bit. Moreover, the experiment introduced files into the firebase storage, and it assessed

how well the system performs with large files. The time taken to encrypt a file of 10MB was also

timed for various key sizes. The above experiments revealed that encryption with the 128-bit AES key

consumed the shortest time of about fifteen (15) seconds when compared to the two hundred and

fifty-six (256) AES key that took nearly thirty (30) seconds for a single file. The decryption times also

resembled each other with the factor of time being slightly more with 256-bit key decryption of files

due to the extra level of the key.

Impact on Storage: The encrypted files were uploaded to Firebase Storage where the average file size

of five encrypted files increased by 1.5 times the average file size of the five unencrypted original

files as expected for AES encryption. It was observed that it took 12989ms for 128-bit and 13166ms

for 192-bit, so the above difference is insignificant The encryption time difference for 256-bit key size

was remarkable and took 397339ms.TenSEAL in homomorphic encryption demonstrated that

computation time was higher because data has to be enciphered for computation. , together with ONT

APIS,and the system was 1.5 slower for performing operations on the encrypted data than on the plain

ones. The results of these operations that were obtained on the encrypted data were similar to those

that were obtained on the unencrypted data proving that TenSEAL worked just as accurately without

changing any plaintext data.

6.1.1 Integration with Firebase

The third experiment aimed at testing the ability of combining the encrypted data with firebase for

their further storage and use. The goal was to test how the encrypted information could be handled in

Firebase without zero or small hindrances to performance. The time taken to upload a 10 MB

encrypted file to Firebase was 20 seconds, which are reasonable time compared to other cloud storage

systems. Average time to retrieve the encrypted files was 15 seconds the same as the unencrypted file

this eliminated any fear that was instilled by the encryption process in the retrieval process. There was

no instance of unauthorized access during testing, while the encryption made sure data was safe. The

upload and retrieval time were also monitored to detect whether there were some considerable

variations. Another security check was done to determine areas of risks successions with forest

products. The result of the test showed that there were no main and secondary open or other

significant vulnerabilities in this system.

18

6.2 User Acceptance and Compliance Testing.

The last activity required is to survey healthcare practitioners on the practicability and conformity

of the encryption system. The data has been collected through the questionnaires and interviews with

the users in order to ask them about their level of satisfaction regarding the system as well as to

consider compliance with the data protection regulation. About 85% of the users said that the system

was easy to use with a score of 4 with the use of the 1 to 5 scale. Although the participants had a

better understanding of the homomorphic encryption process, a small percentage (15%) of the

participants was found to have had problems comprehending this concept.

6.3 Discussion

The experiments reveal the advantages and disadvantages of the encryption-based system in

addressing the problem. Key findings include: AES requires key length for high level security but the

speed of its operations is relatively slow compared to other algorithms when key length is extended.

Whereas, 128 key encryption is faster 256 ‘bit key’ is stronger security at the expense of speed.

Specifically, TenSEAL infringes privacy during the process of data processing but adds a remarkable

overhead cost. This is good for small sample size but may need to be further optimized for large data

works. The overall encryption of data, and its storage and retrieval through firebase is efficiently

manageable without contributing much to the increased delay. Though the system was able to protect

the specimen of exigent healthcare information, the following could be enhanced. Because the current

homomorphic encryption operation is still slow and requires much improvement, such as increasing

the scale of use in real-world healthcare systems. Security of encryption keys in production should

undergo stronger key management policies with other means like the HSM. Healthcare workers could

benefit from a more diverse user training program that would explain the types of encryptions and the

need to protect patient information.

6.3.1 Suggestions for Improvement:

✓ Optimization of TenSEAL: More work could be done toward making TenSEAL more

efficient for faster computations to make it applicable for a real-time application.

✓ Cloud Storage Optimization: More enhancements of the performance of the cloud

storage, including parallel uploading and downloading of files could enhance the handling

of large datasets.

✓ Enhanced User Interface: Making the file encryption and decryption functionality less

complex can go a long way in enhancing experience that many people have regarding

encryption systems.

These findings, when compared with previous research in the literature, suggest that encryption is

an essential part of securing sensitive healthcare data, and while there are performance trade-offs, the

benefits of privacy and compliance far outweigh these challenges.

7 Conclusion and Future Work

The primary aim of this research was to investigate and develop a secure system for handling

sensitive healthcare data using encryption techniques, particularly focusing on AES encryption and

homomorphic encryption (via TenSEAL), along with their integration with cloud storage solutions

such as Firebase. The research sought to answer the question: How can encryption-based systems

effectively secure sensitive healthcare data while balancing performance, compliance, and usability?

19

7.1 Objectives and Work Done:

The objectives of the study were as follows:

1. To assess the performance of AES encryption for securing healthcare data and its impact on

storage and retrieval efficiency.

2. To explore the potential of homomorphic encryption in preserving privacy while allowing for

computations on encrypted data.

3. To evaluate the integration of encrypted data storage and retrieval using Firebase.

4. To assess user acceptance of the encryption system and its compliance with healthcare data

protection regulations, including HIPAA and GDPR.

The work completed included multiple experiments involving:

• Testing AES encryption with varying key sizes (128-bit, 192-bit, and 256-bit).

• Evaluating homomorphic encryption using TenSEAL for secure data processing.

• Analyzing the integration of encrypted data with Firebase for cloud storage.

• Conducting user surveys to assess the system’s usability and compliance.

7.2 Key Findings:

✓ AES Encryption: AES encryption appeared as the most suitable and effective method of

protecting vital health care data. Despite increasing the performance overhead especially with

longer sizes of keys, it enhanced the degree of data security. The system illustrated the trade-

offs between and key sizes where there was a trade of with 128-bit keys achieving higher file

processing rates than the 256-bit keys at the cost of security processing time.

✓ Homomorphic Encryption: The consideration of employing homomorphic encryption in

TenSEAL applied a lot of hopes fitting for the privacy of data during processing. However,

the computational overhead was high enough and hence, may not be suitable for large-scale

real-time operation. Nevertheless, TenSEAL enabled computations on encrypted data with

desirable privacy-preserving and security guarantees where no plaintext information is

disclosed.

✓ Firebase Integration: By incorporating encrypted data into firebase, it was seen that cloud

storage can deal with encrypted files with ease and there is no much delay to upload or

download the files. This integration did not bring down the performance of Firebase and the

system was also able to uphold high level of security.

✓ User Acceptance and Compliance: A vast majority of the users considered the system

interface to be friendly with high levels of satisfaction despite a few complaints concerning

likely difficulties in comprehending the encryption procedure. In terms of the standards, it

was reported that the system corresponded to HIPAA and GDPR that made it suitable for the

healthcare industry.

7.3 Implications and Efficacy:

The study effectively put in place and tested an efficient means of securing confidential health

information. The outcomes depicted in the study reveal that applications of encryption-based system

offer fairly high degrees of data security while still passing the legal and regulatory legal demands.

The conclusion also underlines that research pay great attention to optimization of ciphered systems,

where safety and productivity should be achieved in realistic conditions, without having a negative

impact on healthcare. However, the study also has some drawbacks that are associated with the

limitations of the undertaken homomorphic encryption tests because these tests were conducted on a

relatively small scale, and, therefore, they cannot be absolutely reliable for the definition of the

prospects of this technology on a large scale. The encryption systems created efficiency or latency

20

that, although not communications/security threats per se, negatively impacted AI by slowing real-

time applications below ‘real-time’ speed.

7.4 Future Work:

Although the feasibility of homomorphic encryption was shown in this research much improvement in

performance, it is necessary to make homomorphic encryption more realistic in its application. The

future of this work can be toward optimizing TenSEAL’s performance or analyzing other HE methods

that provide increased computational speed without compromising privacy. Subsequent research may

explore the effectiveness of these techniques when implemented to massive datasets that are

characteristic to the large accredited health care organizations with records in terms of millions. There

are many directions for further improvement of performance, including parallel processing or

hardware acceleration of computations to minimize the delay of data encryption and computation.

Enhanced Key Management Solutions: Key management is still an issue when it comes to security

and efficiency of certification-based encryption. It is, therefore, possible that future work could

consider other key management systems that are more secure than the current type of KMV; for

instance, the HSMs to provide better protection from key loss in cloud environments.

Future studies can examine the feasibility of implementing the encryption system in operational

healthcare IT structure like EHR systems to determine the efficiency and output and clinical usage

scenario. Since, there are still users who did not fully comprehend the process of encryption, the

future work may aim to improve the design of the user interface as well as educating and training the

users. It would also provide an opportunity to say that encryption systems that are adopted by the

healthcare profession can in fact be used effectively. The availability of safe and efficient encryption

techniques for health care data holds great business opportunities because of the continued regulatory

pressures with special focus on health systems to secure patients’ details. Sustaining the current work,

a subsequent study could focus on the development and adjustments of the system depending on

certain sectors of the healthcare domain, thereby marketing the system as a sales item to hospitals,

clinics, and other medical establishments. This would involve questions of scaling and compatibility

with multiple healthcare systems as well as mere installability into existing structures.

In conclusion, the research proved the impact of effectively securing important healthcare data can be

achieved using encryption-based systems; however, there are so many areas of improvement and

enhancement needed. In order to minimize the influence of such characteristics and address these

challenges in the subsequent research, it will be possible to enhance better protective and effective

means within the sphere of healthcare and medical data security and according to the GDPR

requirements.

References

[1] Bharadwaja Reddy Chirra, “Enhancing Healthcare Data Security with Homomorphic Encryption:
A Case Study on Electronic Health Records (EHR) Systems,” Revista de Inteligencia Artificial en

Medicina, vol. 14, no. 1, pp. 549–59, 2023, Available:
http://redcrevistas.com/index.php/Revista/article/view/249.

[2] P Sathishkumar, K Pugalarasan, C Ponnparamaguru, and M Vasanthkumar, “Improving

Healthcare Data Security Using Cheon-Kim-Kim-Song (CKKS) Homomorphic Encryption,” pp. 1–6,
Apr. 2024, doi: https://doi.org/10.1109/ickecs61492.2024.10616691.

[3] M. Corrales Compagnucci, J. Meszaros, T. Minssen, A. Arasilango, T. Ous, and M. Rajarajan,

“Homomorphic Encryption: The ‘Holy Grail’ for Big Data Analytics and Legal Compliance in the

http://redcrevistas.com/index.php/Revista/article/view/249
https://doi.org/10.1109/ickecs61492.2024.10616691

21

Pharmaceutical and Healthcare Sector?,” European Pharmaceutical Law Review, vol. 3, no. 4, pp.
144–155, 2019, doi: https://doi.org/10.21552/eplr/2019/4/5.

[4] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek, and N. Aaraj, “Survey on Fully
Homomorphic Encryption, Theory, and Applications,” Proceedings of the IEEE, vol. 110, no. 10, pp.

1572–1609, Oct. 2022, doi: https://doi.org/10.1109/jproc.2022.3205665.

[5] J. Scheibner, M. Ienca, and E. Vayena, “Health data privacy through homomorphic encryption and
distributed ledger computing: an ethical-legal qualitative expert assessment study,” BMC Medical

Ethics, vol. 23, no. 1, Dec. 2022, doi: https://doi.org/10.1186/s12910-022-00852-2.

[6] K. Munjal and R. Bhatia, “A systematic review of homomorphic encryption and its contributions
in healthcare industry,” Complex & Intelligent Systems, vol. 9, May 2022, doi:

https://doi.org/10.1007/s40747-022-00756-z.

[7] Y. Al-Issa, M. A. Ottom, and A. Tamrawi, “eHealth Cloud Security Challenges: A
Survey,” Journal of Healthcare Engineering, vol. 2019, no. 7516035, pp. 1–15, Sep. 2019, doi:

https://doi.org/10.1155/2019/7516035.

[8] S. Reddi et al., “Privacy-Preserving Electronic Medical Record Sharing for IoT-Enabled

Healthcare System Using Fully Homomorphic Encryption, IOTA, and Masked Authenticated
Messaging,” IEEE Transactions on Industrial Informatics, vol. 20, no. 9, pp. 10802–10813, May

2024, doi: https://doi.org/10.1109/tii.2024.3397343.

[9] Bala Annapurna et al., “Secured and cloud-based electronic health records by homomorphic
encryption algorithm,” International Journal of Power Electronics and Drive Systems/International

Journal of Electrical and Computer Engineering, vol. 15, no. 1, pp. 1152–1152, Nov. 2024, doi:
https://doi.org/10.11591/ijece.v15i1.pp1152-1161.

[10] W. Stallings, “CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND

PRACTICE SEVENTH EDITION GLOBAL EDITION,” 2017. Available:
https://www.cs.vsb.cz/ochodkova/courses/kpb/cryptography-and-network-security_-principles-and-

practice-7th-global-edition.pdf

 [11] Rajkumar Banoth and R. Regar, “An Introduction to Classical and Modern Cryptography,” pp.
1–46, Jan. 2023, doi: https://doi.org/10.1007/978-3-031-32959-3_1.

 [12] A. Verma, G. Agarwal, A. K. Gupta, V. Kumar, and S. Singh, “An adaptive secure internet of
things and cloud-based disease classification strategy for smart healthcare industry,” Wireless

Networks, Jun. 2024, doi: https://doi.org/10.1007/s11276-024-03783-5.

[13] M. Li, W. Lou, and K. Ren, “Data security and privacy in wireless body area networks,” IEEE
Wireless Communications, vol. 17, no. 1, pp. 51–58, Feb. 2010, doi:

https://doi.org/10.1109/mwc.2010.5416350.

[14] Ambika N, “An Augmented Edge Architecture for AI-IoT Services Deployment in the Modern
Era,” Advances in information security, privacy, and ethics book series, pp. 286–302, Jun. 2022, doi:

https://doi.org/10.4018/978-1-6684-5250-9.ch015.

[15] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing, “Manual for
Using Homomorphic Encryption for Bioinformatics,” Proceedings of the IEEE, pp. 1–16;, 2017, doi:

https://doi.org/10.1109/jproc.2016.2622218.

[16] A. Alexandru, C. A. Alexandru, D. Coardos, and E. Tudora, “Healthcare, Big Data and Cloud

Computing,” WSEAS TRANSACTIONS ON COMPUTER RESEARCH, vol. 4, pp. 123–131, Oct.

https://doi.org/10.21552/eplr/2019/4/5
https://doi.org/10.1109/jproc.2022.3205665
https://doi.org/10.1186/s12910-022-00852-2
https://doi.org/10.1007/s40747-022-00756-z
https://doi.org/10.1155/2019/7516035
https://doi.org/10.1109/tii.2024.3397343
https://doi.org/10.11591/ijece.v15i1.pp1152-1161
https://www.cs.vsb.cz/ochodkova/courses/kpb/cryptography-and-network-security_-principles-and-practice-7th-global-edition.pdf
https://www.cs.vsb.cz/ochodkova/courses/kpb/cryptography-and-network-security_-principles-and-practice-7th-global-edition.pdf
https://doi.org/10.1007/978-3-031-32959-3_1
https://doi.org/10.1007/s11276-024-03783-5
https://doi.org/10.1109/mwc.2010.5416350
https://doi.org/10.4018/978-1-6684-5250-9.ch015
https://doi.org/10.1109/jproc.2016.2622218

22

2016, Available:
https://www.researchgate.net/publication/310416741_Healthcare_Big_Data_and_Cloud_Computing

[17] K. Potter, D. Stilinki, and Selorm Adablanu, “Homomorphic Encryption for Secure Cloud
Computing,” ResearchGate, Jul. 2024, doi: https://doi.org/10.13140/RG.2.2.19574.41285.

[18] M. J. Khan, B. Fang, and D. Zhao, “Toward Lossless Homomorphic Encryption for Scientific

Computation,” arXiv.org, 2023. https://arxiv.org/abs/2309.07284 (accessed Dec. 11, 2024).

[19] N. A. Robinson et al., “Applying genetic technologies to combat infectious diseases in
aquaculture,” Reviews in Aquaculture, Sep. 2022, doi: https://doi.org/10.1111/raq.12733.

[20] Johnson, R., & Patel, S. (2022). "Homomorphic Encryption in Financial and Healthcare Sectors."

Journal of Applied Cryptography, 12(2), 113–125.

https://www.researchgate.net/publication/310416741_Healthcare_Big_Data_and_Cloud_Computing
https://doi.org/10.13140/RG.2.2.19574.41285
https://doi.org/10.1111/raq.12733

