"‘"‘"l |
\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSC CYBER SECURITY

SUNIL KUMAR PRATURI
Student ID: X23242558

School of Computing
National College of Ireland

Supervisor: NIALL HEFFERNAN




Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet

School of Computing
SUNIL KUMAR PRATURI

Evaluating the Effectiveness of Machine Learning Algorithms in
Detecting Phishing AttacksS........cocooiiiiiii e
383 WORDS 06
............................................. Page Count: ...,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

SUNIL KUMAR PRATURI

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):




Configuration Manual

SUNIL KUMAR PRATURI
Student I1D: X23242558

1. Introduction

This manual provides the configuration details and steps for running the phishing dataset
analysis. The dataset consists of features for phishing detection, and this analysis will include
data preprocessing, feature engineering, model selection, evaluation, and hyperparameter
tuning.

Minimum System Requirements
Hardware Requirements:

e Operating System: Windows 10/11, macOS 10.15 or higher, or any Linux
distribution (Ubuntu 18.04 or higher).

e Processor: Intel Core i5 or equivalent AMD processor, at least 4 cores.
e« RAM: Minimum 8 GB (16 GB recommended for smoother operations).

e Graphics Processing Unit (GPU): Optional, but recommended if using machine
learning for optimization.

o Storage: At least 10 GB of free disk space for storing images, models, and results.
Software Requirements
o Python: Version 3.8 or higher

e Jupyter Notebook: For running the code and visualizations.

2. Environment Setup
Ensure that the following Python packages are installed to run the analysis:

Pandas: For data handling and preprocessing

NumPy: For numerical operations

Matplotlib: For plotting and visualization

Seaborn: For advanced visualizations (e.g., heatmaps, box plots)
Scikit-learn: For machine learning models, preprocessing, and evaluation
You can install the required dependencies using pip:

pip install pandas numpy matplotlib seaborn scikit-learn

3. Dataset Configuration
The analysis uses two CSV files for training and testing:

1



Training Dataset: phishing_dataset_train.csv

Testing Dataset: phishing_dataset_test.csv

These datasets must be placed in the working directory or specified in the script for the
pd.read_csv() function to load them.

Dataset Structure

Target Column: class

This is the binary target variable indicating phishing (1) or not (0).

Feature Columns: All columns except class, including numerical and categorical features.

~ Data Exploration and Preprocessing
Load the Datasets

import pandas as pd
import numpy as np

# Load the training and testing datasets
train_df = pd.read_csv('phishing_dataset_train.csv')
test_df = pd.read_csv('phishing_dataset_test.csv')

# Display the first few rows of the training dataset
print("Training Dataset Preview:")
print(train_df.head())

# Display the first few rows of the testing dataset
print("\nTesting Dataset Preview:")
print(test_df.head())

Training Dataset Preview:

domain_similarity wurl_length http_protocol num dot num slash \
9 @.89 29 1 1 2]
1 0.88 28 1 1 a

4. Data Preprocessing Configuration
Handling Missing Values
The code includes checks for missing values in both training and testing datasets:

Feature Scaling
Standard scaling is applied to numerical features to normalize them between zero and one:



Identify Target Variables and Feature Columns

# List all columns in the training dataset
print(“Columns in Training Dataset:")
print(train df.columns.tolist())

# Define the target column
target column = 'class’ # Confirm if 'class’ is indeed your target

# Features are all columns except the target column
feature columns = [col for col in train df.columns if col != target column]

print(f"\nTarget Column: {target column}")

print(f"Number of Feature Columns: {len(feature_columns)}™)
print("Feature Columns:")

print(feature_columns)

Columns in Training Dataset:

['domain similarity', 'url length', "http protocol’, "num dot', ‘num slash', 'num double slash', 'num h
thesis’, 'num_curly bracket', ‘num_square bracket', 'num_less_and greater', 'num_tilde', "num_asterisk’
se history', 'redirect', 'num a href', 'num input’, 'num button', 'num link href', 'num iframe’, ‘'class

Target Column: class

Humber of Feature Columns: 25

Feature Columns:

[ "domain similarity’, "url length', "http protocol’, "num dot', "num slash’, 'num double slash’, 'num h

Feature Engineering
You can add new features or modify existing ones to improve model performance. For
example, the interaction between num_dot and num_slash is created:

Feature Engineering
# Identify categorical features

categorical_features = train_df.select_dtypes(include=['object", 'category']).columns.tolist()
print(f"\nCategorical Features: {categorical_features}")

Categorical Features: []

® Feature Scaling

# Define the target column
target_column = ‘class’

# Identify numerical features (excluding the target)
numerical features = train_df.select_dtypes(include=[np.number]).columns.tolist()

numerical_features = [col for col in numerical_features if col != target_column]

print(f"Numerical Features ({len(numerical features)}):")
print(numerical_features)

Numerical Features (25):

["domain_similarity', 'url_length', 'http_protocol', 'num_dot', 'num_slash', 'num_double slash', 'num_hyphen', 'num_underscore', 'num_equal', 'num_paran
thesis’, "num_curly bracket®, 'num_square_bracket®, 'num_less_and greater’, 'num_tilde’, 'num_asterisk’, ‘num plus', ‘url_inc_at', 'url_inc_ip®, 'respon
se_history", 'redirect', 'num_a_href', 'num_input’, 'num_butten’, 'num_link_href’, 'num_iframe’']

5. Model Configuration
Model Selection
The following models are included in the analysis:



from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive bayes import GaussianNB

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, precision_score, recall score, fl1_score, roc_auc_score, confusion_matrix, classification_report
from sklearn.model selection impert cross_val_score

import matplotlib.pyplot as plt
import seaborn as sns

# Initialize the models with default parameters
rf = RandomForestClassifier(random state=42)
svm = SVC(probability=True, random_ state=42)
knn = KNeighborsClassifier()

nb = GaussianNB()
DecisionTreeClassifier(random_state=42)

# List of models for iteration

models = {
"Random Forest': rf,
"SVM": svm,
"k-MN": knn,

"Maive Bayes': nb,
‘Decision Tree': dt

Model Training
Each model is trained using the fit() method, and predictions are made on the test set:

for model name, model in models.items():
print(f"\nTraining and evaluating {model name}...")

# Train the model
model.fit(X_train, y _train)

# Predict on the test set
y_pred = model.predict(X_test)
y_proba = model.predict proba(X test)[:, 1] if hasattr(model, “"predict proba") else model.decision function(X test)

# Calculate performance metrics

accuracy = accuracy_score(y_test, y pred)
precision = precision_score(y_test, y pred)
recall = recall score(y_test, y pred)

f1 = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_proba)

# Store the metrics
performance_metrics[model name] = {
'Accuracy': accuracy,
'Precision’: precision,
"Recall’: recall,
‘F1-Score’: f1,
"ROC-AUC’: roc_auc

# Print classification report
print(f"classification Report for {model name}:")

6. Hyperparameter Tuning Configuration
Random Forest Hyperparameter Tuning
Use GridSearchCV to tune the hyperparameters of the Random Forest model:



from sklearn.model_selection import GridSearchcv

# Define parameter grid for Random Forest
param_grid_rf = {
'n_estimators': [1ee, 200, 300]
‘max_depth': [None, 18, 20, 30],
‘min_samples_split': [2, 5, 16],
‘min_samples_leaf': [1, 2, 4],
'bootstrap': [True, False]

# Initialize GridSearchcv
grid_search_rf = GridSearchcv(
estimator=rf,
param_grid=param grid rf,
cv=5,
scoring="f1",
n_jobs=-1,
verbose=2

)

# Perform Grid Search
grid_search_rf.fit(X_train, y_train)

# Best parameters and score
print(f"\nBest Parameters for Random Forest: {grid_search_rf.best params_}")
print(f"Best Fl-Score: {grid_search_rf.best_score_:.4f}")

Svm Hyperparameter tuning

* Support Vector Machines (SVM) Hyperparameter Tuning

from sklearn.model selection import Gridsearchcv

# Define parameter grid for SVM
param_grid svm = {
‘c': [0.1, 1, 18, 100],
‘kernel’: ['linear', ‘rbf', 'poly'],
‘gamma’: ['scale’, 'auto’]

# Initialize GridSearchcv
grid_search_svm = Gridsearchcv(
estimator=svm,
param_grid=param_grid_svm,
cv=5,
scoring="f1",
n_jobs=-1,
verbose=2

)

# Perform Grid Search
grid_search_svm.fit(X_train, y train)

# Best parameters and score

print(f"\nBest Parameters for SvM: {grid search_svm.best params_}")
nrint(f"Ract Fi1_-Grara: forid cearch cum hact crara + aFL")

7. Model Evaluation Configuration
Cross-Validation
Perform k-fold cross-validation to evaluate the stability of the models:



from sklearn.model selection impert cross_val_score

# Number of folds
k =5

# Iterate through the models and perform cross-validation

for model_name, model in models.items():
print(f"\nPerforming {k}-Fold Cross-validation for {model name}..
cv_scores = cross_val_score(model, X_train, y train, cv=k, scoring="f1")
print(f"F1-Score CV Mean: {cv_scores.mean():.4f} | Cv std: {cv_scores.std():.4f}")

Performing 5-Fold Cross-validation for Random Forest...
F1-Score CV Mean: ©.9756 | CV Std: ©.0088

performing 5-Fold Cross-validation for swM...
Fl-Score CV Mean: ©.9614 ‘ v std: 0.8273

Performing 5-Fold Cross-validation for k-NN...
F1-Score CV Mean: ©.9619 | CV Std: 6.0180

performing 5-Fold Cross-validation for Naive Bayes...
F1-Score CV Mean: ©.3310 | CV Std: @.0343



