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1 Introduction  
  

This document elaborates the system specification; software and hardware used for the 

implementation of the project. It also lays out the steps carried out in the implementation of 

the research project, “Enhancing Cybersecurity: An Ensemble Learning-Based Framework 

for Early Detection and Prevention of DDoS Attacks”.   

 

Advancements in technologies especially their integration into human activity has had an 

exponential increase and has offered significant impacts as will be discussed in this paper, 

although these impacts have come with vulnerabilities. Of these threats, Distributed Denial-

of-Service (DDoS) attacks have risen to become one of the biggest threats to cybersecurity. 

These attacks overload systems with malicious traffic, making it impossible to perform 

normal functionalities; organizations suffer greatly both financially and in terms of 

reputation. On this basis, DDoS attacks become much more complicated, and it is difficult to 

distinguish them from regular internet traffic.  

 

Firewalls and IDS are generally rendered ineffective in parts early stage of DDoS attacks 

because the attackers deploy legitimate traffic clones. Therefore, there is currently an 

emergency in the identification of the real and the fake traffic patterns within a short time. 

Solving this problem requires the use of new solutions based on the principles of ML as a 

tool for processing massive amounts of data, detecting outliers, and ensuring real-time threat 

detection.  

 

The solution that machine learning, especially Ensemble Learning techniques provides to this 

problem is quite promising. Techniques such as, bagging, boosting, as well as stacking pool 

many models together making them accurate in prediction and minimizing the rates of false 

positives. These methods have been proved to work on different formats of data patterns 

understanding which puts them in a reasonable position to look for the shy signals common 

with DDoS attack.  

 
  

2 System Configuration  

2.1 Software Specification  
  

• Jupyter Notebook: Open-source application, was used to split the downloaded data 

into train, test, and validation splits.  

• A Gmail account to access data uploaded to google drive.  

• Google Colab, a python environment that uses google cloud.  
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2.2 Hardware Specification  

• HP PAVILION, 1 TB SSD, 16 GB RAM.  

• Processor: 1.8 GHz, Intel Core, i5  

 

3 Data Generation Steps  
  

• Download the data related to the DDos attack. 

• This downloads a CSV file containing the data related to the attacks probe.   

• The downloaded data was cleaned and pre-processed.  

• Create training, testing and validation data based on the data.  

 

1. NSL-KDD Dataset: This dataset contains network traffic data, including both normal 

traffic and various types of DDoS attacks (DoS, Probe, R2L, U2R). This dataset is widely 

used for DDoS detection research and has been pre-processed and labelled to facilitate 

machine learning. The dataset includes features such as protocol type, service type, flag, 

source bytes, destination bytes, and more. The feature engineering process involves 

selecting and transforming these features to improve the model's performance and reduce 

overfitting. 

 

2. Tools and Software: Several tools and libraries are used throughout the research: 

• Scikit-learn: The core library for machine learning tasks, including Random Forest, 

Decision Trees, SVM, and ensemble methods. 

• Flask: Used to create a web application that integrates the machine learning models 

with the OTP-based authentication system for secure access. 

• Flask-Mail: Allows sending OTPs through email for user verification. 

• Matplotlib and Seaborn: Used for data visualization to plot accuracy metrics, 

confusion matrices, and feature importance for model evaluation. 

 

3. Data Collection: The NSL-KDD dataset is collected and pre-processed by removing 

redundant or irrelevant features, handling missing data, and encoding categorical 

variables into numerical values. The train-test split is used to divide the data into 

training and testing sets, ensuring that the model can generalize to unseen data. 

Additionally, real-time user input is processed through the Flask application for 

prediction testing. 

 

4. Performance Metrics: To evaluate the models and system, the following metrics are 

used: 

• Accuracy: Measures the overall correctness of the model. 

• Precision, Recall, F1-Score: Assess model performance in terms of handling 

imbalanced classes (e.g., attacks). 

• Confusion Matrix: Provides insights into the classification performance, identifying 

false positives and false negatives. 

• Response Time: Measures the time taken by the system to generate a prediction for 

real-time input. 

3.1 Data Analysis and Interpretation 

The analysis process consists of several key steps: 
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1. Model Evaluation: After training the ensemble models (Random Forest, Decision Trees, 

and SVM), the performance on the test set is evaluated using the above metrics. The 

Random Forest model is expected to perform well due to its robustness and ability to 

handle noisy data (as discussed in literature by Al-Shareeda et al., 2023). The Decision 

Tree model's performance is constrained by its shallow depth, but it offers insights into 

feature importance, which is crucial for understanding attack patterns. The SVM model, 

while effective in high-dimensional spaces, might struggle with real-time predictions due 

to its computational cost, which is why it is tested alongside the ensemble models (Azam 

et.al, 2023). 

 

2. Real-Time Prediction: The system's ability to classify attacks accurately in real-time is 

tested by simulating attacks in various categories. User inputs are collected, and 

predictions are made using the models. System response time is measured to ensure that 

the app can handle real-time prediction needs efficiently. 

 
 

4 Implemented Models  

4.1 Machine Learning in DDoS Detection 

Cybersecurity has embraced machine learning for its ability to search vast data fields, spot 

deviations, and adjust to changing attack patterns. The DDoS detection has been widely 

explored using supervised learning techniques namely Support Vector Machines (SVM), 

Decision Trees, and Random Forests. While these models are great at learning patterns in 

labelled datasets, they require manual preprocessing and hours of annotation time (Al-

Shareeda et al., 2023).  

 

Attacks on the system that are unknown are detected by identifying deviations in unlabelled 

data using unsupervised learning methods such as clustering algorithms like K means and 

Gaussian mixture model. Although relatively promising, it is often hard to apply to high 

dimensional data and it often requires domain expertise for efficient feature selection (Lima 

Filho, 2019). 

 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are already 

existing methods that are effective in the identification of small features and patterns using 

deep learning techniques. However, because of their high computational cost and sensitivity 

to adversarial perturbations, they are not appropriate for application in real-life (Almeida et 

al., 2023). Ensemble learning techniques have been employed by researchers trying to 

optimize accuracy, computational time and flexibility. 

 

 

Figure 1 Use of machine learning in DDOS detection 
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4.2 Implementation of Random Forest  

 

Random Forest: 

o Overall accuracy: 96.1% 

o Best performance on Normal (96%), DoS (98.3%), and Probe (93.3%) 

traffic. 

o Moderate results for R2L (31.1%) and U2R (69.2%), likely due to dataset 

imbalance. 

 
 

Decision Tree: 

o Overall accuracy: 92.6% 

o Excellent for DoS (96.3%) and Probe (95.7%), moderate for Normal 

(90.1%). 

o Significant drop for R2L (63.0%) and U2R (0%). 



5 
 

 

 
 
 
 

• SVM: 

o Overall accuracy: 93.6% 

o Reliable for DoS (95.5%), Normal (94.7%), and Probe (87.7%). 

o Poor performance for R2L (10.4%) and U2R (9.6%) due to limited data for 

these classes. 

 
Interpretation: The Random Forest model consistently outperformed the others, achieving 

higher overall accuracy and balanced performance across attack types. While Decision Tree 

and SVM showed competitive results for common attack categories, they struggled with 

minority classes (R2L and U2R), highlighting the importance of addressing class imbalance 

in the dataset. 
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Feature Selection and Model Optimization 

The feature selection process was carried out using the Recursive Feature Elimination with 

Cross-Validation (RFECV) approach in order to minimize the number of features used in the 

different models, and increase their performance (Awad & Fraihat, 2023). 

 

Results: 

• Random Forest (it is 9 with the cross-validation score 0.961) and accuracy degree 

(96.1%). 

• For Decision Tree, the value of RFECV discovered that the model has reduced returns 

after using 7 features and its improved accuracy was an ideal 92.6%. 

Interpretation: Feature selection improved model interpretability and also decreased 

computation time burden without much difference in performance. These were Protocol 

Type, Source Bytes, and other traffic patterns pertinent to DDoS attacks.  

Implications: 

• Academic: This result is in line with the hypothesis and further validates that feature 

engineering plays a critical role in enhancing model performance. 

• Practitioner: Feature selection brings added advantages of scaled down models and 

thus minimum resource consumption that are highly recommended for real-time 

modelling. 
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Real-Time Prediction 

The real-time DDoS detection capability of the Flask-based web application was tested 

using simulated network traffic. The system connected the trained models and provided the 

ability to enter traffic features for immediate classification (Kumar.et.al, 2024). 

Results: 

• Prediction Accuracy: It retained a level of accuracy of 97.5 percent in conformity 

with batch testing scenarios. 

• Response Time: On average the system took 1.3 seconds to provide the prediction 

which is appropriate for real time analysis. 

Interpretation: The system did well in terms of accuracy and response times in real-time 

situations thereby affirming its applicability in network security. 

Implications: 

• Academic: Real-time implementation addresses an important research gap as pointed 

out by Mohammed et al. (2021). 

• Practitioner: Due to the real-time functionality of the system, the solution is feasible 

in real-world settings to prevent and counter DDoS attacks. 
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