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Configuration Manual

Anusha Palakkattu East Madom Ramadas
23124903

1 Introduction

This configuration manual contains primary setup and tools required to replicate the project.
The project builds a model using extreme learning machine (ELM) algorithm for intrusion
detection in cloud environments. The dataset utilised is CSE-CIC-1DS2018. This manual
includes all the software and hardware requirements, configurations and execution flows.

2 Hardware Requirements

The hardware utilised for the development of this project is as follows:
Processor: 13th Gen Intel(R) Core (TM) i5-1340P 1.90 GHz, 12 Cores
RAM: 16.0 GB

Operating System: Microsoft Windows 11 Home

GPU: Intel(R) Iris(R) Xe Graphics

Storage: 512 GB SSD

3 Software Requirements

The software tools utilised for the development of this project is as follows:
e Anaconda 2.6.0
e Jupyter Notebook
e Python 3.12.4

Anaconda navigator? is an open-source platform which has user friendly interface to
manage packages and environments. It comes with Jupyter Notebook and required python
setup to run machine learning (ML) projects. Anaconda 64-bit latest stable version was
installed and setup on the windows 11 machine.

Jupyter notebook is a web-based interactive platform which can be used to create and
share computing documents like codes, interactive dashboards and equations. It is a good
platform to use for ML projects. It can be launched through anaconda navigator or can be
launched through anaconda command prompt as shown in Figure 2.

! https://registry.opendata.aws/cse-cic-ids2018/

2 https://www.anaconda.com/download
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Figure 1: Anaconda navigator.
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Figure 2: Jupyter notebook run through command line.

There were several python libraries utilised for building the project such as pandas, numpy,
scikit-learn and matplotlib. To develop ELM model scikit-elm library was installed and used

as shown

in Figure 3.
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Figure 3: scikit-elm package installation.

4  Dataset Preparation

CSE-CIC-1DS2018 dataset was leveraged to develop the project because it has real time
network traffic and different attack types. This dataset contains various cyberattack scenarios
including DoS, DDoS, botnet, brute-force, web attacks, network infiltration and heartbleed.
The dataset contains 80 extracted features of the real time network traffic captured from 420
machines and 30 servers. It can be downloaded using the aws command given on the website.
Since python does not accept pcap files, csv files were used for processing. However, there is
one file with 84 columns, those 4 columns were analysed and removed to maintain data
consistency, as shown in Figure 4. The dataset was cleaned from null or missing values,
infinite values, outliers and duplicates. Class imbalance was found in the dataset, as
illustrated in Figure 5. Therefore, dataset was down sampled, and the result obtained is
depicted in Figure 6. Furthermore, attack samples were relabelled to benign and malicious as
shown in Figure 7.
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[2]: | cse_cic_ids2018 - pd. (

cse_cic_ids2018_typical_columns - pd. (cse_cic_ids2018. 5 )
print(cse_cic_ids2018. )

(10, 80)

Load the problematic file

: | ese_cic_ids2018_20022018 - pd. ( 1
cse_cic_ids2018_20022018_columns - pd. (cse_cic_ids2018_20022018. s )

cse_cic_ids2018_20022018.

(10, 84)
Check for columns that only exist in the problematic file.

: | cse_cic_ids2018_20022018_columns| -cse_cic_ids2018_20022018_columns. isin(cse_cic_ids2018_typical_columns)

) Flow ID
1 Src 1P
2 src Port
3 Dst 1P
dtype: object

th open(
open(

original_dataset - csv. (source)
writer - csv. (result)

row in original dataset:

writer. ((row(d:]))

Figure 4: Analysing and removing extra 4 columns in one file.

print('Class distribution: ")
cse_cic_ids2@18[ 'Label’].value_counts()

Class distribution:

Label

Benign 1347953
DDOS attack-HOIC 68801
DDoS attacks-LOIC-HTTP 57550
DoS attacks-Hulk 46014
Bot 28539
FTP-BruteForce 19484
SSH-Bruteforce 18485
Infilteration 16160
DoS attacks-SlowHTTPTest 14110
DoS attacks-GoldenEye 4154
DoS attacks-Slowloris 1076
DDOS attack-LOIC-UDP 163
Brute Force -Web 59
Brute Force -XSS 25
SQL Injection 7
Name: count, dtype: inte4

Figure 5: Class imbalance in data.



sample_size = max_sample
else:
sample_size = count

sample - dataset[dataset[ 'Label’] label].sample(n
dataset_downsampled pd.concat([dataset_downsampled,

return dataset_downsampled

ids2018 attack = downsample dataset(cse cic_ids2018, sample c
num_attack_sample = ids2018 attack.shape[@]

ids2018 benign = cse_cic_ids2018[cse_cic_ids2018[ 'Label’]
ids2018_downsampled = pd.concat([ids2018_attack, ids2018_beni
del ids2018_attack

del ids2018 benign

print('Distribution of class after downsampling')
i1ds2018_downsampled[ ‘Label’].value_counts()

Distribution of class after downsampling

Label

Benign 257791
DDOS attack-HOIC 68628
DDoS attacks-LOIC-HTTP 57550
DoS attacks-Hulk 45691
Bot 28501
SSH-Bruteforce 16312
Infilteration 16034
FTP-BruteForce 12368
DoS attacks-SlowHTTPTest 7251
DoS attacks-GoldenEye 4153
DoS attacks-Slowloris 1049
DDOS attack-LOIC-UDP 163
Brute Force -Web 59
Brute Force -XSS 25
SQL Injection 7
Name: count, dtype: int64

Figure 6: Down sampling to reduce class imbalance.

ids2018_downsampled ids2018_downsampled| '
ids2018_downsampled ds2@18_downsampled|
ids2018_downsampled[ ].value_counts()

Label

malicious 257791
benign 257791
Name: count, dtype:

ids2@18_downsampled ids2018_downsampled.drop([ 'Protocol’, amp'], axis=1).copy()
ids2018_downsampled.head()

Tot TotLen

Dst Flow Fwd o Active Active Active Active Idle Idle
Port Duration S - Mean Std Max Min Std  Max

0.0

0.0

00

0.0

0.0

Figure 7: Relabelling of data.



5 Feature Selection

For implementing feature selection, a random forest (RF) classifier was utilised. Importance
of each feature were analysed, and top 20 features were chosen according to importance score
ranking as shown in Figure 8 and Figure 9. Additionally brute force method was
implemented for feature reduction. This is illustrated in Figure 10.

[37]:

score = np.round(rfc.feature_importances_, 3)
importance = pd.DataFrame({'feature': X_columns,
"importance’: score})
importance = importance.sort_values('importance', ascending=False).set_index('feature')

print( {importance[:20]}")

plt.rcParams['figure.figsize'] (12, 4)
importance.plot.bar()

Top 20 features:
importance

feature

Init Fwd Win Byts

TotLen Fwd Pkts

Dst Port

Fwd Pkt Len Mean

Fwd Pkt Len Max

Subflow Fwd Byts

Fwd Header Len

Init Bwd Win Byts

Fwd Seg Size Min

Flow Pkts/s

Pkt Len Max

Fwd Seg Size Avg

Fwd IAT Tot

Fwd IAT Std

Fwd IAT Mean

Fwd IAT Max

Fwd Pkts/s

Flow IAT Mean

Flow Duration

Flow IAT Min

.065
859
855
250
043
040
235
933
929
228
028
027
027
(13
925
925
023
023
022
.19

(2}

0.
0.
0.
Q.
0.
0.
0.
0.
0.
0.
Q.
0.
0.
0.
0.
0.
0.
0.
0

Figure 8: Top 20 important features.
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feature

columns features. tc

ids2018 ids2818[ columns |
ids2018.shape

(51558, 21)

ids2e18.
ids2018

ids2018 X
ids2018_y

, axis=1).
9]

ids2018_train_X, ids2018_test_X, ids2018_train_y, ids2018 test_y - train_test_split(ids2018_X, ids2@18 y, test_size-o

models
L )s
RandomForestClassifier(n_jobs
e': sve(),

GaussianNB(),
: etwork': MLPClassifier(hidden_layer_sizes-(

MLPClassifier(hidden_layer_sizes-(

: ELMClassifier(n_neurons-(12,

1),

),

, batch_size

feature_set ]
scalar - StandardScaler()
scores

feature

feature_set.a

print(

test_X
train_X

features:
end(feature)
len(feature_set)

ids2018_test_X[feature_set]
ids2e18_train_X[feature_set

feature

train_X_scaled
train_X_scaled
test_X_scaled

scalar.fit(train_X)

scalar.
scalar.t

n(train_X)
n(test_x)

score_temp

model

len(feature_set)

models:

models [model]
t(train_X_scaled, ids2@18_train_y)

clf
clf.f

Figure 10: code snippet for feature reduction.

After selecting the final feature set, hyperparameter tuning for each model was
performed using this final feature set using GridSearchCV. The code snippet and result for
ELM is shown in Figure 11.




ELM

%%time

class (ELMClassifier):
def (self):
tags = super(). get tags()

tags[ 'pairwise’] False
return tags

parameter_space
'n_neurons': [100@, 2000, 5000, 7000],
‘ufunc': ['tanh', 'relu’, ‘sigmoid’, ‘linear'],
‘alpha’': [1le-7, le-5, le-3, le-1]

elm = CustomELMClassifier()

optimal_elm = GridSearchCV(
elm,
parameter_space,
cv=5,
n_jobs=-1,
verbose=0

optimal_elm.fit(ids2018 train_X_scaled, ids2@18 train_y)

elm_optimal_params = optimal_elm.best params_
print( {elm_optimal params}”)

Optimum hyperparameters for ELM:

{'alpha’: 1e-85, 'n_neurons': 7000, ‘ufunc': ‘relu'}
CPU times: total: 1min 49s

Wall time: 1@min 34s

Figure 11: Code snippet and result for hyperparameter tuning of ELM.

6 Classification

The ELM classification model was developed using the optimised hyperparameters. Five-fold
cross validation of each model was performed using StratifiedKFold. Code snippet of cross
validation of ELM and other models is shown in Figure 12.



(ELMClassifier):
(self):
super()._get_tags

tags

[19]: models

Tree': tree.Decisio sifie iterion-'entropy’, ccp_alpha
t': RandomForestClassifier(max_depth 2¢, min_samples_leaf s m n_estimators 356, n_jobs -1,criterion '
: GaussianNB(var_smoothing-1.9),
g two : MLPClassifier(hidden_layer_sizes-(58,), activation- 'tanh’, e solver dam’, max_iter
": MLPClassifier(hidden_layer_sizes 15), activation-'t 1 solver-'adam’', max_iter
1ine’: CustomELMClassifier(n_neurons ufunc- ‘relu’, alpha 1e-85, batch_size

! accuracy_scores
accuracy_scores_mean
accuracy_scores_std

cv - StratifiedKFold(n_splits-5, shuffle

model in models:
clf - models model]

accuracy_scores[model] - cross_val_score(clf,
ids2018 X_scaled,
ids2018_y,
cv-ev,
scoring="accurac
n_jobs- 1)
accuracy_scores_mean[model] - np.mean(accuracy_scores model])
accuracy_scores_std[model] - np.std(accuracy_scores model])

print( -'*25} {model} {'-'*25}")
print( accuracy_scores[model]}")
print( accuracy_scores_mean|[model]: accuracy_scores_std[model |:

Figure 12: Code snippet of model cross validation.

Decision Tree
Accuracy: [©. .96030386 ©.95700663 ©.95581057
mean: ©.9586 std: ©.0019

Random Forest
Accuracy: [©. .97249071 ©.97287862 ©.97294327
mean: 0.9731 std: @.eees5

Naive Bayes
Accuracy: [©. .65240019 ©.65133344 0.65602069
mean: ©.6534 std: ©.0019

Artificial Neural Network
Accuracy: [©. .9437207 ©.94362373 ©.94504606
mean: ©0.9441 std: ©.eees5

Deep Neural Network
Accuracy: [@. .95532568 ©.96764183 ©.96938743
mean: ©0.9601 std: @.ee7e

Extreme Learning Machine
Accuracy: [0.96725392 ©.96728625 0.96877323 0.96796509 0.96670438]
mean: @.9676 std: @.eee7

Figure 13: Cross validation results.

7 Evaluation

The built ELM model was evaluated based on accuracy, precision, recall and fl-score.
Furthermore, the results of accuracy, precision, recall, f1-score and time consumption for
prediction of ELM model was compared with other ML models. Confusion matrix was
plotted. Code snippet of model building and evaluation is shown in Figure 14.



Model building

(ELMClassifier):

(self):
—)

tree.

Tr ifier(criterion ', ccp_alpha=1.4

: RandomForestClassifier(max_depth min_samples leaf » min_samples_split
GaussianNB(var_smoothing-1.0),

: MLPClassifier(hidden_layer_sizes-(50,), activation

: MLPClassifier(hidden_layer_sizes-(1 15), activation , alpha=1

trained_models
prediction_time
prediction_memory_usage
accuracy_testing dataset
f_score_testing dataset

plt.rcPara
fig, axes = plt

CustomELMClassifier(n_neurons , ufunc batch size

)

figsize=(

i, (model, clf) in enumerate(models.

c1f.fit(ids2018_train_X_scaled, ids2018_train_y)

trained models[model]

clf

start_memory_pred = memory_usage() [

prediction_start_time
prediction = c1f

prediction_time[model]

time 1)

time. )
(ids2018_test X_scaled)

time. i prediction_start_time

prediction_memory_usage[model ] memory_usage () start_memory_pred

model_report = metrics

t(ids2018 test_y, prediction, digits-4, output_dict=True)

accuracy_testing_dataset[model] model_report|
f_score_testing dataset[model] = model report[

print(f"{'- {model}

print({metrics

ConfusionMatrixDisplay

- 4257)
ids2018_test_y, prediction, digits-4))

X r{clf,
ids2018_test X scaled,
ids2018_test_y,
cmap=plt.
ax-axes [math

', fontsize=24)

Figure 14: Model building and evaluation.
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