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Abstract 

Security of the data is one of the biggest challenges in cloud computing especially when used 

by businesses such as, the healthcare sector that deals with confidential information. To tackle this 

challenge, this research proposes a modular framework for securely storing the remote data, and also 

for processing them resulting from utilizing homomorphic encryption in cloud environments. The 

system combines encryption methods with multi-cloud storage capabilities, compatible with, for 

example, AWS S3, Google Cloud Storage, and Microsoft Azure Blob Storage. The implementation 

uses SEAL library to ensure data privacy as well as providing capability to per- form computations on 

encrypted data. Official performance and security assessments clearly proved the required 

effectiveness of the system. Encryption and decryption processes were fast for small to medium sized 

dataset and AWS had the least cloud interaction time. Audits confirmed the intended functionality of 

the system, and its ability to repel outside interference and data manipulation. That way the system 

addressed research objectives though there is a tradeoff for computational cost for large data set and 

scalability issues. Future work outlines methodical optimizations, distributed processing approaches, 

and, the application of proposed models in actual healthcare environments. The results can be relevant 

for both researches and practitioners to advance the knowledge on constructing the reliable and safe 

cloud platforms. By doing so, this research provides a good starting point for continued improvement 

of cloud security for data management. 

1 Introduction 
 

The availability of data has rapidly increased over the last few years and the service of 

cloud computing made changes in the way of handling documents. Among the advantages 

mentioned the following can be pointed out: up to a degree cost saving, a possibility to scale, 

and flexibility in terms of access. However, these advantages are accompanied by 

tremendous costs – if anything, data privacy is at risk. Health care industry due to the 

sensitivity of the information it holds for patients is faced with hurdles when implementing 

security measures for data that is stored in cloud environments. In this study, homomorphic 

encryption is examined as a feasible and reliable solution that can meet these challenges on 

cloud storage and analysis. 

1.1 Motivation 

The incidents of data breaches in cloud computing have emerged as a major concern 

throughout the world. One data breach can steal millions of records, adversely affecting 

reputation and customer trust, financial gains, and the privacy of users. The last research 

shows that in 2023, a half of the analyzed cyber-attacks targeted organizations’ cloud storage 

systems, which proves that the latter is a weak link in any business. It stays especially 
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relevant in the sphere of healthcare, where data of patients must be preserved confidential to 

address legislation requirements, for instance, HIPAA. 

Conventional cryptographic techniques for data security at rest and in transit offer a 

safeguard for the data to be secured by converting the data into an unreadable format for 

storage or transit and have to be unscrambled before they can be processed. This creates a 

security risk which results to data being put up for access and retrieval by anyone who wants 

to. On the other hand, homomorphic encryption (HE) remedy this by enabling computations 

on these encrypted data without decryption. Despite extensive studies of HE from the 

theoretical perspective, there is a lack of research on strategies for its application within real 

world systems, especially cloud infrastructures. This research therefore seeks to fill this gap 

by proposing and assessing a realistic model for implementing HE in multi-cloud storage 

systems. 

1.2 Research Question 

How can homomorphic encryption be effectively implemented to enhance data privacy in 

cloud computing environments without significantly impacting performance and 

usability? 

1.3 Research Objectives 

1. Design and Implementation: Develop a modular framework that combines 

homomorphic encryption with multi-cloud storage functionality, supporting platforms 

such as AWS S3, Google Cloud Storage, and Microsoft Azure Blob Storage. 

2. Performance Evaluation: Measure the system’s efficiency in terms of encryption, 

decryption, and cloud interaction times under varying conditions. 

3. Security Assessment: Validate the robustness of the system by testing its ability to 

resist unauthorized access and maintain data integrity. 

4. Scalability Analysis: Assess the system’s scalability under increasing workloads to 

ensure practical applicability in real-world scenarios. 

1.4 Contribution to Scientific Literature 

In this regard this research makes the following invaluable contributions to the scientific 

database. First, it offers a practical scenario proving the applicability of homomorphic 

encryption in a multiple cloud context, which is lacking in the existing literature as most 

works only showcase the utility of the concept in academic scenarios but do not necessarily 

indicate how it can be used in real world systems. Second, it reviews the result of the system 

and its security and such analysis educates the user about achievable computational speed and 

privacy protection. Third, it reveals the differences of how various platforms manage 

encrypted data; it contains useful information for organizations that decide on the choice of 

cloud providers. 

Also, the research provides a clear approach to the evaluation that other studies can use or 

build upon. Consequently, this work establishes a foundation for designing and implementing 

future advances in privacy-preserving technologies by showing that HE can be integrated into 

cloud storage systems. 
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1.5 Structure of the Report 

Chapter 2 discusses the literature related to cloud computing security and homomorphic 

encryption to determine the research gap that this study intends to fill. It outlines the general 

concept of HE and reviews earlier work and attempts on the application of this technology in 

physical systems. The procedures followed, methods and techniques used and all other 

matters pertaining to the accomplishment of the research objectives are stated and explained 

in chapter 3 of this study. This includes work done in setting up the proposed system, the 

datasets used in evaluation and the statistical techniques used in data analysis. Chapter 4 

focuses on Implementation Plan and provides detailed information about the design 

constituents such as architecture, algorithms and frameworks. It gives an elaborate account of 

the constituent elements of the system and their relationships, especially on the working of 

the solution. Chapter 5 reflects on implementation phase particularly on the processes of; 

encryption, interaction with the cloud, and the evaluation. A consideration of the results 

generated, as outputs, which include the encrypted dataset and the evaluation measure, is also 

provided. 

Chapter 6 provides a comprehensive evaluation of the system’s performance and 

security. It includes experimental results, visual aids, and a critical discussion of the findings. 

The implications of these results are considered from both academic and practical 

perspectives, with suggestions for improving the system. Chapter 7 concludes the report by 

summarizing the research question, objectives, and key findings. It discusses the limitations 

of the study and proposes meaningful directions for future work, including potential 

applications in other domains and the integration of emerging technologies. 

1.6 Significance 

The implication of this study is that it might develop improved approaches towards data 

privacy in cloud computing, especially within sectors such as the medical field where data 

privacy is critical. This study answers to a number of research questions about HE schemes 

related to essential problems of security and usability by proposing and testing a real-world 

HE framework. The implications of the findings are for academia because the study adds to 

the knowledge base of HE by exploring practical aspects of HE as well as providing 

practitioners with a feasible solution for secure data management in cloud environments. 

Therefore, this research stipulates a crucial significance of enhancing more data privacy 

solutions in cloud computing. Overall, the study provides a realistic solution by incorporating 

homomorphic encryption at the application layer of the multi-cloud architecture with low 

latency and good security. It is in the following chapters that actual conduct of the research 

together with various stages such as conceptualization, implementation, and evaluation will 

be described.1 Data Privacy in Cloud Computingh lies in its potential to enhance data privacy 

in cloud computing, particularly for industries like healthcare where confidentiality is 

paramount. By implementing and evaluating a practical HE framework, this study addresses 

critical challenges in balancing security and usability. The findings have implications for 

academia, advancing the understanding of HE's practical applications, and for practitioners, 

offering a viable solution for secure data management in the cloud. 



4 
 

 

In conclusion, this research addresses a critical need for robust data privacy solutions in cloud 

computing. By integrating homomorphic encryption into a multi-cloud framework, the study 

offers a practical approach to mitigating security risks while maintaining performance and 

usability. The following chapters will provide a detailed account of the research process, 

from conceptualization to implementation and evaluation. 

2 Related Work 

2.1 Data Privacy in Cloud Computing 

The work in Armbrust et al. (2010) gives a general overview of cloud computing, its promise 

and the issues, such as privacy that can be connected with it. However, scalability and cost 

sufficiency are other benefits that have been described by the authors other risks and issues 

include, unauthorized access and data breaches. While this work provides a good theoretical 

foundation, it fails to explain how these risks can be solved, especially by employing 

cryptography mechanisms. Vulnerabilities of Side Channel Attacks on Cloud Storage: an 

example provided by Harnik, Pinkas, Shulman-Peleg (2010) is the attack of deduplication. 

Their work explains how criminals are able to use readily implemented data deduplication 

features to gain access to desired data. Whereas their findings highlight the significance of 

protective storage interfaces, their solutions fail to touch on privacy issues during processing 

which presents an area for improvement using encryption techniques such as homomorphic 

encryption. Zhang, Liang, and Shen (2012) discuss security and privacy issues concerning the 

online social networks and those can be compared with cloud services. Their work highlights 

the need for robust privacy-preserving mechanisms but does not delve into advanced 

cryptographic solutions. This gap is critical, as cloud storage systems increasingly require 

technologies that ensure both security and usability. 

2.2 Cryptographic Solutions for Privacy Preservation 

Agrawal and Srikant (2000) introduced methods of how to hide some information while 

enabling data mining and analysis on the same data. What they did shows that it is possible 

and practical to perform computations on private data before the birth of homomorphic 

encryption. However, their approaches are not as efficient as those of contemporary 

encryption in terms of strength and adaptability, especially to clouds. The comparative study 

carried out by Almeida, Barbosa and Bessani (2012) compares several data encryption 

solutions in the cloud. We appreciate their work since it offers the benefits and trade-offs 

analysis of using encryption but does not focus on homomorphic encryption. As a 

comparatively novel technology, the absence of substantial attention exacerbates the gap in 

literature on this subject especially regarding its application in secure cloud computing. A 

recent systematic review by Islam et al. (2023) focuses on cryptographic protocols for cloud 

computing and emphasizes privacy- preserving approaches. They identify two of them, they 

said homomorphic encryption is a possible solution especially for secure processing of 

encrypted data. However, their survey lacks considerations on practical applications and 
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mostly discus theoretical contributions. This limitation corroborates the argument that applied 

research is necessary to close the gap between theory and application. 

2.3 Homomorphic Encryption 

Ideal lattices and FHE for an infinite number of operations were first described by Gentry in 

2009. This way, his methodology allowed computation on a data set while maintaining total 

privacy on the information. Although an innovation in the field of Fully Homomorphic 

Encryption, the computational cost burden of the general formula for FHE made the approach 

practically unfeasible. In turn, this limitation led them to develop other schemes that were 

more efficient. Munjal, Bhatia(2022) pointed an efficient homomorphic encryption scheme 

for enhancing data security in cloud environment. Their work showed profound proficiency 

enhancements that prepared the advancement for real-world use. However, their evaluations 

were only confined for single-cloud environment and did not consider Multi-cloud 

environment.Nyachiro, Wang, and Ma (2023) explored the application of homomorphic 

encryption in enhancing data privacy for cloud computing environments. Their research 

focused on practical implementation and performance analysis, making it a valuable 

reference for this study. However, their work did not address interoperability with multiple 

cloud platforms, a critical consideration for scalability. Behera and Prathuri (2024) 

investigated hardware-based acceleration of homomorphic encryption, leveraging FPGA 

technology to enhance computational efficiency. While their approach significantly reduced 

processing times, it introduced hardware dependencies, limiting its applicability in general-

purpose cloud environments. 

2.4 Comparative Analysis of Encryption Techniques 

Tariq, Pervaiz, and Ma (2023) presented a comparative analysis of encryption technique for 

cloud security such as symmetric encryption, asymmetric encryption and homomorphic 

encryption. They identified the strengths and weaknesses of the systems and placed 

homomorphic encryption as best suited for security conscience applications. However, the 

authors of the study never provided any examples from the real-world, or case studies, which 

provided the result of such actions, which limits its utility.5 challenges in Cloud Security 

conducted a comparative analysis of encryption techniques for cloud security, including 

symmetric, asymmetric, and homomorphic encryption. Their findings highlighted the trade-

offs between performance and security, positioning homomorphic encryption as a strong 

contender for privacy-sensitive applications. However, their study did not include practical 

implementations or case studies, reducing its applicability to real-world scenarios. 

2.5 Challenges in Cloud Security 

The survey by Islam et al. (2023) shed light on some challenges that come along with the 

adoption of privacy-preserving protocols in cloud systems. These are computational 

overhead, scalability and compatibility with other cloudy structures. Despite the theoretical 

description of possible approaches, the authors failed to offer specific case applications to 
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substantiate their reasoning. While discussing the implementation of cloud storage, the 

authors explored the side-channel attacks pointing to the fact that cloud services require the 

employment of secure encryption methodologies. Their work is a good advocacy for HE as it 

was shown to reduce such risks by evaluating computations on encrypted data instead of 

plain text data. But they failed to assess the possibility of so doing. 

2.6 Summary and Research Gap 

1. Practical implementations of homomorphic encryption in multi-cloud environments 

are scarce, despite their potential for addressing privacy and security challenges. 

2. Existing studies often focus on theoretical advancements without evaluating their 

performance and scalability in real-world scenarios. 

3. Comparative analyses of cloud platforms in handling encrypted data are limited, 

leaving organizations without clear guidance for implementation. 

3 Research Methodology 

3.1 Research Procedure 

The research process was organized into three key phases: parameters that include prototype 

development, information processing and assessment of results. In the prototype phase, 

homomorphic encryption was performed with SEAL, a popular functional toolkit for highly 

efficient cryptographic operations. Information elongation parameters, namely polynomial 

modulus degree and coefficient moduli were optimized for security and performance. To that 

end, the encryption and decryption were performed in a separate module to maintain 

modularity and ease of testing. 

The prototype also consists strong cloud linking to ensure that information is securely 

encrypted and stored in AWS S3, Google Cloud Storage and Microsoft Azure Blob Storage. 

These were done using custom Python classes that made it easy to upload and to retrieve the 

data. These encryption modules were accompanied with utilities to guarantee that given data 

was compatible with chosen encryption schemas as well as cloud storage. For assessment, an 

extensive set of scripts was designed to use for performance and security comparison. This 

phase concentrated on verifying all functionalities of the prototype from encryption to 

guaranteeing both data integrity and functionality after decryption. These steps make the right 

beginning towards most stringent examination and confirmation of the proposed system. 

3.2 Equipment and Tools 

The support of the actual research implementation was based upon a clear set of tools and 

software settings. The primary programming language used was Python since it boasts a vast 

range of libraries and seamless compatibility with cryptographic and cloud storage options. 

To avoid potential issues of dependency, a virtual environment was set it up including 

dependencies like SEAL for encryption, Boto3 for AWS, Google Cloud Storage SDK and 

Azure Storage SDK. NumPy was also used for data manipulation when encrypting and 

decrypting data as well. 
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The prototype was built and tested with a Windows 10 computer and a Linux virtual machine 

to ensure OS flexibility. These environments made development and testing of the interface 

easier due to smooth integration with the cloud interactions part. For cloud storage, the work 

used AWS S3, Google Cloud Storage and, Microsoft Azure Blob Storage in order to perform 

comparison across platforms. VS Code and Jupyter notebook were used as development 

environments which provided a great coding interface and support for multiple prototypes. It 

proved convenient for also incorporating the encryption, cloud interaction, and evaluation 

modules into a system. The decision making of tools and platforms was helpful in realizing 

the research objectives and can well establish the applicability of the proposed methodology. 

3.3 Experimental Design 

Within the scope of the study, particularly the experimental part, great emphasis was placed 

on the practical applicability of the prototype. The experiments mimicked real data 

circumstances as much as possible using synthetic examples that imitated healthcare data, so 

ethical concerns would not be an issue with privacy and security-sensitive data. Other 

attributes, including patient IDs, diagnosis codes, and indices of health, were added to ensure 

the proposed encryption scheme is not limited to different data types. 

The experiments included encrypting the datasets and uploading to cloud platforms and later 

downloading them and decrypting them in-order to check on the integrity. Test data files of 

size ~10 KB were first employed with the purpose of determining the point of reference for 

performance measurement. More realistic data of ~10 MB were then used to evaluate the 

performance, and to discover any limitations or weaknesses of the approach. It meant that the 

given multiple cloud deployment enabled the side-by-side comparison of the performance of 

each platform. Each experimental scenario followed a consistent procedure: Datasets were 

prepared for encryption compatibility to the prototype’s modules, encrypted securely 

uploaded to a cloud platform and retrieved for decryption. Such an approach made it possible 

to provide more or less definite assessment and insights into the efficacy and possibilities of 

the prototype when it operates under specific circumstances. 

3.4 Data Analysis 

In order to make a proper conclusion on the performance and security of the prototype, 

collected data need to be analyzed additionally with more detailed procedures. Such 

parameters included the encryption and decryption time obtained with Python’s time module 

together with upload and download times which are unique to each cloud platform. The 

Overall performance of the system was then measured by identifying the different system 

process including encryption, upload and decryption process. The performance of the system 

was analyzed using descriptive analysis which included but was not limited to mean and 

standard deviations. 

On security, tests which were applied sought to challenge the data integrity comprehension, 

the data protection against unauthorized access, and data resistance against tampering factors. 

The integrity test corroborated that what was retrieved from decryption was what was put in 

while the unauthorized access test emphatically corroborated that the data encrypted stayed 

as un readable as they were unless decrypted by the right decryption key. Corruption was 
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another of the assessed criterial to measure the RI capabilities of the prototype The other 

criterion used to test the RI capabilities of the prototype was through corruption simulations. 

Performing comparative analytical studies using multiple platforms allowed for easier 

determination that each cloud platform dealt with encrypted data in a different way. AWS 

demonstrated the least upload time and Azure had the least performance and load time when 

dealing with a large data set. These concerns helped in achieving the research objectives by 

proving the effectiveness of the encryption scheme that was used for implementing the cloud 

systems. 

3.5 Ethical Considerations 

This study was carried out with strict ethical considerations taken in the conduct of the study. 

To overcome the ethical problem associated with privacy, synthetic datasets were utilized 

instead of real health care data. This was important to adhere to the data privacy laws and yet 

make efforts to retain the internal consistency of the experiments. In addition, all the 

processes-maintained principles of confidentiality and integrity followed by data integrity 

standard measures. The encryption features used in the developed prototype guaranteed that 

all information passed through different phases of processing and storage was safely 

protected. As shown in the research, the use of homomorphic encryption did not show any 

disregard for privacy while also not reducing usability or performance. Ethical considerations 

went further to presenting result whereby; results of the study were presented in a responsible 

a responsible manner. Even though cross-sectional measures were obtained within this study, 

the employment of synthetic data and the conformity to privacy standards served to treat the 

methodology and the findings’ ethical, thereby increasing the investigation’s validity. 

 

4 Design Specification 

4.1 System Architecture 

The structure of the system is as a shallow multi-cloud architecture with homomorphic 

encryption as one of the components. The architecture comprises three main components: 

Encryption, Cloud Integration, and Evaluation are the three respective modules that have 

been envisaged in the context of this research work. These components work considerably to 

offer a secure technique of how sensitive data may be encrypted, uploaded and accessed. The 

encryption module forms the core of the system as it additional features a homomorphic 

encryption scheme that is compatible with computation on encrypted data. This is 

complemented by the cloud interaction module that provides secure storage and retrieval 

operations targeting AWS S3, Google Cloud Storage and Microsoft Azure Blob Storage. The 

evaluation has scientifically devised means of measuring the performance and security of the 

system. 

The architecture is therefore based on layers Each layer is concerned with a different aspect 

of the system. The base level includes encryption module, which provides data 

confidentiality. Over this is the cloud integration module that facilitates integration with 

clouds platforms. The uppermost tier is the assessment tier, giving a marker of how well the 
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system performs and possible improvement points. These layers help to achieve modularity, 

scalability and maintainability of a system that is involved in carrying out a specific process. 

Homomorphic Encryption Module This Research’s Homomorphic Encryption 

Module abstracted the underlying mathematics of four related concepts, namely 

Homomorphic Encryption, Fully Homomorphic Encryption, Order-Revealing Encryption, 

and Multi-Party Computation with Homomorphic Encryption, from foundational algebraic 

structures the core of the system, implementing a homomorphic encryption scheme capable 

of performing secure computations on encrypted data. This is integrated with the cloud 

interaction module, which facilitates secure storage and retrieval operations across AWS S3, 

Google Cloud Storage, and Microsoft Azure Blob Storage. Finally, the evaluation module 

assesses the system’s performance and security using well-defined metrics and tests. 

The architecture follows a layered approach, where each layer focuses on a specific 

aspect of the system. The bottom layer consists of the encryption module, which ensures data 

confidentiality. Above this lies the cloud integration module, enabling interoperability with 

cloud platforms. The topmost layer is the evaluation module, providing feedback on the 

system’s efficacy and identifying areas for optimization. This layered structure ensures 

modularity, scalability, and maintainability. 

4.2 Homomorphic Encryption Module 

The homomorphic encryption module is considered to be the central module of the system as 

it is in charge of protecting data before storing it to the cloud. In this module, specific 

encryption schemes such as BFV as supported by the SEAL library are used. The first step 

towards the encryption of data is data encoding. Any input data is due to the nature of the 

encryption algorithm converted into the Base64 numeral format. The encode data is then 

translated into plaintext object form, which are then encrypted into ciphertext object form. 

These ciphertexts can be mathematically designed to allow computations which are secure 

without having to decrypt, for example addition and multiplication. Key management can be 

regarded as one of the components of the encryption module. In SEAL, the generation of 

both public and private keys is done using SEAL’s KeyGenerator class. The first one is used 

for the encryption of messages and the second one is for decryption of the messages. The 

system also supports re encryption for extra levels of security in cases of change/rotation of 

keys. Decryption reverses the encryption process, restoring ciphertexts to their original 

plaintext form, which is then decoded back into a human-readable format. The encryption 

module’s design ensures high computational efficiency and strong security guarantees. By 

leveraging homomorphic encryption, the system enables secure data processing while 

maintaining privacy. 

4.3 Cloud Integration Module 

The cloud integration module interconnects the channel between the encrypted data and the 

platform in cloud integration. This module supports three major cloud providers: Amazon 

Web Service S3, Google cloud storage, Microsoft’s Azure storage Blob Storage. Different 

platforms are managed by a custom built-in Python class to ease the integration of these 

platforms. Starting from ensuring secure connection with cloud platforms, this is how the 
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module works Continues on the next page … In the AWS platform, integration is done by the 

Boto3 script, File.IO for Google Cloud and the Azure Storage SDK for enabling integration 

on the Google and Azure platforms, respectively. These libraries support authentication, 

bucket creation and the operations that handle data transfers. After establishing the 

connection, the data is then transmitted and encrypted into the selected cloud platform. When 

uploading, one is required to enter the bucket or container name of the encrypted data and file 

name. Likewise, data retrievals enable users to download files as encrypted and analyze them 

through decryption on their machines. This arrangement, assigned in the structure of the 

module, allows using different cloud providers to select by the user. Further, there are the 

error-handling modules for a number of problems: Crop plants, network interruptions, or 

inability to authenticate the user. This robustness further guarantees the operations of data 

storage and retrieval functions. 

4.4 Evaluation Module 

The evaluation module is created for the purpose of evaluation of the system and its security 

level. This module comprises two primary components: efficiency and effectiveness 

indicators as well as security evaluation. Performance parameters measure the effectiveness 

of the encryption and decryption processes as well as the interaction with the cloud. Some of 

parameters that characterize the performance of a cryptographic algorithm include the time 

taken to encrypt and decrypt data, the time taken to upload data, time taken to download data 

and total data transfer rate. These metrics are obtained using Python’s time module which 

measures the accurate amount of time a system takes to execute a program. The evaluation 

module also concludes with the comparative analysis to show users which cloud platform is 

better to use. 

Security assessment targets confirmation of the ability of the system to prevent disclosure of 

information and its alteration. Other tests are carried out to confirm that encrypted data 

cannot be further encrypted or totally decrypted without authorization or modification 

respectively. These include the integrity test, which checks whether the received data, after 

decryption, is an original one and the unauthorized access test, which checks whether 

encrypted data can be accessed by a third party without the right decryption key. Also, the 

resilience test assesses the system’s capability in handling situations where data is either 

corrupted or modified. 

The evaluation module gives a complete report of the system performance and security that is 

very useful for future enhancements of system scalability. Tests are conducted to ensure that 

encrypted data remains secure against unauthorized access and tampering. The integrity test 

verifies that decrypted data matches the original input, while the unauthorized access test 

ensures that encrypted data cannot be read without the appropriate decryption key. 

Additionally, the resilience test evaluates the system’s ability to withstand data corruption or 

manipulation. The evaluation module provides detailed reports on the system’s performance 

and security, offering valuable insights for optimization and scalability. 
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4.5 Functional Workflow of the System 

The mechanism for operation of the system addresses functionality by connecting the various 

parts into one functional system from encryption to evaluation. 

The first step involves encoding of the input data which is then put through an encoding 

process that interfaces the data with the encryption algorithm. The data encoded is then 

zipped to the homomorphic encryption module to encrypt the data in the ciphertext form 

using the key that is public to the network. This encrypted data is conveyed to the cloud 

integration module which then uploads them in the chosen cloud platform. 

When requested, the encrypted data is pulled from the cloud and then returned to the 

encryption module for further decryption. The decryption process seeks to bring back the 

plaintext and this is decoded to create a message that can be understand by humans. 

The evaluation module of the program tracks the performance of each stage of the workflow 

and conducts security tests for the gathered data. As indicated, this makes sure that the 

system runs smoothly and securely as envisaged under any conditions. 

4.6 Algorithm Description 

The core functionality of the system is driven by the homomorphic encryption algorithm, 

which follows a structured sequence of operations: 

▪ Initialization: The algorithm begins by setting up encryption parameters, including 

polynomial modulus degree and coefficient moduli. These parameters define the 

security and performance characteristics of the encryption scheme. 

▪ Key Generation: A KeyGenerator object is used to produce a public key and a 

private key. These keys are stored securely to ensure controlled access to encrypted 

data. 

▪ Encoding: Input data is converted into numerical plaintext objects using Base64 

encoding. This step ensures compatibility with the encryption scheme. 

▪ Encryption: Plaintext objects are transformed into ciphertext objects using the public 

key. The ciphertexts are stored in a structured format that supports secure 

computations. 

▪ Cloud Interaction: 

Encrypted data is uploaded to a cloud platform, where it is stored securely. The 

system maintains logs of upload operations for auditing and troubleshooting. 

▪ Decryption: Upon retrieval, the ciphertext is decrypted using the private key. The 

decrypted plaintext is decoded back into a human-readable format. 

▪ Evaluation: The performance and security of the encryption and cloud interaction 

processes are assessed, providing feedback for optimization. 

 

4.7 Requirements 

The implementation of the system relies on specific hardware and software requirements to 

ensure optimal performance. 

On the hardware side, a system with a modern processor and sufficient memory is 

recommended to handle the computational demands of homomorphic encryption. The 
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prototype was tested on a Windows 10 machine with an Intel i7 processor and 8 GB of RAM, 

as well as on a Linux virtual machine with similar specifications. 

Software requirements include Python 3.8 or higher, along with the libraries and frameworks 

specified in the requirements.txt file. These include SEAL for encryption, Boto3 for AWS 

integration, Google Cloud Storage SDK, and Azure Storage SDK. A virtual environment is 

used to encapsulate these dependencies, ensuring reproducibility and compatibility. 

The system also requires access to cloud platforms, with active accounts on AWS, Google 

Cloud, and Microsoft Azure. Proper configuration of authentication credentials is necessary 

to enable secure interactions with these platforms. 

 

5 Implementation 

5.1 Final Implementation Overview 

The last phase of implementation included the addition of the core encryption system, 

interaction with the cloud, and the assessment capabilities. The primary objective was to 

create an effective, robust and sufficiently elastic environment for data encryption, their 

storage on several clouds, and their subsequent secure and safe retrieval. The outputs 

generated during this stage are modified data sets, encrypted cipher texts, cloud stored data, 

and performance and security assessment reports. The system provides encrypted forms of 

the data which are then turned into safe ciphertext objects. Such ciphertexts are amenable to 

computations and uphold data security during their storage in the cloud. To the best cloud 

storage services, the encrypted data is uploaded to AWS S3, Google Cloud Storage, etc., and 

Microsoft Azure Blob Storage. During the recovery process, the message is deciphered from 

the ciphertext, checked for ‘readiness’ or integrity in this plaintext and verified to be usable. 

It also creates performance and security metrics for assessing the measurement of efficiency 

and strength of the system. 

5.2 Tools and Technologies Used 

For the purpose of the implementation, a number of programming tools and libraries, as well 

as cloud platforms were used to accomplish the research goals. Python was adopted as the 

main programming language owing to it has rich libraries and capability in cryptographic 

techniques and cloud compatibility. 

The SEAL library was used for the implementation of homomorphic encryption scheme to 

provide efficient functionality for key generation, encryption, as well as decryption. For 

cloud interaction the implementation used Boto3 for AWS S3, Google Cloud Storage SDK 

for Google Cloud and the Azure Storage SDK for Azure Blob Storage. These libraries also 

provided ways of carrying out safe and reliable interaction with the corresponding clouds. 

Also, the performer measured the performance and data processing using Python’s time 

module and NumPy. A virtual environment was set up to manage dependencies, ensuring 

compatibility and reproducibility. The development environment consisted of Visual Studio 

Code and Jupyter Notebook, enabling efficient coding and iterative testing. The prototype 

was deployed on a Windows 10 machine and tested on a Linux-based virtual machine to 

ensure cross-platform compatibility. 
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5.3 Outputs Produced 

       

Output Description 

Encrypted Data The input data, such as synthetic healthcare 

records, was transformed into encrypted 

ciphertexts using the homomorphic 

encryption module. 

Cloud-Stored Data The cloud interaction module generated logs 

of all upload and retrieval operations, 

including timestamps and file metadata, for 

auditing and troubleshooting purposes. 

Decrypted Data The system demonstrated its ability to 

securely store and retrieve sensitive 

information without data loss or corruption. 

Evaluation Results Security assessment results confirmed the 

system’s resilience to unauthorized access 

and tampering, validating its robustness and 

reliability. 

5.4 Implementation Details 

Homomorphic Encryption Module: 

This module adopted the use of BFV scheme through the SEAL library. Some of the 

functions performed were data encoding and decoding as well as encryption and decryption. 

The mentioned implementation started with the initiation of encryption parameters like 

polynomial modulus degree and coefficient moduli to protect fair data and optimize 

computational speed according to implementation requirements. As for encryption, private 

and public keys were created and only through password protected ways users were granted 

access to the data. It means that the module also formed messages from the input data and 

encrypted them to preserve confidentiality when in cloud storage.  
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Cloud Interaction Module  

The cloud interaction module enabled the storage and retrieval of data in encrypted forms, 

across diverse interfaces. This compliancy implementation included making an SSL/TLS 

connection to both AWS, Google Cloud, and Azure using their ow…” Ad hoc functions were 

created for uploading the encrypted information to a cloud bucket and for its further 

decryption. To some problems like authentication failure or network interruption error-

handling mechanisms were implemented.  
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Evaluation Module: 

Contingent on the results provided by the evaluation module the system’s performance and 

security was evaluated. Performance metrics functions quantized the time that was taken in 

the process of encryption, decryption, uploading and downloading. Security assessment 

functions scrutinized data authenticity, ability to prevent violation of access rights, and 

protection against modification. The given module generated full reports of the evaluation 

outcomes.  The process incorporated a substantial period of trial to confirm the efficiency of 

the system. These test cases contained many aspects of interacting with small and large 

datasets, different types of file formats, as well as multiple clouds. The performances 

obtained from these tests asserted the robustness and great capacity of the system being 

developed. 

5.5 Functional Demonstration 

The practical application of the system also established that it could handle, store, and 

retrieve information with efficiency and security. In testing, synthetic datasets of healthcare 

were converted to Base64 format before performing encryption operations. The 

homomorphic encryption module also efficiently converted the encoded data into effective 

ciphertexts that retained the same properties of mathematics. These ciphertexts were then sent 

to the cloud platforms via the using cloud interaction module which recorded all activities. 

Originally, obtained upon the retrieval of such encrypted data they underwent decryption 

process to convert it back to plaintext. The evaluation module was calculated in terms of the 

time taken in each phase and tested the security of the system through integrity and 

resilience. By applying the outputs, they illustrated its feasibility and functionality in real-use 

situations. 

5.6 Implementation Challenges       

Challenge Description 

Computational Overhead The encryption and decryption processes were 

computationally intensive, particularly for 

large datasets. Optimization techniques were 

explored to minimize processing times while 

maintaining security. 

Cloud Integration Complexity Interfacing with multiple cloud platforms 

required extensive configuration and error 
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handling. The implementation addressed these 

challenges by standardizing interactions and 

incorporating robust error-handling 

mechanisms. 

Data Compatibility Ensuring compatibility between encrypted data 

and cloud storage systems required careful 

encoding and decoding processes. These 

challenges were resolved by implementing 

utility functions that standardized data formats. 

 

6 Evaluation 

6.1 Experiment: Performance Analysis 

Results: 

The encryption times increased linearly with dataset size as shown in Figure 6.1. The average 

encryption time for a 10 KB dataset was 0.12 seconds, while for a 10 MB dataset, it was 4.8 

seconds. Decryption times followed a similar trend but were slightly faster due to optimized 

operations. 

 
Cloud upload times varied significantly across platforms. AWS demonstrated the fastest 

upload times across all dataset sizes, averaging 0.8 seconds for a 10 MB dataset. Google 

Cloud was moderately fast, with an average of 1.2 seconds, while Azure took the longest, 

averaging 1.6 seconds for the same dataset. These results are visualized in Figure 6.2. 
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Figure 6.2 

6.2 Experiment: Security Assessment 

Objective: 

The security assessment aimed to validate the system's ability to maintain data integrity and 

resist unauthorized access and tampering. 

Setup: 

Synthetic datasets were encrypted and subjected to three security tests: 

• Integrity Test: Ensuring that decrypted data matched the original input. 

• Unauthorized Access Test: Simulating an unauthorized attempt to access encrypted 

data without the decryption key. 

• Resilience Test: Introducing controlled corruption to encrypted data and evaluating 

the system’s response. 

Results: 

Table 6.1: Summary of Security Assessment Results 

 

Test Objective Result 

Integrity Test Ensure decrypted data matches 

the original input. 

Passed with 100% accuracy, 

confirming decrypted data 

matched the original input. 

Unauthorized Access Test Simulate access without the 

decryption key. 

Encrypted data remained 

unintelligible without the 

private key, demonstrating 

robust security. 



18 
 

 

Resilience Test Detect tampering and evaluate 

system response to corruption. 

Corrupted ciphertexts 

produced error messages, 

preventing exposure of 

sensitive information. 

6.3 Experiment: Scalability Analysis 

Results: 

The system demonstrated linear scalability up to 50 concurrent operations, with only a 

marginal increase in processing time per dataset. Beyond 50 operations, processing times 

began to rise more steeply due to resource contention, as shown in Figure 6.3. AWS 

maintained the highest throughput, followed by Google Cloud and Azure. 

Figure 6.3 

 
 

6.4 Discussion 

These experiments provided the information about how the system worked, whether it 

was secure and further possibilities of its development. Evaluation for encryption and 

decryption times showed that they were proportional with dataset size, although the 

encryption was slightly faster than the decryption. Nevertheless, the overhead time taken for 

homomorphic encryption was apparent, especially for the large input sets, which showcased 

the inefficiency and security packaging trade-off. New studies could look for ways of 

improving the encryption techniques that could take less time to encourage more users to 

adopt the system. 

Integration tests with different cloud showed rather platform-oriented disparities. In 

terms of availability of Upload & Download time, AWS seemed to be on par or faster than 

Google Cloud and Azure and therefore preferred for time sensitive applications. These 

observations are in concurrence with previous work emphasizing AWS’s better network 

topology. Nonetheless, Google Cloud and Azure came to comparable outcomes implying that 

they are almost plausible choices in situations not with extreme time sensitiveness. The 

security tests proved that the vulnerability of the system is low allowing only authorized users 

to access the data and preventing it from being modified. In particular, when corrupted 
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ciphertexts were used, it was established that homomorphic encryption is quite secure when 

tested with a resilience test. These results provide practical guidelines to use the system for 

secure cloud storage and prove that the system is feasible. 

However, the above successes showed a weakness in scalability analysis. Again, 

response time reduced dramatically above 50 concurrent operations, implying that the 

resources should be optimized. The bottlenecks could be solved in latter forms using different 

approaches to parallelization or distributed processing. 

Compared to past works, this work highlighted enhanced encryption rates and compatibility 

in the multi-cloud domain. However, the complexity of the computations appears to present a 

problem, in line with previous studies. Possibility enhancing algorithmic efficiency and or 

using specialized processors including Graphic Processing Units could solve these oddities. 

The study also has significant implications for organizations in the context of the adoption of 

cloud computing in healthcare domains. The system offers a feasible solution where sensitive 

patient information can be securely stored avoiding violation of privacy laws, while being 

convenient to use. Nevertheless, adopting HE has some disadvantages regarding security and, 

to some extent, performance, which practitioners should take into account. 

 

7 Conclusion and Future Work 
 

The study was conducted with the aim of improving the data privacy in the cloud computing 

technology using homomorphic encryption. The study was guided by the following research 

question: How could homomorphic encryption be effectively incorporated into advancing 

data security in cloud computing technology without necessarily incurring penalties that are 

proportional to conditions of performance and flexibility? The two major goals were to 

develop and apply a system that protects the data with homomorphic encryption and to 

research and compare the results of the integration of the system with various cloud storage 

systems.  

To achieve these goals, a modular framework was developed comprising encryption, cloud 

interaction, and evaluation modules. The implementation utilized the SEAL library for 

homomorphic encryption, integrated with AWS S3, Google Cloud Storage, and Microsoft 

Azure Blob Storage for secure data storage. Evaluation metrics such as encryption time, 

upload/download time, and security assessments demonstrated the system's effectiveness and 

practicality. 

7.1 Research Success and Key Findings 

To some extent, the research was able to meet the objectives formulated, as well as offer a 

functional solution to the formulated research question. Key findings include: 

 

Performance Analysis: The system accomplished the encryption and decryption in a very 

efficient manner when processing the three datasets, processing time was exhibited in a linear 

fashion of the size of the dataset in the system. In terms of speed, AWS showed the best 

upload and download speeds which makes it ideal for real time use. 
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Security Assessment: The system was subjected to different security tests and, in the process, 

was able to preserve the integrity of the data, prevent any unauthorized access into the system 

and also show ability to withstand efforts to alter the data in the database. These results serve 

to confirm the healthiness of the homomorphic encryption approach. 

Scalability: Sustained response and operation times were good at up to fifty operations at the 

same time, although there was some degradation in performance at higher levels of 

operations. These results prove that the system may be used as a highly efficient and secure 

tool for storing confidential data in the cloud and, especially where the enhancement of 

privacy assurances is necessary, like in the health care context. 

7.2 Implications of the Research 

The research contributes to the academic understanding of integrating homomorphic 

encryption with cloud platforms. By addressing practical challenges such as multi-cloud 

compatibility and computational efficiency, this study bridges the gap between theoretical 

cryptographic techniques and their real-world applications. For practitioners, the system 

provides a viable solution for enhancing data privacy, ensuring compliance with data 

protection regulations, and mitigating the risks of unauthorized access in cloud environments. 

Despite its efficacy, the research also revealed inherent trade-offs. The computational 

overhead of homomorphic encryption, while manageable for small datasets, poses challenges 

for large-scale applications. Additionally, the performance variations among cloud platforms 

highlight the need for informed decision-making when selecting storage providers. 

7.3 Limitations 

Computational Overhead: The undertaken experimental analysis showed that the system 

provides good results for smaller and medium-sized datasets, however, larger datasets 

resulted in long processing times. While this acts as a limitation in scalability, especially 

when working on the scope of the invention in limited resources. 

Cloud-Specific Variations: This implied that there are chronological variations across the 

platforms in uploads and download times meaning that performance of the systems depends 

partially on cloud provider. 

Limited Real-World Testing: While actual implementation of shared datasets involving 

biological samples were imitated by artificial ones as accurately as possible, there may be 

novel issues arising in realistic settings like managing with multiple data types and network 

limitations. 

7.4 Future Work 

Algorithm Optimization: Improving the efficiency of the homomorphic encryption algorithm 

could minimize the load causing the computational overhead thus making the system scalable 

to big sizes. Perhaps more balanced are homomorphic encryption combined with other 

cryptographic techniques as investigated by various scholars. 

Distributed Processing: It is also mentioned that parallelization or distributed processing may 

solve scalability issues due to using modern cloud infrastructures. It could also help in 
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increasing the system capacity by ably managing large works without much loss of 

efficiency. 

Real-World Validation: Testing in real conditions to involve healthcare institutions could 

give more information about system’s practical effectiveness and stability. This would also 

make it possible to test the system in the real-word so that various formats of data and 

networks could be incorporated into the system. 

Privacy-Preserving Analytics: Think of extending the capabilities of the current system to 

perform the computations directly on top of the encrypted data brings in new opportunities in 

areas like health and finance sectors in terms of privacy compliances. 

Interoperability with Emerging Technologies: There are a number of directions for further 

research based on the proposed approach that could be examined considering application of 

the concept of homomorphic encryption Related research can focus on the application of 

homomorphic encryption with the blockchain technologies used to secure and enhance 

performance of systems for processing of sensitive data. Further, the use of AI, and machine 

learning to fine-tune the encryption choices, and cloud functionality might improve system 

functionality more. 

Commercialization Potential: The system has a very promising usage in commercializing 

industries that require extremely high data security. In the subsequent releases the main idea 

can be improved to have simple graphical user interface instead of CLI, configuration and 

maintaining can be automated and the proposed solution can be presented as SaaS. 

7.5 Conclusion 

This research has to some extent shown how homomorphic encryption can be employed to 

protect data privacy in cloud computing systems. The study meets essential needs such as 

multi cloud integration and computational operations to present a comprehensive, safe and 

viable solution to store a private data securely. Despite the accomplishment of the objectives 

set for the research, the problems related to computational load and Platform dependencies 

show that further improvement and confirmation are essential. The integration of the 

proposed future work opens the possibility of enhancing future the performance of system, as 

well as expanding functional potential in terms of contemporary technology settings. This 

research contributes to solving practical problems and expanding the theoretical knowledge 

base that would make cloud computing systems more reliable and provide a healthier and 

safer approach to users’ privacy. 
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