

Configuration Manual

MSc Research Project

Programme Name

Ann Mohan

Student ID: x23175320

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Ann Mohan

Student ID:

X23175320

Programme:

Msc in cybersecurity

Year:

2024

Module:

Research Project/ Internship

Lecturer:

Jawad Salahuddin

Submission

Due Date:

12/12/2024

Project Title:

A Deep Learning Approach to Malicious Software Detection: Combining

MLP and GRU

Word Count:

1465 Page Count: 14

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ann Mohan

Date:

11/11/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

 Configuration Manual
 Ann Mohan

 X23175320

1. Introduction
This configuration outlines the experimental setup, tools, and processes used to implement the MLP-

GRU hybrid model for malicious software detection. The MLP handles static feature analysis, while

the GRU focuses on sequential patterns, improving detection accuracy and robustness. There are a total

of five sections in which section two provides the experimental setup and section three and four provides

the Implementation and Data preprocessing steps. Finally, it concludes with MLP-GRU architecture in

section five.

2. Experimental Setup
a. Hardware Requirements:

• Processor: Minimum Quad-core (AMD Ryzen 7 or Intel i7)

• RAM: At least 16 GB

• Graphics: Optional for model acceleration using GPU (e.g., NVIDIA RTX 3060 or above)

b. Software Requirements:

• Operating System: Windows 10, 22H2 or equivalent

• Python Version: Python 3.9.13

• IDE: Jupyter Notebook (v6.4.12)

• Frameworks: TensorFlow 2.4 or newer, Scikit-learn, Pandas, Numpy, Matplotlib, Seaborn

The service provided by Jupyter is web-based because it is developed as an open source on the

foundation of web open standards, and it is free (www.jupyter.org, n.d.). This feature allows it

to support the most popular programming languages and facilitate diverse and renovative

development.

 Figure 1: Python Version used in Jupyter Notebook.

3. Implementation
Step 1 : Anaconda was successfully downloaded and configured in this step.

2

Step 2: FN Control Center was configured and started Serving, Jupyter Notebook was set up

and launched.

 Figure 2 : The home page of Jupyter Notebook.

Step 3 : The dataset is to be downloaded online.
https://www.kaggle.com/datasets/bansalaarushi/malware-dataset
Step 4 : The essentials libraries related to Jupyter Notebook for any file execution should

require the following the list; pandas, Tenserflow , numpy, time, scikit-learn, Matplotlib

Seaborn and so on.

Step 5 : This part of the code importing the libraries for Machine Learning algorithms.

 Figure 3: Importing Basic Libraries

https://www.kaggle.com/datasets/bansalaarushi/malware-dataset

3

4. Dataset Preparation
Step 6: Dataset Acquisition

 Acquire a properly labelled dataset with two kinds of attributes – binary file pattern and

sequential system call. Filter the data and select both healthy and unhealthy digital images for

the deep learning algorithm.

 Figure 4: Data Preparation

Step 7: Preprocessing Steps

1. Data Cleaning:

• Eliminate any row with multiple or no instance.

• Normalize an object label feature using the Label Encoding (for instance, ip.src,

ip.dst).

 Figure 5: Data frame Column Cleaning and Analysis

4

 Figure 6: Handling Missing Values and Duplicates

Figure 7: Category Distribution Visualization

Step 8: This gives the number of times each label appears in the category encoded column of

a Data Frame. It then visualises this distribution using a bar chart which often gives a good

glimpse of the scaled nature of the class in the dataset.

Step 9: Feature Engineering:

o Correlation analysis to remove several features that are closely associated with

other features and thus very redundant (Calybre.global, 2024).

o It has been recommended to use maps such as the heat map to determine the

connection.

5

 Feature Scaling

 Balance the dataset

Figure 8: Feature Scaling

 Figure 9: Data Balancing and Feature Scaling Process

6

Step 10: They work to minimize the class imbalance problem by aggregating minority classes

into one and using SMOTE to oversample the new class (Brownlee, 2020). Then, it scales the

features to enhance the model performance in the Figure. 10 below. The last thing in this

process is to ensure that class distribution is not skewed after the above two transformations.

Step 11: Normalization:

o Standard scaling, this makes sure that all the features are on the same scale as

those of the other.

 Figure 10: Normalized Data Table

7

5. MLP-GRU Model Architecture
Step 12: Component of MLP for Static Analysis

• Input Layer: They later restore neuron count with respect to the count of features.

• Hidden Layers: Euclidean distance with output from the fully connected to the next

layer activation ReLU.

• Output Layer: It also embeds intermediate feature representation.

Step 13: These sequence analyses include the use of the GRU Component for Sequential

Analysis.

• Input Layer: Sequential time-series data.

• GRU Layer: To model temporal features on the data, we use Gated Recurrent Units

with 64.

• Dropout Layer: Prevent overfitting.

Step 14: Concatenation Layer In this study, MLP and GRU output vectors are combined to

extract a final output vector for the prediction.

Step 15: Output Layer Dense Layer: softmax if there is more than one output class or sigmoid

if there are only two output classes.

8

Figure 11: Model Architecture

 Figure 12: Model Training

Step 16: The training data set was performed for 10 iterations. The training process was

implemented using a validation data set and the final test of the trained model was

conducted using the test data set.

Figure 13: Model Accuracy and Model Loss

Step 17: This kind of model was trained and tested on a dataset. Model’s performance was

evaluated by training and validation datasets. The accuracy and loss functions were trained

and validated for 10 epoch. There is the final test loss and accuracy that was produced as

0.0327 and 0.9940, respectively.

9

Figure 14: Confusion Matrix

Step 18: The confusion matrix summary of true positive ‘TP’, true negative ‘TN’, false positive

‘FP’ and false negative ‘FN’ made in each of the one class (GeeksForGeeks, 2018). The

confusion matrix shows the number of true positive, true negative, false positive, and false

negative predictions for each 1 class.

 Figure 15: Classification Report

Step 19: It provides a means to assess the quality of a multi-class classification model through

a classification report. This can print out in precision, recall, F1-score and support; for each

class; accuracy, Macro average, Weighted average 1.

10

Figure 16: ROC-AUC Curve

Step 20: In a multi-class classification problem, the code also provides an ROC curve for each

class while not necessarily in a single form indicating all the true positives, all the false

positives and so on. For class level performance, it computes the Area Under the Curve (AUC)

because it represents the model performance for that particular class.

Figure 17: Actual vs Predicted Labels for Sample Test Data

11

Figure 18: Precision- Recall Curve

Step 21: In the case of handling multi-class classification problems, the code computes F1-

score for every class. The F1 score is the harmonic meaning of the precision and the recall

rates; thus, it accomplishes offering a good balance of the model for each of the classes. The

calculated F1-scores are then presented in the form of a bar graph for convenience of the

comparison of the model’s performance across classes.

 Figure 19: F-1 Score

Step 22: The code creates an important performance metric called Cumulative Gain Chart of

a classification model. It just sorts the samples from the probability perspective and then

compares the cumulative gain to a curve and baseline. The Cumulative Gain Chart makes it

possible to seize how effectively the model is at finding the relevant samples to its order

compared to the research or the other models that selected samples randomly.

12

 Figure 20: Cumulative Gain chart

References
 www.jupyter.org. (n.d.). Project Jupyter. [online] Available at: https://jupyter.org/about.

Calybre.global. (2024). Feature Selection: Exploring Correlation with Labelled Instances.

[online] Available at: https://www.calybre.global/post/feature-selection-exploring-correlation-

with-labelled-instances.

Brownlee, J. (2020). SMOTE for Imbalanced Classification with Python. [online] Machine

Learning Mastery. Available at: https://machinelearningmastery.com/smote-oversampling-

for-imbalanced-classification/.

GeeksForGeeks (2018). Confusion Matrix in Machine Learning - GeeksforGeeks. [online]

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/confusion-matrix-machine-

learning/.

https://jupyter.org/about
https://www.calybre.global/post/feature-selection-exploring-correlation-with-labelled-instances
https://www.calybre.global/post/feature-selection-exploring-correlation-with-labelled-instances
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/

