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1. Introduction 
This configuration outlines the experimental setup, tools, and processes used to implement the MLP-

GRU hybrid model for malicious software detection. The MLP handles static feature analysis, while 

the GRU focuses on sequential patterns, improving detection accuracy and robustness. There are a total 

of five sections in which section two provides the experimental setup and section three and four provides 

the Implementation and Data preprocessing steps. Finally, it concludes with MLP-GRU architecture in 

section five.  

2. Experimental Setup 
a. Hardware Requirements: 

• Processor: Minimum Quad-core (AMD Ryzen 7 or Intel i7) 

• RAM: At least 16 GB 

• Graphics: Optional for model acceleration using GPU (e.g., NVIDIA RTX 3060 or above) 

b. Software Requirements: 

• Operating System: Windows 10, 22H2 or equivalent 

• Python Version: Python 3.9.13 

• IDE: Jupyter Notebook (v6.4.12) 

• Frameworks: TensorFlow 2.4 or newer, Scikit-learn, Pandas, Numpy, Matplotlib, Seaborn 

The service provided by Jupyter is web-based because it is developed as an open source on the 

foundation of web open standards, and it is free (www.jupyter.org, n.d.). This feature allows it 

to support the most popular programming languages and facilitate diverse and renovative 

development. 

 
 

                    Figure 1: Python Version used in Jupyter Notebook. 

 

 

3. Implementation 
Step 1 : Anaconda was successfully downloaded and configured in this step.  
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Step 2: FN Control Center was configured and started Serving, Jupyter Notebook was set up 

and launched. 
  

 

 
 

 

                               Figure 2 : The home page of Jupyter Notebook. 

 

 

Step 3 : The dataset is to be downloaded online. 
https://www.kaggle.com/datasets/bansalaarushi/malware-dataset 
Step 4 : The essentials libraries related to Jupyter Notebook for any file execution should 

require the following the list; pandas, Tenserflow , numpy, time, scikit-learn, Matplotlib 

Seaborn and so on.  

 

Step 5 : This part of the code importing the libraries for Machine Learning algorithms. 

 

           
 

                                                  Figure 3: Importing Basic Libraries  
 
 
 

https://www.kaggle.com/datasets/bansalaarushi/malware-dataset
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4. Dataset Preparation 
Step 6: Dataset Acquisition 

 Acquire a properly labelled dataset with two kinds of attributes – binary file pattern and 

sequential system call. Filter the data and select both healthy and unhealthy digital images for 

the deep learning algorithm. 

 

 
         Figure 4: Data Preparation 

 

 

 

Step 7: Preprocessing Steps 

1. Data Cleaning: 

• Eliminate any row with multiple or no instance. 

• Normalize an object label feature using the Label Encoding (for instance, ip.src, 

ip.dst).  

 

 
 

                      Figure 5: Data frame Column Cleaning and Analysis 
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                      Figure 6: Handling Missing Values and Duplicates 

 

 

 
Figure 7: Category Distribution Visualization 

 

 

 

Step 8: This gives the number of times each label appears in the category encoded column of 

a Data Frame. It then visualises this distribution using a bar chart which often gives a good 

glimpse of the scaled nature of the class in the dataset. 

 

Step 9: Feature Engineering: 

o Correlation analysis to remove several features that are closely associated with 

other features and thus very redundant (Calybre.global, 2024). 

o It has been recommended to use maps such as the heat map to determine the 

connection. 
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           Feature Scaling 

            

           Balance the dataset 

 

 
 

Figure 8: Feature Scaling 

 

 

 

 
                  Figure 9: Data Balancing and Feature Scaling Process 
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Step 10: They work to minimize the class imbalance problem by aggregating minority classes 

into one and using SMOTE to oversample the new class (Brownlee, 2020). Then, it scales the 

features to enhance the model performance in the Figure. 10 below. The last thing in this 

process is to ensure that class distribution is not skewed after the above two transformations. 

 

Step 11: Normalization: 

o Standard scaling, this makes sure that all the features are on the same scale as 

those of the other. 

 
 
     

 
 

                 Figure 10: Normalized Data Table 
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5. MLP-GRU Model Architecture  
Step 12: Component of MLP for Static Analysis  

• Input Layer: They later restore neuron count with respect to the count of features.  

• Hidden Layers: Euclidean distance with output from the fully connected to the next 

layer activation ReLU. 

• Output Layer: It also embeds intermediate feature representation.  

Step 13: These sequence analyses include the use of the GRU Component for Sequential 

Analysis.  

• Input Layer: Sequential time-series data.  

• GRU Layer: To model temporal features on the data, we use Gated Recurrent Units 

with 64. 

• Dropout Layer: Prevent overfitting.  

Step 14: Concatenation Layer In this study, MLP and GRU output vectors are combined to 

extract a final output vector for the prediction. 

Step 15: Output Layer Dense Layer: softmax if there is more than one output class or sigmoid 

if there are only two output classes. 
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Figure 11: Model Architecture   
 
 
 

 
 Figure 12: Model Training  

Step 16: The training data set was performed for 10 iterations. The training process was 

implemented using a validation data set and the final test of the trained model was 

conducted using the test data set. 

 

  

 
 

Figure 13: Model Accuracy and Model Loss 

Step 17: This kind of model was trained and tested on a dataset. Model’s performance was 

evaluated by training and validation datasets. The accuracy and loss functions were trained 

and validated for 10 epoch. There is the final test loss and accuracy that was produced as 

0.0327 and 0.9940, respectively. 
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Figure 14: Confusion Matrix  

 

 

 

Step 18: The confusion matrix summary of true positive ‘TP’, true negative ‘TN’, false positive 

‘FP’ and false negative ‘FN’ made in each of the one class (GeeksForGeeks, 2018). The 

confusion matrix shows the number of true positive, true negative, false positive, and false 

negative predictions for each 1 class.   

 

 
                                              Figure 15: Classification Report 

 

Step 19: It provides a means to assess the quality of a multi-class classification model through 

a classification report. This can print out in precision, recall, F1-score and support; for each 

class; accuracy, Macro average, Weighted average 1. 
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Figure 16: ROC-AUC Curve 

 

Step 20: In a multi-class classification problem, the code also provides an ROC curve for each 

class while not necessarily in a single form indicating all the true positives, all the false 

positives and so on. For class level performance, it computes the Area Under the Curve (AUC) 

because it represents the model performance for that particular class.  

 

 

 
 

Figure 17: Actual vs Predicted Labels for Sample Test Data 
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Figure 18: Precision- Recall Curve 

 

Step 21: In the case of handling multi-class classification problems, the code computes F1-

score for every class. The F1 score is the harmonic meaning of the precision and the recall 

rates; thus, it accomplishes offering a good balance of the model for each of the classes. The 

calculated F1-scores are then presented in the form of a bar graph for convenience of the 

comparison of the model’s performance across classes. 

 

 
 

                                                Figure 19: F-1 Score 

 

Step 22: The code creates an important performance metric called Cumulative Gain Chart of 

a classification model. It just sorts the samples from the probability perspective and then 

compares the cumulative gain to a curve and baseline. The Cumulative Gain Chart makes it 

possible to seize how effectively the model is at finding the relevant samples to its order 

compared to the research or the other models that selected samples randomly. 
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                                     Figure 20: Cumulative Gain chart 
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