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Abstract 

 

The paper introduces the MLP-GRU model for detecting malware from two aspects, the MLP for 

network statics and the GRU for sequences analysis. The purpose is to increase the number of 

detections, minimize false positives, and increase workability for real-time and mass detection. 

Through the model, 99.4 % of classification was made, faster training particularly for big data, and 

better detection than existing models such as – Decision trees, SVM, and CNN. Two criteria, 

requirements and class imbalance, are met while building the model. For future work, the focus 

should be made on scalability, the training of the algorithm for optimization, as well as the application 

of transfer learning and automated feature engineering. 

 

1 Introduction 

1.1 Research Background 

Malware is a short term of malicious software describing any kind of software designed with 

malicious intent toward the computer systems, networks, or users (Singh and Singh, 2020). 

Over time, malware has come in various forms, each with a different attack mechanism and 

impact. There are common types, which include viruses, worms and trojans. Every type of 

malware has different risks ranging from data theft, corrupting the system, violation of privacy, 

and loss of money (John Oluwafemi Ogun, 2024). Attackers have leveraged artificial 

intelligence, machine learning, and advanced encryption that makes it challenging to be 

detected and maximize the attack. In this scenario, effective malware detection became the 

prerequisite of cybersecurity (Ozkan-Okay et al., 2024). Furthermore, malware attack causes 

direct and indirect losses such as; financial losses, leakage of information, privacy 

infringement, and embarrassment of national security. Traditional detection techniques rely 

heavily on signature detection methods where known malware is scanned through the 

comparison of code patterns or signatures held in a database (M. and Sethuraman, 2023). 

Heuristic and anomaly-based approaches tend to generalize poorly: while attempting not to 

miss subtle malware behaviors, they either overfit some malicious patterns-for instance, where 

this indicates a decrease in the effectiveness of these approaches across different malware 

varieties (Albakri et al., 2023).  
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1.2 Problem Definition 

The more advanced malware threats are, the more feasible, elastic, and efficient ML-based 

methods are for detecting and corresponding to the threats in a real-word environment 

(Hossain and Islam, 2024). Another major challenge thus arises in connection with the 

constant update of datasets which contain data on the new malware that are being created. 

The promising approach to cybersecurity that is particularly relevant for malware detection is 

deep learning algorithms because it can able to capture dynamic and intricate behaviors that 

commonly apply to malicious activities (Qureshi et al., 2024). In malware detection, CNNs 

are applied to the binary representation of files where the files are treated as an image to 

identify structural patterns that might signify malware. However, in most scenarios, CNNs 

are not very suitable for tasks that should perform an analysis of data in sequence; in most 

malware detection this does not apply (Zhao et al., 2023). Malware can have specific 

characteristics and remarks for particular time or their sequence, for instance, system calls or 

network traffic. To address the sequence modeling need in malware detection, quite often, 

Recurrent Neural Networks are used. However, traditional RNNs suffer from the vanishing 

gradient problem in that the gradients shrink exponentially down a long sequence and are not 

capable of back-propagating sufficiently far for the model to be able to learn the 

dependencies along significant parts of the sequence. This is because of the limitation that 

results from the vanishing gradient problem which makes standard RNNs less effective. The 

MLP is a feedforward category of Neutral Network that consists of one or several layers of 

nodes which are completely connected and used in learning complex patterns in data. In 

malware detection, MLPs are employed to look for static patterns that may be inherent in the 

files and may indicate that malware executes (Hakim et al., 2024). On the other hand, even 

though MLPs dominate static feature detection in malware scenarios, they have a few 

boundaries. MLP, combined with models suited to time-dependent data, like Gated Recurrent 

Units (GRUs), may give a more comprehensive and robust defense against different kinds of 

malware threats because MLP deals with static analysis while other models capture the 

dynamic behaviours. Gated Recurrent Units (GRUs) is an extension of Recurrent Neural 

Networks created with the challenges in capturing long-range dependencies within sequential 

data (Som et al., 2021). 

Research Question 1. What is an effective approach to enhance malware detection systems 

using an MLP-GRU model that combines static pattern recognition with sequential data 

behavior analysis 

The MLP-GRU model would be the most promising way of developing better mechanisms for 

malware detection: which means both static and dynamic analysis together would be more 

effective. The perceptions of the Multi Layer Perceptron part of the model are reliable in 

discerning the time invariants of the structural components or characteristics that are intrinsic 

to a pattern drawn from a malware file. Therefore, such static analysis appears to be a 

reasonable starting point for the identification of fundamental characteristics of malicious 

software. The component GRU solves a limitation of the staking techniques, to model 

sequential dependency and the kind of time-dependent behavior as evolvable malware activity. 
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From the mentioned perspective, MLP-GRU treats the two methodologies; MLP-GRU has 

dynamic sequence models like GRU put into it and in particular from those views. This 

compound scheme increases the efficiency of detection, flexibility, and redundancy to let the 

system detect and fight different types of malware in real-time. In the proposed paper a novel 

method of malware detection has been introduced which used MLP and GRU techniques 

together at one place which enhance the accuracy of the system as well as its stability. Within 

this context, the MLP can identify patterns that do not change inside a specific sample of 

malware, while GRU is employed in verifying states or behaviors through time. Based on the 

above incorporation through the integrated concatenation layer, the proposed model constructs 

a complete and extensible detection system that can effectively address the problem brought 

by polymorphic and dynamic malwares. The contributions include. 

• A hybrid MLP-GRU model that combines static and sequential analysis for better 

malware detection. 

• The malware detection systems should be robust and more adaptive to polymorphic and 

dynamic malware. 

• Producing a comprehensive framework of classification with low false positives and 

high detection accuracy 

Motivation of the Research: 

The motivation for this research is due to the fact that malware is becoming increasingly 

complex, adaptive, and difficult for traditional detection methods to cater to. Using a hybrid 

model of MLP-GRU, this study aims for static and dynamic analysis into a robust, adaptive, 

yet accurate malware detection. These techniques are being used toward improving 

cybersecurity systems, lessening false positives, with an efficient counter to polymorphism and 

time-dependent malware attacks. 

The remaining of the paper is as follows; Section 1 discusses the research context of malware 

detection in Cybersecurity. Section 2 discusses the related work accordingly regarding malware 

detection. Section 3 proposed the details of the used dataset, and methodology, such as 

implementing the integrated MLP-GRU model that is being discussed in this paper. Section 5 

provides the implementation process and in Section 6 focuses on evaluation criteria applied. 

Section 7, consists of the overall conclusion of the study; the research limitations; and 

suggestion for further research. 

2 Related Work 

2.1 Machine Learning and Deep Learning Approaches in Malware 

Detection 

Malware is seen as one of the biggest threats posed by usage of the internet by users 

today. Polymorphic malware is more versatile than the earlier forms of malware because it is 
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the third generation of the malware. It adapts this aspect at any one time camouflaging over its 

relied on key characteristics over a set period using standard signature-based approaches.  

(Akhtar and Feng, 2022) compared different machine learning methods to identify 

malware and security threats. They discovered that the greatest approach with excellent results 

was one that incorporated a confusion matrix to differentiate between the false positive and 

false negative. They stressed the necessity for tracking and recognizing aggressive procedures 

on a computer network, in order to enhance its safety. The researchers applied correlation 

integrals of Machine Learning algorithm such as Naïve Bayes, SVM, J48 and Random Forest 

(RF and their method helps them to classify the malicious traffic in a more efficient manner. 

The classifiers applied in this study were DT, CNN, and SVM and the detection accuracy was 

99%, 98.76% and 96.41% respectively. However, the study is not without limitations that 

include limited data sources available for collection, assessment of only static measures, which 

are different from the dynamic problems that can be experienced in real life. Such additional 

elements as dynamic analysis and others may contribute to the increased flexibility and the 

more stable work of the system. In the study conducted by Acharya et al., (Acharya et al., 2021)  

outlined solution employing the Random Forest (RF) for the file classification and 

identification of the malicious files; signature matching for virus identification and the logistic 

regression for URL classification. The means of protection is overall based on the combination 

of measures used by the program but does not allow for versatile protection against different 

versions of malicious software. Greater model diversity and a dynamic analysis approach could 

help also system stability when threats appear as evolving over time. 

Benign traffic is structured as symmetric, while malicious traffic is the opposite. With 

artificial intelligence methods it is possible to recognize and distinguish between different type 

of activities, namely, hostile ones and the legitimate ones. Alomari et al. (2023) suggest a stable 

malware detection model based on deep learning feature selection. Using two data sets they 

can distinguish between illicit and non-illicit activities happening in a network. This work seeks 

to apply dense layers and LSTMs in training deep learning models with the performance 

depending on the datasets employed. Nevertheless, the work lacks analysis of various malware 

types, as it considers the basics of these entities’ identification. More specifically, the future 

research of the presented work can continue from where it left off, which involves considering 

different categories of malware and evaluating the effect that the feature selection had on the 

actual behavior of the malware samples. In another model for malware detection was proposed 

by Jeon and Moon (Jeon and Moon, 2020) where they use opcode sequences and a 

convolutional recurrent neural network. The model takes as input opcode sequences, and it 

extracts them from executables. The model performs well, passing 96% for malware; AUC of 

0.99 and TPR of 95%. However, the given solution might not cover some aspects of malware 

features or might not have efficient solution for obfuscation problem. The same can also be 

said about assessment of the study’s effectiveness using various real datasets. For future work, 

better adversarial examples against obfuscation should be explored and development of models 

should extend to a more diverse dataset. 
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Similarly, Jha et al., (Jha et al., 2020)  presents a new prognosis method called RNN 

for malware identification. The study examined an RNN with a directed graphical structure as 

well as the capacity to process temporal sequences. The study revealed that step size affects 

the classification results in a meaningful way. The Word2Vec feature vector, with Skip-gram 

architecture was seen to be even more efficient and stable having higher AUC and variance. 

However, the study has some limitations including excluding dynamic malware features and 

slow analysis for new threats. It is concluded that with dynamic analysis and real-life situations 

applied, the model would be more effective and stronger. The authors Oliveira and Sassi 

(Oliveira and Sassi, 2023) introduced a new approach to malware detectors using Direct 

Learning from API call sequences and behavioral graphs using Deep Graph Convolutional 

Neural Networks (DGCNNs). The performance of models based on DGCNN is slightly lower 

than LSTM but not dramatically, and the presence of a graph structure of API call sequences 

is critical for identifying malicious programs. In the future studies will estimate extended 

architectures and classify the malware into different sets according to the API call sequences 

and the corresponding behavioural graphs. 

The study of (Lu et al., 2020) revealed that a real-world image classification utilizing both 

deep belief networks, the DBN with the incorporation of the GRU has been in the development 

to address the goal of Android malware. This method has been determined to have a higher 

accuracy as compared to other deep learning methods that was used before. The authors also 

mentioned that for detecting viruses in the Android platform, a deep network hybrid 

architecture was proposed was stimulated by the effectiveness of deep learning procedures in 

the tasks of feature representation learning. In another study conducted by Rimon and Haque 

(Rimon and Haque, 2022) by extracted and classified the feature and malware using the mixed 

deep learning approach. The hybrid method that that was used alongside the back propagation 

method with the addition of particle swarm optimization was accurate and required very little 

computation.  

In the research done by (Chaganti, Ravi & Pham, 2022) introduces the DL malware 

classification and detection using Bi-GRU-CNN and the RNN for IoTs. The proposed approach 

was able to accurately detect malware at 100% while accurate classification of the malware 

families at 98%. The model was also very stable and platform independent and despite such 

complex input features such as byte sequences and CPU types it performed as an ideal. 

However, some essential classes of malware families were represented and not classified 

because of imbalanced databases. The results obtained from the model are contrasted with 

another model. There are many research works based on the anomaly malware detection in a 

similar way, the authors (Ullah, Mahmoud, 2022) suggested the anomaly detection which we 

proposed to be flow and flag features for the IoT networks, by employing the Feed-Forward 

neural network in the Limbic region. In which various types of network flow features are 

analyzed. The current research focus is directed to design and development detection of 

building emphasizing the importance of building design. system which is used to identify and 

detect the feasible and possible abhorrent activities for the IoT networks with the help of Feed-

Forward. Neural work that is built on the executive flow and flag features. The additional 

search of this paper was to enhance the accuracy for the ML/DL. algorithms for the efficient 
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malware detection for SVM, NB, ANN, DT. The other proposal for the actual paper is Binary 

Classification and Multiclassification and with designed Random Forest Algorithm. 

The approaches to mitigate the effects of Malware are also described in the research paper 

(Usman er al., 2021) as applied to the Malware IP problems and solution through CTI, Machine 

learning, Dynamic malware analysis and data forensics are also highlighted. He uses it to 

compare different machine learning approaches to get precision recall and a better f-measure. 

Decision tree techniques are better since analysis is inclusive and the percentage prediction is 

93.5%. Real time analysis matches samples that cannot be recovered due to memory tampering, 

estimating professional variants deployed by malware. This brief includes the malware, 

dynamic, static, and family classification of analysis, evaluating the risk factors of the frequent 

malicious behavior as well as the observed behavior based on the paper. The findings of this 

study recommend implementing Kill Chain methodology for internal and external data after 

classification through machine learning malware detectors. In the study conducted by (Taheri 

et al.,2020) uses hamming distance to detect malware behavior. The results show that 

classifiers perform better than other algorithms, with a 90% higher accuracy rate than existing 

state-of-the-art solutions. The authors also propose a new system called Anastasia for 

identifying malicious samples through API features and system command. The study validates 

algorithms and proposes KNN-based solutions for malware detection. 

(Yang, Zhao & Zeng, 2019) therefore developed a proposal for a model that embodied 

deep learning. algorithm, and in addition, the proposed approach also provided 

multidimensional features for the URLs. CNN Long This model was developed using Short-

Term Memory Network algorithm. The model proposed comprised three which are the feature 

extraction, all the features were embedded and lastly the classification of the features. Then 

there is identification of relevant features, followed by the detection and further classification 

of the URLs. The results produced more precision against more standard computer learning 

methodologies and techniques. The false positive was also reduced in the model because of 

utilization of multidimensional features. In this paper, (Mustafa Majid  et al., 2021) introduce 

what malware is and with it acknowledges the need for better methods of the effectiveness of 

malware detection using the AI and ML. They used the 3 algorithms of Convoluted 

Convolutional Neural Networks (CNN), Recurrent Neural Networks especially LSTM and 

auto encoders. Their research discusses Malware detection on Android OS, and they discuss 

how these 3 algorithms can be applied in order to detect malware. Their future scope asserted 

that auto encoders can have the most significant amount. promise as time goes by. The research 

performed by (Hadiprakoso, Buana and Pramadi, 2020) utilized the hybrid methodology in 

which they used static and dynamic features. They compared the deep neural network model 

with the models which were trained using machine learning such as Random Forest, SVM and 

Naïve bayes. They used two different models in deep learning such as DNN-S and DNN-D. 

Their research achieved higher accuracy compared to other machine learning models. 

These reviewed papers present the advancement and issues of using machine learning and 

deep learning for the detection of malware. They demonstrate the importance of proper and 

creative approaches in the case of polymorphic malware. Several models and algorisms were 
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suggested including Random Forest, Naïve Bayes, Support Vector Machines, CNN, Recurrent 

Neural Networks and others are quite effective. From the findings of the study, techniques in 

the category of ML and DL may help enhance detection accuracy by about over 99 % precision. 

Yet there are still problems: small sets of samples for training, or non-stationary nature of 

malware activity. For these challenges, future studies should embrace multitype data, dynamic 

study, and improved adversaries while handling the mentioned problems. Thus, the study 

establishes that incorporation of dynamic and hybrid approaches, effective feature selection 

improvement, and sound adversarial techniques hold the key to improving malware detection. 

3 Research Methodology 

The approach for this research paper employs and combines deep learning, improving the 

efficiency and reliability of typical malware detection systems. The proposed architecture is a 

configurable one and it combines a Multilayer Perceptron (MLP) as a static domain processing 

module with Gated Recurrent Unit (GRU) as a sequential processing component. The process 

starts with data collection followed by preprocessing of data which includes data cleaning and 

normalization to ensure the quality and consistency of the input data. The MLP learns high-

semantic level representations of static attributes, and the GRU captures temporal behaviors of 

sequential samples, providing substantial insights into the malware samples. These outputs are 

then combined through a concatenation layer, and then classify directly for the final prediction. 

The architecture of MLP-GRU is depicted in Figure.1. 

 

                                            Figure 1: Architecture of MLP-GRU 

3.1 Malware Detection-Data Collection 

The malware dataset is obtained of Kaggle dataset. It is specifically aimed for malware 

classification and detection related researches. It comprises a set of encoded and marked 

malicious programs and their descriptors for recognition and assignment into specific 
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categories. These data points can be beneficial for machine learning tasks being related to 

cybersecurity and threats identification. 

3.2 Data Pre-Processing 

Data pre-processing is a process of selecting the data and preparing it for further analysis and 

data modelling. In other words, the main objectives are to eliminate the noisy data, meaning 

that it has to be refined and synchronized with other sources of data, its quality has to be 

improved and it has to be made ready for algorithms and models. Preprocessing, therefore, 

holds a significant contribution to the enhancements of the subsequently applied deep 

learning models. Record processing is defined as dealing with issues of missing 

characteristics, existence of duplicate records, and erroneous records. It can be filled using 

mean, median, mode imputation or some of the row with many missing value can be omitted. 

Such values are ‘ROW 1, ROW 2’ which are usually due to inefficiency in the structure or 

duplication of rows that reduces the efficiency of results or just provide unnecessary copies of 

data. Normalization is a process of making the values of variables pertaining to flow duration 

and packet rates of continuous data types have a value between 0 and one. This is very 

important in order not to end up with a situation where you have few features with large 

scales while other relatively small features are overshadowed in the model. 

3.3 Feature extraction using MLP 

An MLP stands for Multi-Layer Perceptron and this is a feed forward neural network which 

consists of many layers and contains all sort of connection that is from each neuron of the one 

layer to all neurons in the next layer. With respect to the data set input to the FNN, the 

construction of the MLP is designed for the learning of non-sequential static aspects of the 

dataset. The first type of flow features is static and does not depend on time or sequence 

(flow duration, total packets). These features are then put through a fully connected neural 

network which I will describe in the next section. In this case, the developed MLP is to 

explore the features which are extracted from the initial networks (such as flow duration and 

the count of packets & header length). 

Input Layer: The input layer defines the characteristics of the dataset, the protocol being the 

total forward packets, flow duration and other traffic. The input layers take static features of a 

dataset. 

Hidden Layers: In Hidden Layer, one or more layers are determined for implementing certain 

input features. In this case, every of these hidden layers consists of many neurons that calculate 

a weighted sum of their inputs along with an activation function that adds nonlinearity. About 

ReLU activation: ReLU activation removes linearity so that the network has the ability to learn 

complex patterns. 

Output Layer: The output layer in the last of neural net and machine learning will provide the 

classification. If binary classification is applied for example malware and benign then the 

output will be between 0 and 1 by applying Sigmoid function. In the case of multi-class 
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classification, it will predict a probability distribution of multiple class by using the SoftMax 

activation. In the MLP, each layer analyzes the input raw network traffic data in a manner that 

increasingly defines and refines its input data into increasingly abstract functions. 

3.4 GRU for Temporal Analysis 

A type of Recurrent Neural Network, GRU is targeted at sequential or time-series data that 

normally exhibits temporal dependencies. It captures patterns and trends over time as malware 

behaviour does the same dynamically from bursts of activity or irregular packet patterns in a 

sequence of network traffic. The Update Gate and Reset Gate are the two major gates of the 

GRU. These gates control the information input and output, and so the information can be kept 

or reset according to what is read into the GRU. 

Update Gate: This gate will define how much of the past information is to be retained in the 

present. If the information is relevant to a past state, it maintains it; otherwise, it doesn’t 

consider it. Thus, it assists the GRUs in bearing some relevant information about the past 

network traffic, which might portray some anomaly. 

Reset Gate: Some cells are connected to a reset gate that determines how much influence the 

past state should exert on the coming state calculation. It helps the model to forget unnecessary 

previous data, and therefore, pay attention to the current data. This assists in the development 

of rapid traffic spikes on a network which might be a sign of a possible break-out of malware. 

The Candidate Hidden State: The candidate hidden state, which is the new 

state derived by combining the current input and the reset gate's influence on the previous 

hidden state to assist the GRU make rational prediction. It seems to be in some way a suggestion 

as to what the next state should be. 

The main advantage of GRU is that it is good at capturing long sequences of inputs, making it 

efficient at detecting changes in malware behaviour over time. 

3.5 Combination of MLP and GRU 

To integrate the advantage of feature extraction and temporal behaviour capturing, the output 

features of MLPs and GRUs are optimized using a concatenation layer. This MLP, which looks 

at the static features of the input data returns a feature vector that represents high level non 

temporal characteristics. On the other hand, the temporal dependencies from the sequential 

nature of the data are captured by the GRU, which are important in capturing dynamic 

behaviours such as the activity of the malware over time. In the end the output of the MLP and 

GRU are concatenated into a single feature vector. In here, concatenating the outputs of the 

MLP and GRU models to form one large set of features. This combination enables the system 

to consider both static and temporal features while deciding. These combined features are 

useful in order to classify the software as malware or benign. 

4 Design Specification  
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The tools that are presented in this context will be implemented ad hoc to achieve the purposes 

of the research and without needing particular hardware and software requisites. For the 

compulsory hardware requirements, there is an expectation of a minimum quad-core processor, 

including either AMD Ryzen 7 or Intel i7 processor, the RAM should be at least 16 GB and an 

optional Graphic Processing Unit such as NVIDIA RTX 3060 or higher to enhance the result 

of model training. On the software side, the operating system, on which the system is built, is 

Windows 10 (22H2 or any higher version), and Python version 3.9.13 as the programming 

language. Jupyter Notebook (v6.4.12) acts as the IDE in this work, as is a web application 

based on open-source web technologies that support numerous programming languages for 

adaptable and creative development. Other important frameworks and libraries applied are 

TensorFlow ≥ 2.4 for deep learning and Scikit-learn for machine learning, and Pandas, Numpy, 

Matplotlib, Seaborn for data handling, computation and data visualization respectively. 

Combining the hardware and software allows for the creation of a stable basis for the 

implementation, analysis and optimization of the implemented models of the experiment. 

5 Implementation 
 

The procedure of creating and using the malware detection system is as follows: 

environment, where Anaconda was downloaded and configured, the FN Control Center was 

launched together with Jupyter Notebook. The data preprocessing includes the downloading a 

labeled Malware Dataset, necessarily implemented libraries like pandas, NumPy, 

TensorFlow, scikit-learn, matplotlib, seaborn and other tools. The first step of the analysis is 

the data collection where one ensures that the collected data has training data. 

 

 The second process is data preprocessing where data cleaning is done by eliminating rows 

with more than one instance or none at all, using Label Encoding to normalize object label 

features, handling missing values and eliminating duplicate entries. This step also involves 

using bar charts for category distribution and using encoding labels for frequency counts. 

This operation is then followed by feature engineering, which involves using heat maps for 

correlation analysis to eliminate such features, feature scaling to normalize the ranges of such 

features, and merging of the minority classes together, and SMOTE to oversample such 

classes. The process of feature scaling and normalization makes analysis consistent and 

ensures that all features are of similar magnitude thus making the model perform well.  

Model architecture consists of two main components: for this, I designed an MLP for static 

analysis and a GRU for sequential analysis. The MLP input layer has neurons equal to the 

feature count; hidden layers are fully connected efficiency with ReLU activation; the last stage 

is the output layer in which MLP maps intermediate feature representation. The GRU 

component takes sequential input and passes it through 64 GRU units and has the added bonus 

of a dropout layer to stop overfitting. The final layer joining MLP and the output vector of 

GRU. The final layer oxide used is SoftMax for multi-class classifications whereas binary use 

oxide uses sigmoid. When doing the final model training it then proceeded with 10 fold cross 

validation process, and then split the data into training, validation and test data. In the 10th 

epoch, training is carried out with a test loss of 0.0327 and an accuracy of 99.40%, which 

supports a prediction dominance model. The actual and detailed results of the classification 
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report provide such detail outcomes including the precision, recall and F1 Score of each of the 

class as well as support with the macro average and the weighted average. Therefore, I utilize 

the ROC-AUC curve for plotting the performance of the model in its classification between 

two classes and F1-score in a form of a bar chart. Finally, prior to model selection, a 

Cumulative Gain Chart is drawn again to verify the model's proficiency in identifying relevant 

samples better than random selection providing a third instance of confidence.  

Altogether, the developed MLP-GRU model is effective in malware detection due to its 

modular architecture, extraction of static and sequential feature vector, feature engineering, 

data preprocessing, balancing approach, and the proposed model evaluation plan discussed in 

this paper.  

6 Evaluation 

 
  Thus, this research confirms that employing the suggested MLP-GRU model as the 

classification method is more effective in improving the classification rates and useful in 

addressing imbalanced data sets than conventional models. Basic criterion, namely accuracy, 

precision as well as recall and F1-score where used to verify the validity of the proposed 

model, as well as its comparison with traditional approaches. Such finely tuned combinations 

as MLP-GRU are depicted from these results to be efficient for such complex operations as 

classification procedures. In addition, generalization capability of the model when coupled 

with the fact that the class distribution is skewed towards one class in real life makes the 

model very useful. Those crucial factors including scalability, the computational 

performance, and model interpretability are a basis for further research directions for making 

effective predictive machine learning models. The comparison of the proposed method with 

more traditional methods is discussed in order to pinpoint the potential of the MLP-GRU 

model for improved classification of the dataset and the remedy of the problem of the 

dataset’s imbalance. 

6.1 Class Distribution 

 

Figure.2 represents the distribution of a class for the data set. Here the x-axis denotes five 

classes of which the class label are represented as 0, 1, 2, 3 and 4 respectively. The y-axis on 

the content is the frequency and this indicates the number of items that were in a particular 

class. In this case, class 1 evidently dominates the majority of the distribution shares with a 

hyper-frequent frequency value more than 800,000. Another evidence drawn from the plot is 

that the other classes are way much fewer.” Class 0 is detected as the second most frequently, 

while classes 2, 3, and 4, however, frequent approximately as Classes 2, 3, and 4. This again 

is a good pointer that it goes with a high majority from Class 1 and from the other classes a 

few. This can become an issue in the task of machine learning; to handle class imbalance 

typically techniques such as oversampling, undersampling, or the use of weighted loss 

functions need to be employed to balance performances of all classes in the model. 
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                            Figure 2: Class Distribution 

The Figure 3, titled "Class Distribution After Down sampling" presents the class distribution 

of the five classes, Category 0, Category 1, Category 2, Category 3, and Category 4, following 

the application of down sampling. Each category is represented by a certain colour: blue for 

Category 0, orange for Category 1, green for Category 2, red for Category 3, and purple for 

Category 4. About 250,000 counts for each type is shown on the y-axis. This act of down 

sampling prevented a bias in any model concerning specific categories. Such equilibration 

reached makes it able to make equally good inferences on all such categories; thus, its 

predictions would be more precise and fair-minded. 

 

                      Figure 3:  Class Distribution After Downsampling 

The Figure 4, Model Accuracy shows the performance of a model in percentage for 10 epochs 

or rounds of training. The x-axis represents the number of epochs, or training iterations, while 

the y-axis measures the model's accuracy, indicating its performance. The graph features two 

distinct lines: Training accuracy is plotted in blue line whereas the validation accuracy is 

plotted in orange line. The training accuracy initially is about 0.965 and gradually increases 

throughout to touch 0.990 plus by the 10th epoch. On the other hand, validation accuracy starts 

form as high as 0.990 and gradually increases to just below 0.995 at last epoch. This trend 
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reveals that an increase in the training accuracy coupled with a concomitant increase in the 

validation accuracy indicates a good model learning and validation. Surprisingly, there is still 

a little difference between the validation accuracy and the training accuracy over the epochs 

and this means that the model does not fully memorize the data and is unused on unseen data. 

 

                               Figure 4: Model Accuracy 

The Figure 5, graph titled “Model Loss” shows the training and validation loss of a model in 

10 epochs of deep learning. The horizontal axis refers to epochs while the vertical axis 

illustrates loss and is between 0.00 and 0.14. The first y-axis blue line corresponds to the 

training loss starting from 0.13 which quickly drops down to 0.04 in the second epoch. The 

orange line of graph indicates the validation loss commences from 0.04 and does not fluctuate 

much just has a slight drop which is always below the training loss. This shows that the model 

is capable of learning the data well and at the same time, is capable of performing well on new 

data without getting mislead by noise. 

 

                    Figure 5: Model Loss 

The Figure. 6, confusion matrix measures the efficiency of a classification algorithm relative 

to five classes (0–4). Indeed, most of the predictions reflect the true labels, which can be seen 

by off-diagonal elements (54,242 for Class 0 and 54,415 for Class 1). There are very few 
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misclassifications, for example, 792 samples misclassified to Class 1 instead of True Label 3 

and 52 samples to Class 4 instead of True Label 3. The off-diagonal values crossing the 

diagonal are low and this proves the capability of the model in correct classification and the 

matrix also suggests the areas to be improved with identifying the right misclassifications. 

 

            Figure 6: Confusion Matrix 

The ROC-AUC graph of the multi-class also classifies the specimens according to the 

performance of the classification tests in five classes (0–4). Both classes obtain confusion 

matrix values and Area Under the Curve (AUC) with 1.00, representing remarkable 

classification performance. This curves also show a very good trade off between the true 

positive rate and false positive for all classes, indicating the good ability of the model in class 

separation. It is depicted in Figure 7, 

 

                                             Figure 7: ROC-AUC Graph 
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The Figure 8, shows the curve of Precision with Recall measures the configuration 

effectiveness for five classes of 0–4. The receiver operating characteristics (ROC) are close to 

ideal, Class 0, Class 2, Class 4 having an AUC = 1, Class 1 and Class 3 having an AUC = 0.99. 

These curves reveal the high precision maintained by the model when the recall is varied, which 

is a great degree of classification in between classes. As seen from the nearly flat curves, the 

experiments give high classification accuracy, with little to no price in terms of precision and 

recall. 

 

                                 Figure 8: Precision- Recall Graph 

The Figure 9, shown below is called F1-Score by Class which denotes the F1-scores of five 

classes (0 to 4). All classes have a perfect score represented by the value of F1-score equals to 

1. This means that the study shows that the classification model has a good precision and recall 

ratio for all the classes. An ideal F1-score of all classes indicates the model has a high level of 

accuracy, moreover, the model generalizes well to the dataset. 

 

                                      Figure 9: F1-ScoreGraph 



16 
 

 

The Figure 10, shows “Cumulative Gains Chart” analyses the model’s performance in the 

correct placement of the positive cases. The x-axis is created with the amount of samples use 

in the successive runs while the y-axis reflects the proportion of positive samples achieved. 

The chart includes two lines: The two metrics include; the Cumulative Gain Curve (blue) that 

climbs sharply to the right suggesting that in the early ranks the model identifies the majority 

of positive cases and hence is positive and the Baseline (Red dashed line) implying on the other 

end that it is a random model. The fact that blue curve rises steeply above base line indicates 

the model has high positive predicting ability, meaning, the model is far better than random 

selection of positive instances. 

 

                       Figure 10: Cumulative Gains Chart 

The Table 1, shows the evaluation of model performances shows that the accuracy of the 

Proposed MLP-GRU model is the highest, 99.4%. Classification report shows that Support 

Vector Machine (SVM) leads by acquiring a 99.32% accuracy score, followed by Decision 

Tree (DT) with a 99%, and last is CNN with 98.76%. The SVM and DRNN methods presents 

little lower accuracy of 96.41% and 96% respectively. Figure 11, depicts the MLP-GRU model 

proposed here is found to attain higher classification accuracy than other models. 

6.2 Performance Evaluation  

• Accuracy: Accuracy is a measure of how many predictions a particular model got right 

in total forecasts. It is computed using the following equation (1). Hence, the higher the 

accuracy value, the better positioned the model is in properly predicting results. 

However, the most accurate in case of balanced data because it may sometimes be 

deceptive in case of imbalanced data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 (1) 
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                         Table 1 : Performance Comparison of the Proposed Model 

 

       Method Name      Accuracy 

            DT          99% 

           CNN        98.76% 

           SVM        96.41% 

           DRNN         96% 

    ProposedMLP-GRU 

model 

        99.4 % 

 

                                  Figure 11: Performance Comparison 

6.3 Discussion 

The findings place the proposed MLP-GRU model in a position of offering a great 

improvement on the existing classification performance on imbalanced datasets. In contrast, 

MLP-GRU achieved superior performance to DT, CNN, SVM and DRNN and had the best 

accuracy of 99.4%. This proves the fact that even in situation of class imbalance it performs 

very efficient generalization and the precision / recall value is excellent. The outcome 

observed in the study is consistent with the reference benchmark and in terms of predictive 

accuracy achieved is better than the previously published work, along with lesser time 

complexity. The purpose of this work was to enhance the accuracy of multi-class 

classification for datasets which contain imbalanced class distributions. Downsampling such 

as class balancing was carried out and evaluation done by PR curves, F1 scores and ROC 

AUC on such instances as class balancing. However, for example, such as increasing the 

computational cost of the model, improving interpretability and many more 

challenges. However, the proposed MLP-GRU model can be easily scaled up to other ML 
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problems include real time predictions, and dynamic data sets which can be taken as a 

disadvantage but highly recommended for further research. Consequently, based on the 

results obtained, it can be stated that the specified model will be effective in relation to the 

suggested dataset with complex structural pattern with a view of optimizing the classification 

accuracy. 

7 Conclusion and Future Work 

The findings of this work show the effectiveness of the presented MLP- GRU model in 

increasing classification efficiency of imbalanced datasets. When compared to DT, CNN and 

SVM as well as DRNN, the MLP-GRU model proposed in this paper showed better 

performance of accuracy of 99.4%. This illustrates how it can generalize and remain in given 

levels of precision and recall of the course of evaluation, even at the occurrence of class 

imbalances. The presented results are to a large extent consistent with previous benchmarks 

and improve the results of the prior studies in terms of both accuracy and complexity of 

computations. The goal of this study was to achieve high prediction performance of the models 

in the case of multi-class classification and overcoming the difficulties that arise with the data 

imbalance. Downsampling were applied to bring the class distribution into proportion and 

target measures including precision-recall, F1 scores, and ROC-AUC were measures of 

performance. Nevertheless, issues like, a balance of the model’s computation expense and 

improving explain ability are still a problem. However, this study’s scalability to other domains 

which include real-time shortcut detection and dynamic datasets has not been explored. In 

general, the proposed MLP-GRU model indicates promising enhancements in classification 

accuracy, but it is about the computational efficiency and other common machine learning 

problems that need further study. 
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