

A Deep Learning Approach to Malicious

Software Detection: Combining MLP and

GRU

MSc Research Project

MSc cybersecurity

Ann Mohan

Student ID: X23175320

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

ANN MOHAN

Student ID:

X23175320

Programme:

MASTERS IN CYBERSECURITY

Year:

2024

Module:

MSC IN RESEARCH/ INTERNSHIP

Supervisor:

JAWAD SALAHUDDIN

Submission Due

Date:

12-12-2024

Project Title:

A DEEP LEARNING APPROACH TO MALICIOUS SOFTWARE DETECTION:

COMBINING MLP AND GRU

Word Count:

 7909 Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

ANN MOHAN

Date:

11-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

A Deep Learning Approach to Malicious Software

Detection: Combining MLP and GRU

Ann Mohan

X23175320

Abstract

The paper introduces the MLP-GRU model for detecting malware from two aspects, the MLP for

network statics and the GRU for sequences analysis. The purpose is to increase the number of

detections, minimize false positives, and increase workability for real-time and mass detection.

Through the model, 99.4 % of classification was made, faster training particularly for big data, and

better detection than existing models such as – Decision trees, SVM, and CNN. Two criteria,

requirements and class imbalance, are met while building the model. For future work, the focus

should be made on scalability, the training of the algorithm for optimization, as well as the application

of transfer learning and automated feature engineering.

1 Introduction

1.1 Research Background

Malware is a short term of malicious software describing any kind of software designed with

malicious intent toward the computer systems, networks, or users (Singh and Singh, 2020).

Over time, malware has come in various forms, each with a different attack mechanism and

impact. There are common types, which include viruses, worms and trojans. Every type of

malware has different risks ranging from data theft, corrupting the system, violation of privacy,

and loss of money (John Oluwafemi Ogun, 2024). Attackers have leveraged artificial

intelligence, machine learning, and advanced encryption that makes it challenging to be

detected and maximize the attack. In this scenario, effective malware detection became the

prerequisite of cybersecurity (Ozkan-Okay et al., 2024). Furthermore, malware attack causes

direct and indirect losses such as; financial losses, leakage of information, privacy

infringement, and embarrassment of national security. Traditional detection techniques rely

heavily on signature detection methods where known malware is scanned through the

comparison of code patterns or signatures held in a database (M. and Sethuraman, 2023).

Heuristic and anomaly-based approaches tend to generalize poorly: while attempting not to

miss subtle malware behaviors, they either overfit some malicious patterns-for instance, where

this indicates a decrease in the effectiveness of these approaches across different malware

varieties (Albakri et al., 2023).

2

1.2 Problem Definition

The more advanced malware threats are, the more feasible, elastic, and efficient ML-based

methods are for detecting and corresponding to the threats in a real-word environment

(Hossain and Islam, 2024). Another major challenge thus arises in connection with the

constant update of datasets which contain data on the new malware that are being created.

The promising approach to cybersecurity that is particularly relevant for malware detection is

deep learning algorithms because it can able to capture dynamic and intricate behaviors that

commonly apply to malicious activities (Qureshi et al., 2024). In malware detection, CNNs

are applied to the binary representation of files where the files are treated as an image to

identify structural patterns that might signify malware. However, in most scenarios, CNNs

are not very suitable for tasks that should perform an analysis of data in sequence; in most

malware detection this does not apply (Zhao et al., 2023). Malware can have specific

characteristics and remarks for particular time or their sequence, for instance, system calls or

network traffic. To address the sequence modeling need in malware detection, quite often,

Recurrent Neural Networks are used. However, traditional RNNs suffer from the vanishing

gradient problem in that the gradients shrink exponentially down a long sequence and are not

capable of back-propagating sufficiently far for the model to be able to learn the

dependencies along significant parts of the sequence. This is because of the limitation that

results from the vanishing gradient problem which makes standard RNNs less effective. The

MLP is a feedforward category of Neutral Network that consists of one or several layers of

nodes which are completely connected and used in learning complex patterns in data. In

malware detection, MLPs are employed to look for static patterns that may be inherent in the

files and may indicate that malware executes (Hakim et al., 2024). On the other hand, even

though MLPs dominate static feature detection in malware scenarios, they have a few

boundaries. MLP, combined with models suited to time-dependent data, like Gated Recurrent

Units (GRUs), may give a more comprehensive and robust defense against different kinds of

malware threats because MLP deals with static analysis while other models capture the

dynamic behaviours. Gated Recurrent Units (GRUs) is an extension of Recurrent Neural

Networks created with the challenges in capturing long-range dependencies within sequential

data (Som et al., 2021).

Research Question 1. What is an effective approach to enhance malware detection systems

using an MLP-GRU model that combines static pattern recognition with sequential data

behavior analysis

The MLP-GRU model would be the most promising way of developing better mechanisms for

malware detection: which means both static and dynamic analysis together would be more

effective. The perceptions of the Multi Layer Perceptron part of the model are reliable in

discerning the time invariants of the structural components or characteristics that are intrinsic

to a pattern drawn from a malware file. Therefore, such static analysis appears to be a

reasonable starting point for the identification of fundamental characteristics of malicious

software. The component GRU solves a limitation of the staking techniques, to model

sequential dependency and the kind of time-dependent behavior as evolvable malware activity.

3

From the mentioned perspective, MLP-GRU treats the two methodologies; MLP-GRU has

dynamic sequence models like GRU put into it and in particular from those views. This

compound scheme increases the efficiency of detection, flexibility, and redundancy to let the

system detect and fight different types of malware in real-time. In the proposed paper a novel

method of malware detection has been introduced which used MLP and GRU techniques

together at one place which enhance the accuracy of the system as well as its stability. Within

this context, the MLP can identify patterns that do not change inside a specific sample of

malware, while GRU is employed in verifying states or behaviors through time. Based on the

above incorporation through the integrated concatenation layer, the proposed model constructs

a complete and extensible detection system that can effectively address the problem brought

by polymorphic and dynamic malwares. The contributions include.

• A hybrid MLP-GRU model that combines static and sequential analysis for better

malware detection.

• The malware detection systems should be robust and more adaptive to polymorphic and

dynamic malware.

• Producing a comprehensive framework of classification with low false positives and

high detection accuracy

Motivation of the Research:

The motivation for this research is due to the fact that malware is becoming increasingly

complex, adaptive, and difficult for traditional detection methods to cater to. Using a hybrid

model of MLP-GRU, this study aims for static and dynamic analysis into a robust, adaptive,

yet accurate malware detection. These techniques are being used toward improving

cybersecurity systems, lessening false positives, with an efficient counter to polymorphism and

time-dependent malware attacks.

The remaining of the paper is as follows; Section 1 discusses the research context of malware

detection in Cybersecurity. Section 2 discusses the related work accordingly regarding malware

detection. Section 3 proposed the details of the used dataset, and methodology, such as

implementing the integrated MLP-GRU model that is being discussed in this paper. Section 5

provides the implementation process and in Section 6 focuses on evaluation criteria applied.

Section 7, consists of the overall conclusion of the study; the research limitations; and

suggestion for further research.

2 Related Work

2.1 Machine Learning and Deep Learning Approaches in Malware

Detection

Malware is seen as one of the biggest threats posed by usage of the internet by users

today. Polymorphic malware is more versatile than the earlier forms of malware because it is

4

the third generation of the malware. It adapts this aspect at any one time camouflaging over its

relied on key characteristics over a set period using standard signature-based approaches.

(Akhtar and Feng, 2022) compared different machine learning methods to identify

malware and security threats. They discovered that the greatest approach with excellent results

was one that incorporated a confusion matrix to differentiate between the false positive and

false negative. They stressed the necessity for tracking and recognizing aggressive procedures

on a computer network, in order to enhance its safety. The researchers applied correlation

integrals of Machine Learning algorithm such as Naïve Bayes, SVM, J48 and Random Forest

(RF and their method helps them to classify the malicious traffic in a more efficient manner.

The classifiers applied in this study were DT, CNN, and SVM and the detection accuracy was

99%, 98.76% and 96.41% respectively. However, the study is not without limitations that

include limited data sources available for collection, assessment of only static measures, which

are different from the dynamic problems that can be experienced in real life. Such additional

elements as dynamic analysis and others may contribute to the increased flexibility and the

more stable work of the system. In the study conducted by Acharya et al., (Acharya et al., 2021)

outlined solution employing the Random Forest (RF) for the file classification and

identification of the malicious files; signature matching for virus identification and the logistic

regression for URL classification. The means of protection is overall based on the combination

of measures used by the program but does not allow for versatile protection against different

versions of malicious software. Greater model diversity and a dynamic analysis approach could

help also system stability when threats appear as evolving over time.

Benign traffic is structured as symmetric, while malicious traffic is the opposite. With

artificial intelligence methods it is possible to recognize and distinguish between different type

of activities, namely, hostile ones and the legitimate ones. Alomari et al. (2023) suggest a stable

malware detection model based on deep learning feature selection. Using two data sets they

can distinguish between illicit and non-illicit activities happening in a network. This work seeks

to apply dense layers and LSTMs in training deep learning models with the performance

depending on the datasets employed. Nevertheless, the work lacks analysis of various malware

types, as it considers the basics of these entities’ identification. More specifically, the future

research of the presented work can continue from where it left off, which involves considering

different categories of malware and evaluating the effect that the feature selection had on the

actual behavior of the malware samples. In another model for malware detection was proposed

by Jeon and Moon (Jeon and Moon, 2020) where they use opcode sequences and a

convolutional recurrent neural network. The model takes as input opcode sequences, and it

extracts them from executables. The model performs well, passing 96% for malware; AUC of

0.99 and TPR of 95%. However, the given solution might not cover some aspects of malware

features or might not have efficient solution for obfuscation problem. The same can also be

said about assessment of the study’s effectiveness using various real datasets. For future work,

better adversarial examples against obfuscation should be explored and development of models

should extend to a more diverse dataset.

5

Similarly, Jha et al., (Jha et al., 2020) presents a new prognosis method called RNN

for malware identification. The study examined an RNN with a directed graphical structure as

well as the capacity to process temporal sequences. The study revealed that step size affects

the classification results in a meaningful way. The Word2Vec feature vector, with Skip-gram

architecture was seen to be even more efficient and stable having higher AUC and variance.

However, the study has some limitations including excluding dynamic malware features and

slow analysis for new threats. It is concluded that with dynamic analysis and real-life situations

applied, the model would be more effective and stronger. The authors Oliveira and Sassi

(Oliveira and Sassi, 2023) introduced a new approach to malware detectors using Direct

Learning from API call sequences and behavioral graphs using Deep Graph Convolutional

Neural Networks (DGCNNs). The performance of models based on DGCNN is slightly lower

than LSTM but not dramatically, and the presence of a graph structure of API call sequences

is critical for identifying malicious programs. In the future studies will estimate extended

architectures and classify the malware into different sets according to the API call sequences

and the corresponding behavioural graphs.

The study of (Lu et al., 2020) revealed that a real-world image classification utilizing both

deep belief networks, the DBN with the incorporation of the GRU has been in the development

to address the goal of Android malware. This method has been determined to have a higher

accuracy as compared to other deep learning methods that was used before. The authors also

mentioned that for detecting viruses in the Android platform, a deep network hybrid

architecture was proposed was stimulated by the effectiveness of deep learning procedures in

the tasks of feature representation learning. In another study conducted by Rimon and Haque

(Rimon and Haque, 2022) by extracted and classified the feature and malware using the mixed

deep learning approach. The hybrid method that that was used alongside the back propagation

method with the addition of particle swarm optimization was accurate and required very little

computation.

In the research done by (Chaganti, Ravi & Pham, 2022) introduces the DL malware

classification and detection using Bi-GRU-CNN and the RNN for IoTs. The proposed approach

was able to accurately detect malware at 100% while accurate classification of the malware

families at 98%. The model was also very stable and platform independent and despite such

complex input features such as byte sequences and CPU types it performed as an ideal.

However, some essential classes of malware families were represented and not classified

because of imbalanced databases. The results obtained from the model are contrasted with

another model. There are many research works based on the anomaly malware detection in a

similar way, the authors (Ullah, Mahmoud, 2022) suggested the anomaly detection which we

proposed to be flow and flag features for the IoT networks, by employing the Feed-Forward

neural network in the Limbic region. In which various types of network flow features are

analyzed. The current research focus is directed to design and development detection of

building emphasizing the importance of building design. system which is used to identify and

detect the feasible and possible abhorrent activities for the IoT networks with the help of Feed-

Forward. Neural work that is built on the executive flow and flag features. The additional

search of this paper was to enhance the accuracy for the ML/DL. algorithms for the efficient

6

malware detection for SVM, NB, ANN, DT. The other proposal for the actual paper is Binary

Classification and Multiclassification and with designed Random Forest Algorithm.

The approaches to mitigate the effects of Malware are also described in the research paper

(Usman er al., 2021) as applied to the Malware IP problems and solution through CTI, Machine

learning, Dynamic malware analysis and data forensics are also highlighted. He uses it to

compare different machine learning approaches to get precision recall and a better f-measure.

Decision tree techniques are better since analysis is inclusive and the percentage prediction is

93.5%. Real time analysis matches samples that cannot be recovered due to memory tampering,

estimating professional variants deployed by malware. This brief includes the malware,

dynamic, static, and family classification of analysis, evaluating the risk factors of the frequent

malicious behavior as well as the observed behavior based on the paper. The findings of this

study recommend implementing Kill Chain methodology for internal and external data after

classification through machine learning malware detectors. In the study conducted by (Taheri

et al.,2020) uses hamming distance to detect malware behavior. The results show that

classifiers perform better than other algorithms, with a 90% higher accuracy rate than existing

state-of-the-art solutions. The authors also propose a new system called Anastasia for

identifying malicious samples through API features and system command. The study validates

algorithms and proposes KNN-based solutions for malware detection.

(Yang, Zhao & Zeng, 2019) therefore developed a proposal for a model that embodied

deep learning. algorithm, and in addition, the proposed approach also provided

multidimensional features for the URLs. CNN Long This model was developed using Short-

Term Memory Network algorithm. The model proposed comprised three which are the feature

extraction, all the features were embedded and lastly the classification of the features. Then

there is identification of relevant features, followed by the detection and further classification

of the URLs. The results produced more precision against more standard computer learning

methodologies and techniques. The false positive was also reduced in the model because of

utilization of multidimensional features. In this paper, (Mustafa Majid et al., 2021) introduce

what malware is and with it acknowledges the need for better methods of the effectiveness of

malware detection using the AI and ML. They used the 3 algorithms of Convoluted

Convolutional Neural Networks (CNN), Recurrent Neural Networks especially LSTM and

auto encoders. Their research discusses Malware detection on Android OS, and they discuss

how these 3 algorithms can be applied in order to detect malware. Their future scope asserted

that auto encoders can have the most significant amount. promise as time goes by. The research

performed by (Hadiprakoso, Buana and Pramadi, 2020) utilized the hybrid methodology in

which they used static and dynamic features. They compared the deep neural network model

with the models which were trained using machine learning such as Random Forest, SVM and

Naïve bayes. They used two different models in deep learning such as DNN-S and DNN-D.

Their research achieved higher accuracy compared to other machine learning models.

These reviewed papers present the advancement and issues of using machine learning and

deep learning for the detection of malware. They demonstrate the importance of proper and

creative approaches in the case of polymorphic malware. Several models and algorisms were

7

suggested including Random Forest, Naïve Bayes, Support Vector Machines, CNN, Recurrent

Neural Networks and others are quite effective. From the findings of the study, techniques in

the category of ML and DL may help enhance detection accuracy by about over 99 % precision.

Yet there are still problems: small sets of samples for training, or non-stationary nature of

malware activity. For these challenges, future studies should embrace multitype data, dynamic

study, and improved adversaries while handling the mentioned problems. Thus, the study

establishes that incorporation of dynamic and hybrid approaches, effective feature selection

improvement, and sound adversarial techniques hold the key to improving malware detection.

3 Research Methodology

The approach for this research paper employs and combines deep learning, improving the

efficiency and reliability of typical malware detection systems. The proposed architecture is a

configurable one and it combines a Multilayer Perceptron (MLP) as a static domain processing

module with Gated Recurrent Unit (GRU) as a sequential processing component. The process

starts with data collection followed by preprocessing of data which includes data cleaning and

normalization to ensure the quality and consistency of the input data. The MLP learns high-

semantic level representations of static attributes, and the GRU captures temporal behaviors of

sequential samples, providing substantial insights into the malware samples. These outputs are

then combined through a concatenation layer, and then classify directly for the final prediction.

The architecture of MLP-GRU is depicted in Figure.1.

 Figure 1: Architecture of MLP-GRU

3.1 Malware Detection-Data Collection

The malware dataset is obtained of Kaggle dataset. It is specifically aimed for malware

classification and detection related researches. It comprises a set of encoded and marked

malicious programs and their descriptors for recognition and assignment into specific

8

categories. These data points can be beneficial for machine learning tasks being related to

cybersecurity and threats identification.

3.2 Data Pre-Processing

Data pre-processing is a process of selecting the data and preparing it for further analysis and

data modelling. In other words, the main objectives are to eliminate the noisy data, meaning

that it has to be refined and synchronized with other sources of data, its quality has to be

improved and it has to be made ready for algorithms and models. Preprocessing, therefore,

holds a significant contribution to the enhancements of the subsequently applied deep

learning models. Record processing is defined as dealing with issues of missing

characteristics, existence of duplicate records, and erroneous records. It can be filled using

mean, median, mode imputation or some of the row with many missing value can be omitted.

Such values are ‘ROW 1, ROW 2’ which are usually due to inefficiency in the structure or

duplication of rows that reduces the efficiency of results or just provide unnecessary copies of

data. Normalization is a process of making the values of variables pertaining to flow duration

and packet rates of continuous data types have a value between 0 and one. This is very

important in order not to end up with a situation where you have few features with large

scales while other relatively small features are overshadowed in the model.

3.3 Feature extraction using MLP

An MLP stands for Multi-Layer Perceptron and this is a feed forward neural network which

consists of many layers and contains all sort of connection that is from each neuron of the one

layer to all neurons in the next layer. With respect to the data set input to the FNN, the

construction of the MLP is designed for the learning of non-sequential static aspects of the

dataset. The first type of flow features is static and does not depend on time or sequence

(flow duration, total packets). These features are then put through a fully connected neural

network which I will describe in the next section. In this case, the developed MLP is to

explore the features which are extracted from the initial networks (such as flow duration and

the count of packets & header length).

Input Layer: The input layer defines the characteristics of the dataset, the protocol being the

total forward packets, flow duration and other traffic. The input layers take static features of a

dataset.

Hidden Layers: In Hidden Layer, one or more layers are determined for implementing certain

input features. In this case, every of these hidden layers consists of many neurons that calculate

a weighted sum of their inputs along with an activation function that adds nonlinearity. About

ReLU activation: ReLU activation removes linearity so that the network has the ability to learn

complex patterns.

Output Layer: The output layer in the last of neural net and machine learning will provide the

classification. If binary classification is applied for example malware and benign then the

output will be between 0 and 1 by applying Sigmoid function. In the case of multi-class

9

classification, it will predict a probability distribution of multiple class by using the SoftMax

activation. In the MLP, each layer analyzes the input raw network traffic data in a manner that

increasingly defines and refines its input data into increasingly abstract functions.

3.4 GRU for Temporal Analysis

A type of Recurrent Neural Network, GRU is targeted at sequential or time-series data that

normally exhibits temporal dependencies. It captures patterns and trends over time as malware

behaviour does the same dynamically from bursts of activity or irregular packet patterns in a

sequence of network traffic. The Update Gate and Reset Gate are the two major gates of the

GRU. These gates control the information input and output, and so the information can be kept

or reset according to what is read into the GRU.

Update Gate: This gate will define how much of the past information is to be retained in the

present. If the information is relevant to a past state, it maintains it; otherwise, it doesn’t

consider it. Thus, it assists the GRUs in bearing some relevant information about the past

network traffic, which might portray some anomaly.

Reset Gate: Some cells are connected to a reset gate that determines how much influence the

past state should exert on the coming state calculation. It helps the model to forget unnecessary

previous data, and therefore, pay attention to the current data. This assists in the development

of rapid traffic spikes on a network which might be a sign of a possible break-out of malware.

The Candidate Hidden State: The candidate hidden state, which is the new

state derived by combining the current input and the reset gate's influence on the previous

hidden state to assist the GRU make rational prediction. It seems to be in some way a suggestion

as to what the next state should be.

The main advantage of GRU is that it is good at capturing long sequences of inputs, making it

efficient at detecting changes in malware behaviour over time.

3.5 Combination of MLP and GRU

To integrate the advantage of feature extraction and temporal behaviour capturing, the output

features of MLPs and GRUs are optimized using a concatenation layer. This MLP, which looks

at the static features of the input data returns a feature vector that represents high level non

temporal characteristics. On the other hand, the temporal dependencies from the sequential

nature of the data are captured by the GRU, which are important in capturing dynamic

behaviours such as the activity of the malware over time. In the end the output of the MLP and

GRU are concatenated into a single feature vector. In here, concatenating the outputs of the

MLP and GRU models to form one large set of features. This combination enables the system

to consider both static and temporal features while deciding. These combined features are

useful in order to classify the software as malware or benign.

4 Design Specification

10

The tools that are presented in this context will be implemented ad hoc to achieve the purposes

of the research and without needing particular hardware and software requisites. For the

compulsory hardware requirements, there is an expectation of a minimum quad-core processor,

including either AMD Ryzen 7 or Intel i7 processor, the RAM should be at least 16 GB and an

optional Graphic Processing Unit such as NVIDIA RTX 3060 or higher to enhance the result

of model training. On the software side, the operating system, on which the system is built, is

Windows 10 (22H2 or any higher version), and Python version 3.9.13 as the programming

language. Jupyter Notebook (v6.4.12) acts as the IDE in this work, as is a web application

based on open-source web technologies that support numerous programming languages for

adaptable and creative development. Other important frameworks and libraries applied are

TensorFlow ≥ 2.4 for deep learning and Scikit-learn for machine learning, and Pandas, Numpy,

Matplotlib, Seaborn for data handling, computation and data visualization respectively.

Combining the hardware and software allows for the creation of a stable basis for the

implementation, analysis and optimization of the implemented models of the experiment.

5 Implementation

The procedure of creating and using the malware detection system is as follows:

environment, where Anaconda was downloaded and configured, the FN Control Center was

launched together with Jupyter Notebook. The data preprocessing includes the downloading a

labeled Malware Dataset, necessarily implemented libraries like pandas, NumPy,

TensorFlow, scikit-learn, matplotlib, seaborn and other tools. The first step of the analysis is

the data collection where one ensures that the collected data has training data.

 The second process is data preprocessing where data cleaning is done by eliminating rows

with more than one instance or none at all, using Label Encoding to normalize object label

features, handling missing values and eliminating duplicate entries. This step also involves

using bar charts for category distribution and using encoding labels for frequency counts.

This operation is then followed by feature engineering, which involves using heat maps for

correlation analysis to eliminate such features, feature scaling to normalize the ranges of such

features, and merging of the minority classes together, and SMOTE to oversample such

classes. The process of feature scaling and normalization makes analysis consistent and

ensures that all features are of similar magnitude thus making the model perform well.

Model architecture consists of two main components: for this, I designed an MLP for static

analysis and a GRU for sequential analysis. The MLP input layer has neurons equal to the

feature count; hidden layers are fully connected efficiency with ReLU activation; the last stage

is the output layer in which MLP maps intermediate feature representation. The GRU

component takes sequential input and passes it through 64 GRU units and has the added bonus

of a dropout layer to stop overfitting. The final layer joining MLP and the output vector of

GRU. The final layer oxide used is SoftMax for multi-class classifications whereas binary use

oxide uses sigmoid. When doing the final model training it then proceeded with 10 fold cross

validation process, and then split the data into training, validation and test data. In the 10th

epoch, training is carried out with a test loss of 0.0327 and an accuracy of 99.40%, which

supports a prediction dominance model. The actual and detailed results of the classification

11

report provide such detail outcomes including the precision, recall and F1 Score of each of the

class as well as support with the macro average and the weighted average. Therefore, I utilize

the ROC-AUC curve for plotting the performance of the model in its classification between

two classes and F1-score in a form of a bar chart. Finally, prior to model selection, a

Cumulative Gain Chart is drawn again to verify the model's proficiency in identifying relevant

samples better than random selection providing a third instance of confidence.

Altogether, the developed MLP-GRU model is effective in malware detection due to its

modular architecture, extraction of static and sequential feature vector, feature engineering,

data preprocessing, balancing approach, and the proposed model evaluation plan discussed in

this paper.

6 Evaluation

 Thus, this research confirms that employing the suggested MLP-GRU model as the

classification method is more effective in improving the classification rates and useful in

addressing imbalanced data sets than conventional models. Basic criterion, namely accuracy,

precision as well as recall and F1-score where used to verify the validity of the proposed

model, as well as its comparison with traditional approaches. Such finely tuned combinations

as MLP-GRU are depicted from these results to be efficient for such complex operations as

classification procedures. In addition, generalization capability of the model when coupled

with the fact that the class distribution is skewed towards one class in real life makes the

model very useful. Those crucial factors including scalability, the computational

performance, and model interpretability are a basis for further research directions for making

effective predictive machine learning models. The comparison of the proposed method with

more traditional methods is discussed in order to pinpoint the potential of the MLP-GRU

model for improved classification of the dataset and the remedy of the problem of the

dataset’s imbalance.

6.1 Class Distribution

Figure.2 represents the distribution of a class for the data set. Here the x-axis denotes five

classes of which the class label are represented as 0, 1, 2, 3 and 4 respectively. The y-axis on

the content is the frequency and this indicates the number of items that were in a particular

class. In this case, class 1 evidently dominates the majority of the distribution shares with a

hyper-frequent frequency value more than 800,000. Another evidence drawn from the plot is

that the other classes are way much fewer.” Class 0 is detected as the second most frequently,

while classes 2, 3, and 4, however, frequent approximately as Classes 2, 3, and 4. This again

is a good pointer that it goes with a high majority from Class 1 and from the other classes a

few. This can become an issue in the task of machine learning; to handle class imbalance

typically techniques such as oversampling, undersampling, or the use of weighted loss

functions need to be employed to balance performances of all classes in the model.

12

 Figure 2: Class Distribution

The Figure 3, titled "Class Distribution After Down sampling" presents the class distribution

of the five classes, Category 0, Category 1, Category 2, Category 3, and Category 4, following

the application of down sampling. Each category is represented by a certain colour: blue for

Category 0, orange for Category 1, green for Category 2, red for Category 3, and purple for

Category 4. About 250,000 counts for each type is shown on the y-axis. This act of down

sampling prevented a bias in any model concerning specific categories. Such equilibration

reached makes it able to make equally good inferences on all such categories; thus, its

predictions would be more precise and fair-minded.

 Figure 3: Class Distribution After Downsampling

The Figure 4, Model Accuracy shows the performance of a model in percentage for 10 epochs

or rounds of training. The x-axis represents the number of epochs, or training iterations, while

the y-axis measures the model's accuracy, indicating its performance. The graph features two

distinct lines: Training accuracy is plotted in blue line whereas the validation accuracy is

plotted in orange line. The training accuracy initially is about 0.965 and gradually increases

throughout to touch 0.990 plus by the 10th epoch. On the other hand, validation accuracy starts

form as high as 0.990 and gradually increases to just below 0.995 at last epoch. This trend

13

reveals that an increase in the training accuracy coupled with a concomitant increase in the

validation accuracy indicates a good model learning and validation. Surprisingly, there is still

a little difference between the validation accuracy and the training accuracy over the epochs

and this means that the model does not fully memorize the data and is unused on unseen data.

 Figure 4: Model Accuracy

The Figure 5, graph titled “Model Loss” shows the training and validation loss of a model in

10 epochs of deep learning. The horizontal axis refers to epochs while the vertical axis

illustrates loss and is between 0.00 and 0.14. The first y-axis blue line corresponds to the

training loss starting from 0.13 which quickly drops down to 0.04 in the second epoch. The

orange line of graph indicates the validation loss commences from 0.04 and does not fluctuate

much just has a slight drop which is always below the training loss. This shows that the model

is capable of learning the data well and at the same time, is capable of performing well on new

data without getting mislead by noise.

 Figure 5: Model Loss

The Figure. 6, confusion matrix measures the efficiency of a classification algorithm relative

to five classes (0–4). Indeed, most of the predictions reflect the true labels, which can be seen

by off-diagonal elements (54,242 for Class 0 and 54,415 for Class 1). There are very few

14

misclassifications, for example, 792 samples misclassified to Class 1 instead of True Label 3

and 52 samples to Class 4 instead of True Label 3. The off-diagonal values crossing the

diagonal are low and this proves the capability of the model in correct classification and the

matrix also suggests the areas to be improved with identifying the right misclassifications.

 Figure 6: Confusion Matrix

The ROC-AUC graph of the multi-class also classifies the specimens according to the

performance of the classification tests in five classes (0–4). Both classes obtain confusion

matrix values and Area Under the Curve (AUC) with 1.00, representing remarkable

classification performance. This curves also show a very good trade off between the true

positive rate and false positive for all classes, indicating the good ability of the model in class

separation. It is depicted in Figure 7,

 Figure 7: ROC-AUC Graph

15

The Figure 8, shows the curve of Precision with Recall measures the configuration

effectiveness for five classes of 0–4. The receiver operating characteristics (ROC) are close to

ideal, Class 0, Class 2, Class 4 having an AUC = 1, Class 1 and Class 3 having an AUC = 0.99.

These curves reveal the high precision maintained by the model when the recall is varied, which

is a great degree of classification in between classes. As seen from the nearly flat curves, the

experiments give high classification accuracy, with little to no price in terms of precision and

recall.

 Figure 8: Precision- Recall Graph

The Figure 9, shown below is called F1-Score by Class which denotes the F1-scores of five

classes (0 to 4). All classes have a perfect score represented by the value of F1-score equals to

1. This means that the study shows that the classification model has a good precision and recall

ratio for all the classes. An ideal F1-score of all classes indicates the model has a high level of

accuracy, moreover, the model generalizes well to the dataset.

 Figure 9: F1-ScoreGraph

16

The Figure 10, shows “Cumulative Gains Chart” analyses the model’s performance in the

correct placement of the positive cases. The x-axis is created with the amount of samples use

in the successive runs while the y-axis reflects the proportion of positive samples achieved.

The chart includes two lines: The two metrics include; the Cumulative Gain Curve (blue) that

climbs sharply to the right suggesting that in the early ranks the model identifies the majority

of positive cases and hence is positive and the Baseline (Red dashed line) implying on the other

end that it is a random model. The fact that blue curve rises steeply above base line indicates

the model has high positive predicting ability, meaning, the model is far better than random

selection of positive instances.

 Figure 10: Cumulative Gains Chart

The Table 1, shows the evaluation of model performances shows that the accuracy of the

Proposed MLP-GRU model is the highest, 99.4%. Classification report shows that Support

Vector Machine (SVM) leads by acquiring a 99.32% accuracy score, followed by Decision

Tree (DT) with a 99%, and last is CNN with 98.76%. The SVM and DRNN methods presents

little lower accuracy of 96.41% and 96% respectively. Figure 11, depicts the MLP-GRU model

proposed here is found to attain higher classification accuracy than other models.

6.2 Performance Evaluation

• Accuracy: Accuracy is a measure of how many predictions a particular model got right

in total forecasts. It is computed using the following equation (1). Hence, the higher the

accuracy value, the better positioned the model is in properly predicting results.

However, the most accurate in case of balanced data because it may sometimes be

deceptive in case of imbalanced data.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 (1)

17

 Table 1 : Performance Comparison of the Proposed Model

 Method Name Accuracy

 DT 99%

 CNN 98.76%

 SVM 96.41%

 DRNN 96%

 ProposedMLP-GRU

model

 99.4 %

 Figure 11: Performance Comparison

6.3 Discussion

The findings place the proposed MLP-GRU model in a position of offering a great

improvement on the existing classification performance on imbalanced datasets. In contrast,

MLP-GRU achieved superior performance to DT, CNN, SVM and DRNN and had the best

accuracy of 99.4%. This proves the fact that even in situation of class imbalance it performs

very efficient generalization and the precision / recall value is excellent. The outcome

observed in the study is consistent with the reference benchmark and in terms of predictive

accuracy achieved is better than the previously published work, along with lesser time

complexity. The purpose of this work was to enhance the accuracy of multi-class

classification for datasets which contain imbalanced class distributions. Downsampling such

as class balancing was carried out and evaluation done by PR curves, F1 scores and ROC

AUC on such instances as class balancing. However, for example, such as increasing the

computational cost of the model, improving interpretability and many more

challenges. However, the proposed MLP-GRU model can be easily scaled up to other ML

18

problems include real time predictions, and dynamic data sets which can be taken as a

disadvantage but highly recommended for further research. Consequently, based on the

results obtained, it can be stated that the specified model will be effective in relation to the

suggested dataset with complex structural pattern with a view of optimizing the classification

accuracy.

7 Conclusion and Future Work

The findings of this work show the effectiveness of the presented MLP- GRU model in

increasing classification efficiency of imbalanced datasets. When compared to DT, CNN and

SVM as well as DRNN, the MLP-GRU model proposed in this paper showed better

performance of accuracy of 99.4%. This illustrates how it can generalize and remain in given

levels of precision and recall of the course of evaluation, even at the occurrence of class

imbalances. The presented results are to a large extent consistent with previous benchmarks

and improve the results of the prior studies in terms of both accuracy and complexity of

computations. The goal of this study was to achieve high prediction performance of the models

in the case of multi-class classification and overcoming the difficulties that arise with the data

imbalance. Downsampling were applied to bring the class distribution into proportion and

target measures including precision-recall, F1 scores, and ROC-AUC were measures of

performance. Nevertheless, issues like, a balance of the model’s computation expense and

improving explain ability are still a problem. However, this study’s scalability to other domains

which include real-time shortcut detection and dynamic datasets has not been explored. In

general, the proposed MLP-GRU model indicates promising enhancements in classification

accuracy, but it is about the computational efficiency and other common machine learning

problems that need further study.

References

Acharya, J. et al. (2021) ‘Detecting Malware, Malicious URLs and Virus Using Machine Learning and Signature

Matching’, in 2021 2nd International Conference for Emerging Technology (INCET). 2021 2nd International

Conference for Emerging Technology (INCET), pp. 1–5. Available at:

https://doi.org/10.1109/INCET51464.2021.9456440.

Akhtar, M.S. and Feng, T. (2022) ‘Malware Analysis and Detection Using Machine Learning Algorithms’,

Symmetry, 14(11), p. 2304. Available at: https://doi.org/10.3390/sym14112304.

Albakri, A. et al. (2023) ‘Metaheuristics with Deep Learning Model for Cybersecurity and Android Malware

Detection and Classification’, Applied Sciences, 13(4), p. 2172. Available at:

https://doi.org/10.3390/app13042172.

Alomari, E.S. et al. (2023) ‘Malware Detection Using Deep Learning and Correlation-Based Feature Selection’,

Symmetry, 15(1), p. 123. Available at: https://doi.org/10.3390/sym15010123.

Hakim, S.B. et al. (2024) ‘Decoding Android Malware with a Fraction of Features: An Attention-Enhanced MLP-

SVM Approach’. arXiv. Available at: http://arxiv.org/abs/2409.19234 (Accessed: 13 November 2024).

Hossain, Md.A. and Islam, Md.S. (2024) ‘Enhanced detection of obfuscated malware in memory dumps: a

machine learning approach for advanced cybersecurity’, Cybersecurity, 7(1), p. 16. Available at:

https://doi.org/10.1186/s42400-024-00205-z.

Jeon, S. and Moon, J. (2020) ‘Malware-Detection Method with a Convolutional Recurrent Neural Network Using

Opcode Sequences’, Information Sciences, 535, pp. 1–15. Available at: https://doi.org/10.1016/j.ins.2020.05.026.

19

Jha, S. et al. (2020) ‘Recurrent neural network for detecting malware’, Computers & Security, 99, p. 102037.

Available at: https://doi.org/10.1016/j.cose.2020.102037.

John Oluwafemi Ogun (2024) ‘Advancements in automated malware analysis: evaluating the efficacy of open-

source tools in detecting and mitigating emerging malware threats to US businesses’, International Journal of

Science and Research Archive, 12(2), pp. 1958–1964. Available at: https://doi.org/10.30574/ijsra.2024.12.2.1488.

M., G. and Sethuraman, S.C. (2023) ‘A comprehensive survey on deep learning based malware detection

techniques’, Computer Science Review, 47, p. 100529. Available at:

https://doi.org/10.1016/j.cosrev.2022.100529.

Narasimha Rao, K.P. and Chinnaiyan, S. (2024) ‘Blockchain-Powered Patient-Centric Access Control with MIDC

AES-256 Encryption for Enhanced Healthcare Data Security’, Acta Informatica Pragensia, 13(3), pp. 374–394.

Available at: https://doi.org/10.18267/j.aip.242.

Oliveira, A.S. de and Sassi, R.J. (2023) ‘Behavioral Malware Detection Using Deep Graph Convolutional Neural

Networks’. Available at:

https://www.authorea.com/doi/full/10.36227/techrxiv.10043099.v1?commit=664084a4beae5e3c0edbcdb24a022

e15e2ae16a3 (Accessed: 16 November 2024)

.

Ozkan-Okay, M. et al. (2024) ‘A Comprehensive Survey: Evaluating the Efficiency of Artificial Intelligence and

Machine Learning Techniques on Cyber Security Solutions’, IEEE Access, 12, pp. 12229–12256. Available at:

https://doi.org/10.1109/ACCESS.2024.3355547.

Puneeth, R.P. and Parthasarathy, G. (2024) ‘Blockchain-Based Framework for Privacy Preservation and Securing

EHR with Patient-Centric Access Control’, Acta Informatica Pragensia, 13(1), pp. 1–23. Available at:

https://doi.org/10.18267/j.aip.225.

Qureshi, S.U. et al. (2024) ‘Systematic review of deep learning solutions for malware detection and forensic

analysis in IoT’, Journal of King Saud University - Computer and Information Sciences, 36(8), p. 102164.

Available at: https://doi.org/10.1016/j.jksuci.2024.102164.

Singh, Jagsir and Singh, Jaswinder (2020) ‘Detection of malicious software by analyzing the behavioral artifacts

using machine learning algorithms’, Information and Software Technology, 121, p. 106273. Available at:

https://doi.org/10.1016/j.infsof.2020.106273.

Som, S. et al. (2021) ‘Utilizing Gated Recurrent Units to Retain Long Term Dependencies with Recurrent Neural

Network in Text Classification’, Journal of Information Systems and Telecommunication, 9(34), pp. 89–102.

Available at: https://doi.org/10.52547/jist.9.34.89.

Wu et al. (2024) ‘Patient-centric medical service matching with fine-grained access control and dynamic user

management’, Computer Standards & Interfaces, 89, p. 103833. Available at:

https://doi.org/10.1016/j.csi.2024.103833.

Zhao, Z. et al. (2023) ‘Image-Based Malware Classification Method with the AlexNet Convolutional Neural

Network Model’, Security and Communication Networks, 2023(1), p. 6390023. Available at:

https://doi.org/10.1155/2023/6390023.

Lu, T., Du, Y., Ouyang, L., Chen, Q. and Wang, X. (2020). Android Malware Detection Based on a Hybrid Deep

Learning Model. Security and Communication Networks, 2020, pp.1–

11.doi:https://doi.org/10.1155/2020/8863617.

Rimon, S.I. and Haque, Md.M. (2022). Malware Detection and Classification Using HybridMachine Learning

Algorithm. Springer eBooks, pp.419–428. doi:https://doi.org/10.1007/978-3-031-19958-5_39.

R. Chaganti, V. Ravi, and T. D. Pham, “Deep learning based cross architecture internet of things malware

detection and classification,” Comput. Secur., vol. 120, p. 102779, Sep. 2022, doi: 10.1016/j.cose.2022.102779.

20

I. Ullah and Q. H. Mahmoud, “An Anomaly Detection Model for IoT Networks based on Flow and Flag Features

using a Feed-Forward Neural Network,” in 2022 IEEE 19th Annual Consumer Communications & Networking

Conference (CCNC), Jan. 2022, pp. 363–368. doi: 10.1109/CCNC49033.2022.9700597.

Usman, N., Usman, S., Khan, F., Jan, M.A., Sajid, A., Alazab, M. and Watters, P., 2021. Intelligent dynamic

malware detection using machine learning in IP reputation for forensics data analytics. Future Generation

Computer Systems, 118, pp.124-141

Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z. and Conti, M., 2020. Similarity-based

Android malware detection using Hamming distance of static binary features. Future Generation Computer

Systems, 105, pp.230-247

P. Yang, G. Zhao, and P. Zeng, “Phishing Website Detection Based on Multidimensional Features Driven by

Deep Learning,” IEEE Access, vol. 7, pp. 15196–15209, 2019, doi: 10.1109/ACCESS.2019.2892066.

Mustafa Majid, A.-A., Alshaibi, A. J., Kostyuchenko, E. & Shelupanov, A., 2021. A review of artificial

intelligence based malware detection using deep learning. s.l., s.n.

Hadiprakoso, R., Buana, I. and Pramadi, Y., 2020. Android Malware Detection Using Hybrid-Based Analysis &

Deep Neural Network. 2020 3rd International Conference on Information and Communications Technology

(ICOIACT),.

