

Configuration Manual

MSc Research Project

MSc Cybersecurity

Ans Maria Mathew

Student ID: 23173661

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ans Maria Mathew

Student ID:

23173661

Programme:

MSc Cybersecurity

Year:

2024

Module:

MSc Research Practicum Part 2

Lecturer:

Jawad Salahuddin

Submission Due

Date:

12th December 2024

Project Title:

ML- Based Zero Day Attack Detection

Word Count: 740

Page Count: 3

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ans Maria Mathew

Date:

12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Ans Maria Mathew

Student ID: 23173661

1. Overview

The configuration manual details the setup, configuration, and the use of a Machine Learning

(ML)-based Intrusion Detection and Prevention System (IDPS). By following this manual we

can configure, train, and deploy an ML-based IDPS effectively to identify anomalies and

mitigate zero-day vulnerabilities in a controlled IoT environment.

2. Prerequisites

a. Hardware Requirements

● Minimum 8 GB RAM

● Multi-core processor with support for vectorized computations

● SSD storage for faster data I/O operations

b. Software Requirements

● Python 3.11.9

● VSCode

● Libraries: `pandas`, `numpy`, `sklearn`, `matplotlib`

● Jupyter Notebook

c. Dataset Requirements

The dataset used for training must consist of network communication records with features

such as packet size, response time, source/destination ports, and IP bytes.

3. Jupiter Notebook

Jupyter Notebook is an interactive computing environment that allows users to write and

execute Python code, visualize data, and document their workflows seamlessly. If you have a

Python file (.py) and wish to open it in Jupyter Notebook, follow the steps below.

Step 1: Install Jupyter Notebook

Before proceeding, ensure Jupyter Notebook is installed on your system. Use the following

command to install it: pip install notebook

If you are using Anaconda, Jupyter Notebook comes pre-installed.

Step 2: Launch Jupyter Notebook

a. Open a terminal (or command prompt): Navigate to the directory containing your

Python file using the cd command. For example: cd path/to/your/python/file

b. Launch Jupyter Notebook by typing: jupyter notebook

c. This command will open the Jupyter Notebook interface in your default web browser.

Step 3: Create a Notebook

If you want to work with the Python file in notebook format:

a. In the Jupyter Notebook interface, click New (on the right-hand side) and select

Python 3 (ipykernel). This will create a new notebook file.

2

b. Name your notebook by clicking the title (e.g., Untitled) at the top of the page and

typing a new name.

Step 4: Open or Import a Python File

Copy and Paste Code

a. Open the Python file in a text editor (e.g., Notepad, VSCode, PyCharm).

b. Copy the code.

c. Paste the code into a cell in the Jupyter Notebook.

Step 5: Save and Run the Notebook

Once your code is in the notebook, you can execute it cell by cell using Shift + Enter. Save

your work by clicking the Save icon or pressing Ctrl + S.

By following these steps, you can easily open and work with Python files in Jupyter

Notebook for better code management and interactivity.

4. Installation

a. Install Python and Libraries

 pip install pandas numpy scikit-learn matplotlib seaborn

b. Set Up the Dataset

i. Ensure the dataset is in `.csv` format.

ii. Place the dataset file in a directory accessible to the script, e.g.,

`/path/to/iot23_combined_new.csv`.

5. Configuration Steps

a. Data Preparation

i. Load the dataset using pandas:

 data = pd.read_csv('/path/to/iot23_combined_new.csv')

ii. Replace invalid or missing values with numerical equivalents:

data.replace('-', np.nan, inplace=True)

data = data.apply(pd.to_numeric, errors='coerce')

data.fillna(0, inplace=True)

b. Feature Selection and Scaling

i. Select relevant features and target labels:

X = data.iloc[:, 1:-1]

y = data.iloc[:, -1]

ii. Standardize features for model compatibility:

 scaler = StandardScaler()

 X_scaled = scaler.fit_transform(X)

c. Train-Test Split

i. Split the dataset into training and testing subsets:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y,

test_size=0.2, random_state=42)

3

6. Model Training and Evaluation

a. Random Forest Classifier

i. Train the model:

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(random_state=42)

rf.fit(X_train, y_train)

ii. Evaluate accuracy and feature importance:

 y_pred_rf = rf.predict(X_test)

 print("Accuracy:", accuracy_score(y_test, y_pred_rf))

 print("Feature Importance:", rf.feature_importances_)

b. Support Vector Machine (SVM)

i. Train the model:

from sklearn.svm import SVC

svm = SVC(kernel='rbf', probability=True, random_state=42)

svm.fit(X_train, y_train)

ii. Evaluate performance:

 y_pred_svm = svm.predict(X_test)

 print("Accuracy:", accuracy_score(y_test, y_pred_svm))

c. Neural Network

i. Train the model:

from sklearn.neural_network import MLPClassifier

nn = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300,

random_state=42)

nn.fit(X_train, y_train)

ii. Evaluate performance:

y_pred_nn = nn.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred_nn))

d. Isolation Forest for Anomaly Detection

i. Train the anomaly detection model:

from sklearn.ensemble import IsolationForest

iso_forest = IsolationForest(random_state=42)

iso_forest.fit(X_train)

ii. Identify anomalies:

anomaly_predictions = iso_forest.predict(X_test)

print("Normal Count:", np.sum(anomaly_predictions == 1))

print("Anomaly Count:", np.sum(anomaly_predictions == -1))

References

Guo, Y., 2023. A review of Machine Learning-based zero-day attack detection: Challenges

and future directions. Computer communications, 198, pp.175-185.

Hindy, H., Atkinson, R., Tachtatzis, C., Colin, J.-N., Bayne, E., & Bellekens, X., 2020.

Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection. Electronics,

9(10), p.1684.

