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1. Overview 
 

The configuration manual details the setup, configuration, and the use of a Machine Learning 

(ML)-based Intrusion Detection and Prevention System (IDPS). By following this manual we 

can configure, train, and deploy an ML-based IDPS effectively to identify anomalies and 

mitigate zero-day vulnerabilities in a controlled IoT environment. 

 

2. Prerequisites 
 

a. Hardware Requirements 

● Minimum 8 GB RAM 

● Multi-core processor with support for vectorized computations 

● SSD storage for faster data I/O operations 

b. Software Requirements 

● Python 3.11.9 

● VSCode 

● Libraries: `pandas`, `numpy`, `sklearn`, `matplotlib` 

● Jupyter Notebook  

c. Dataset Requirements 

The dataset used for training must consist of network communication records with features 

such as packet size, response time, source/destination ports, and IP bytes. 

 

3. Jupiter Notebook 
 

Jupyter Notebook is an interactive computing environment that allows users to write and 

execute Python code, visualize data, and document their workflows seamlessly. If you have a 

Python file (.py) and wish to open it in Jupyter Notebook, follow the steps below. 

Step 1: Install Jupyter Notebook 

Before proceeding, ensure Jupyter Notebook is installed on your system. Use the following 

command to install it: pip install notebook 

If you are using Anaconda, Jupyter Notebook comes pre-installed. 

Step 2: Launch Jupyter Notebook 

a. Open a terminal (or command prompt): Navigate to the directory containing your 

Python file using the cd command. For example: cd path/to/your/python/file 

b. Launch Jupyter Notebook by typing: jupyter notebook 

c. This command will open the Jupyter Notebook interface in your default web browser. 

Step 3: Create a Notebook 

If you want to work with the Python file in notebook format: 

a. In the Jupyter Notebook interface, click New (on the right-hand side) and select 

Python 3 (ipykernel). This will create a new notebook file. 
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b. Name your notebook by clicking the title (e.g., Untitled) at the top of the page and 

typing a new name. 

Step 4: Open or Import a Python File 

Copy and Paste Code 

a. Open the Python file in a text editor (e.g., Notepad, VSCode, PyCharm). 

b. Copy the code. 

c. Paste the code into a cell in the Jupyter Notebook. 

Step 5: Save and Run the Notebook 

Once your code is in the notebook, you can execute it cell by cell using Shift + Enter. Save 

your work by clicking the Save icon or pressing Ctrl + S. 

By following these steps, you can easily open and work with Python files in Jupyter 

Notebook for better code management and interactivity. 

 

4. Installation 
 

a. Install Python and Libraries 

     pip install pandas numpy scikit-learn matplotlib seaborn 

b. Set Up the Dataset 

i. Ensure the dataset is in `.csv` format. 

ii. Place the dataset file in a directory accessible to the script, e.g., 

`/path/to/iot23_combined_new.csv`. 

 

5. Configuration Steps 
 

a. Data Preparation 

i. Load the dataset using pandas: 

      data = pd.read_csv('/path/to/iot23_combined_new.csv') 

ii. Replace invalid or missing values with numerical equivalents: 

data.replace('-', np.nan, inplace=True) 

data = data.apply(pd.to_numeric, errors='coerce') 

data.fillna(0, inplace=True) 

b. Feature Selection and Scaling 

i. Select relevant features and target labels: 

X = data.iloc[:, 1:-1] 

y = data.iloc[:, -1] 

ii. Standardize features for model compatibility: 

      scaler = StandardScaler() 

      X_scaled = scaler.fit_transform(X) 

c. Train-Test Split 

i. Split the dataset into training and testing subsets: 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, 

test_size=0.2, random_state=42) 
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6. Model Training and Evaluation 
 

a. Random Forest Classifier 

i. Train the model: 

from sklearn.ensemble import RandomForestClassifier 

rf = RandomForestClassifier(random_state=42) 

rf.fit(X_train, y_train) 

ii. Evaluate accuracy and feature importance: 

 y_pred_rf = rf.predict(X_test) 

 print("Accuracy:", accuracy_score(y_test, y_pred_rf)) 

 print("Feature Importance:", rf.feature_importances_) 

b. Support Vector Machine (SVM) 

i. Train the model: 

from sklearn.svm import SVC 

svm = SVC(kernel='rbf', probability=True, random_state=42) 

svm.fit(X_train, y_train) 

ii. Evaluate performance: 

 y_pred_svm = svm.predict(X_test) 

 print("Accuracy:", accuracy_score(y_test, y_pred_svm)) 

c. Neural Network 

i. Train the model: 

from sklearn.neural_network import MLPClassifier 

nn = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300, 

random_state=42) 

nn.fit(X_train, y_train) 

ii. Evaluate performance: 

y_pred_nn = nn.predict(X_test) 

print("Accuracy:", accuracy_score(y_test, y_pred_nn)) 

d. Isolation Forest for Anomaly Detection 

i. Train the anomaly detection model: 

from sklearn.ensemble import IsolationForest 

iso_forest = IsolationForest(random_state=42) 

iso_forest.fit(X_train) 

ii. Identify anomalies: 

anomaly_predictions = iso_forest.predict(X_test) 

print("Normal Count:", np.sum(anomaly_predictions == 1)) 

print("Anomaly Count:", np.sum(anomaly_predictions == -1))    
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