\‘
\ National

Collegeor
Ireland

Explanatory study on the role of neural
networks in maintaining cyber security in
lot

MSc Research Project
Cyber Security

Albin Mathew
Student ID: x23152761

School of Computing
National College of Ireland

Supervisor: Dr. Michael Pantridge

National
College
Ireland

National College of Ireland

Project Submission Sheet

Student Name: Albin Mathew

Student ID: X23152761
MSc in Cyber security

Programme: Year: 2025-2025
MSc Research Project

Module:

Lecturer: Michale Pantridge

Submission Due

Date:

Explanatory study on the role of neural
network in maintaining cyber security in iot
devices

Project Title:

Word Count:

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant
bibliography section at the rear of the project.

ALL internet material must be referenced in the references section. Students are
encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author's written or electronic work is illegal (plagiarism) and may result
in disciplinary action. Students may be required to undergo a viva (oral
examination) if there is suspicion about the validity of their submitted work.

Signature: Albin Mathew

Date: 11/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple
copies).

2. Projects should be submitted to your Programme Coordinator.

3. You must ensure that you retain a HARD COPY of ALL projects, both for your

own reference and in case a project is lost or mislaid. It is not sufficient to keep a
copy on computer. Please do not bind projects or place in covers unless specifically

requested.

4. You must ensure that all projects are submitted to your Programme Coordinator on
or before the required submission date. Late submissions will incur penalties.

5. All projects must be submitted and passed in order to successfully complete the

year. Any project/assignment not submitted will be marked as a fail.

" Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

Explanatory study on the role of neural
networks in maintaining cyber security in
lot

Albin Mathew
X23152761

1. Introduction

This guide describes configuration and also impletatéon of a neural network system that is
necessary for preservation of security in 10T desidVhen such two dataset types are integrated,
the proposed framework allows for anomaly detectioinusion detection, user authentication,
device authentication, and threat prediction in $eftings. The information and approaches have
been derived from the “Exploratory Report on thadtion of Neural Networks on the
Preservation of Cyber Security in 10T Devices.”

2. System Requirements
Hardware:
o Minimum 16 GB RAM

o GPU with CUDA support (e.g., NVIDIA GTX 1660 or Higr) for
accelerated training

o Storage: 50 GB free disk space
Software:
o Python 3.7 or later

o Required libraries: pandas, numpy, matplotlib, is¢darn, tensorflow,
faker

https://github.com/albin1100/Explanatory-study-be-tole-of-neural-networks-in-
maintaining-cybersecurity-in-iot-devices-/tree/main

numpy as np
C matplotlib.pyplot as
sklearn.preprocessing ort StandardScaler

sklearn.model selection t train_test split
t tensorflow as tf

1 faker 1 r

ort random

3. Dataset Configuration
3.1 Real IoT Dataset

The primary dataset used is 10T23, which conta@a$-world 10T network traffic labeled
as benign or malicious. Key features include:

« Anomaly Detection: duration, orig_bytes, resp_bytes

 Intrusion Detection: orig_pkts, resp_pkts, conntest8F, conn_state_S0O

file path 3 combine
df = pd.read . file path
f convert label(value):

if isinstance(value, str):
rn 1 if value.lower() == '

1"].apply(convert label)

3.2 Synthetic Datasets

Synthetic datasets complement real data to simusateus security scenarios:
« User Authentication: Failed_Attempts, Geolocation
« Device Authentication: Packet_Size, Inter_PackeaneliFlow_Duration

- Threat Prediction: Feature_A, Feature B, Feature C

fake = Faker()

num_users = 560
num_samples user = 2000
auth methods = |
locations = [t
user_data =

b _{np.random.randint(1, num users)}' for _ in range(num samples user)],

np.random.randint(@, 5, size=num samples user),
[random.choice(locations r _ in range(num samples user)],

np.random.randint(@, 2, size=num samples user)

user auth df = pd.DataFrame(user data)

Faker library is employed to overcome the issué wie lack of variation in conducting both
guantitative and qualitative analysis on synthdéta.

lpip install faker

Collecting faker
Downloading Faker-33.1.e-py3-none-any.whl.metadata (15 kB)
Requirement already satisfied: python-dateutil>=2.4 in /usr/local/lib/python3.16/dist-packages (from faker) (2.8.2)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.1e/dist-packages (from faker) (4.12.2)
Requirement already satisfied: six»=1.5 in /usr/local/lib/python3.18/dist-packages (from python-dateutil»>=2.4->faker) (1.16.0)
Downloading Faker-33.1.e-py3-none-any.whl (1.9 MB)
- 1 eta @]
Installing collected packages: faker
Successfully installed faker-33.1.@

3.3 Type of synthetic data

Different types of synthetic data is used to idgrdifferent type of threads.

num_samples_device

device types = Ca

device data {

- [for i in range(num_samples_device)],
np.random.randint(5@, 1560, size-num samples device),

Time': np.random.uniform - < um_samples_device),

np.random.uniform(1, 6@, size—-num_samples device),
[random.choice(device types) for _ in range(num_samples device)],
: np.random.randint(®, 2, size—-num samples device)
1

}
device_auth_df = pd.DataFrame(device_data)

num_samples threat = 1580
threat data {
> np.random.uniform(®, 1, size=num_samples_threat),
np.random.uni size=num samples_threat),
C': np.random.uniform(®, 1, size=num samples_threat),
np.random.randint(e, 2, size=num samples_threat)
1

3}
threat_df = pd.DataFrame(threat_data)

synthetic tasks

: user_auth df,
device auth_df, 'f
threat df,

4. Framework Configuration
4.1 Data Preprocessing
« Data Cleaning: Ensure missing values and outlierfiandled.

« Label Conversion: Convert categorical labels taby(0 for benign, 1 for
malicious).

« Feature Scaling: Use StandardScaler to standaiehneres for consistent scaling.

- convert label(value):
if isinstance(value, str):
n 1 if value.lower() = 'me

bel'].apply(convert label)

4.2 Data Splitting
« Train-Test Split: Split the dataset into 80% traghand 20% testing sets.

- Purpose: Prevent overfitting and ensure generalizat

all tasks = {**tasks, **synthetic;tasks}

for task, mapping in all tasks.items():
df task = mapping.get df)
X = df task[mapping 11.values
y = df_task[mapping] 1].values

scalers[task] = StandardScaler()
X scaled = scalers[task].fit transform(X)

X _train, X test train, y test = train_test split(X scaled, y, test size , random state=42)
data[task] = {" 1': X _train, "X test': X test, 'y train': y train, 'y t': y_test}

5. Model Architecture
5.1 Feedforward Neural Network (FFNN)
The FENN architecture consists of the following:

« Input Layer: Matches the number of features fohdask.

- Hidden Layers:

o Layer 1: 64 neurons, RelLU activation, Batch Normstion, Dropout
(0.3)

o Layer 2: 32 neurons, ReLU activation
o Layer 3: 16 neurons, ReLU activation

« Output Layer: 1 neuron, Sigmoid activation

f build ffnn(input shape):
model = tf.keras.Sequential(]

tf.keras.layers.Dense(64, activation="relu’, input shape=(input_shape,)),

tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(@.3),
tf.keras.layers.Dense(32, activation="relu’
tf.keras.layers.Dense(16, activation
tf.keras.layers.Dense(1, activation="sig
D
model.compile(optimizer=" 1", loss=" ', metrics=["
T rn model

ief build deep fnn(input shape):

model = tf.keras.Sequential(]
tf.keras.layers.Dense(128, activation='relu', input shape=(input_shape,)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(@.4),
tf.keras.layers.Dense(64, activation="relu’
tf.keras.layers.Dense(32, activation
tf.keras.layers.Dense(1, activation=

D

model.compile(optimizer=" ', loss="bi "y metrics=["

return model

5.2 Deep Feedforward Neural Network
An alternative architecture with additional comigx

+ Hidden Layers:

o Layer 1: 128 neurons, ReLU activation, Dropout)0.4
o Layer 2: 64 neurons, ReLU activation
o Layer 3: 32 neurons, ReLU activation

ief build deep_fnn(input_shape):
model = tf.keras.Sequential(]
tf.keras.layers.Dense(128, activation="relu', input_shape=(input_shape,)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(@.4),

tf.keras.layers.Dense(64, activation='r

tf.keras.layers.Dense(32, activatior

tf.keras.layers.Dense(1, activation="s
1)

model . compile(optimizer= m', loss=' ', metrics=[

5.3 Optimizer and L oss Function
« Optimizer. Adam with adaptive learning rates
« Loss Function: Binary cross-entropy
6. Model Training
- < Train each of the task specific model separdiglysing the related task specific dataset.
- utilize 15 epochs n a batch size of 32.endentiyguthe corresponding dataset.
« Use 15 epochs and a batch size of 32.Monitor:
o Training Accuracy

o Validation Accuracy

(@)

Training and Validation Loss

models = {}
history records

for task, d
print("
model = build ffnn(d

history = model.fit(d[€] batch size=32,
validation data=(d Il [}, verbose=1)

models[task] = model
history records[task] = history

7. Real-Time Detection Simulation

The framework supports real-time detection:

1. Data Point Preprocessing: New data should bergeessed by applying the scaler obtained in the
corresponding task.

2. Model Prediction: Compare input data to thentedimodel to give them either “Suspicious” or
“Normal” label.

3. Alerting System: In case of the detection res@pecify actions/alarms to be generated or
automations to be made on the detected inform&i@huation Metrics

« Accuracy:

o Formula: Accuracy = (Number of Correct Predictioh@)otal
Predictions)

o Typical values: Training is (92%-96%), Validatid#800-93%)

« Loss Analysis: Ensure consistent decline duringpitng to avoid overfitting.

lot_history(task,-history):
tig, axs = plt.subplots(1, 2, figsize=(12, 5))

.plot(history.history[
.plot(history.history['val =
.set title(f'{task.capitalize

9] .set xlabel()

9] .set_ylabel(!

1] . legend()

.plot(history.history['1
.plot(history.history|
.set title(f"|

.set xlabel(
.set_ylabel(

.legend()

plt.tight layout()
plt.show()

8. Deployment and Maintenance

8.1 Deployment Strategy
- Integrate models with existing 10T monitoring systeor network gateways.
« Use lightweight versions of models for edge devices
8.2 Model Updates
» Schedule model update based on updated datdssts@mcounter prevailing sophisticated threats.

» Use new features or new data set for more se¢asks.ng threats.

def detect task(data point, task):

data point = scalers[task].transform([data point])
return models[task].predict(data point)[e][e] > @.5

8.3+ Incorporate new features or datasets for additisacurity tasks.

9. Troubleshooting
« Overfitting: Increase dropout rates or reduce hiddger complexity.
« Underfitting: Increase the number of neurons orcapo

Biometrics - Accuracy Biometrics - Loss

0.53 1
—— Training Loss

Validation Loss

&5 0.715 -

NN R

0.49 -

o

Accuracy

0.700

\/\ <
0.695
Validation Accuracy

0.48 1

0.47 4 —— Training Accuracy

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Epochs Epochs

- Imbalanced Data: Use class weighting or oversampéohniques.

10. Futur e Enhancements

Generalize the above defined multi-class clasgiioaramework for handling other complicated alttac
conditions.

Utilize XAl tools (such as SHAP, LIME) to increasast and explainability from users and other
stakeholders.s Keep it minimal to enable efficiamining on less powerful gadgets to recommend
using edge devices.narios.

Implement explainable Al (XAl) tools (e.g., SHAPIME) to improve trust and interpretability.

Optimize for low-resource environments to improeenpatibility with edge devices.

Model Output Simulation:

+ | will generate mock predictions from a trained ra¢metwork model for
evaluation purposes.

+ Include metrics such as training accuracy, valataticcuracy, and confusion
matrices.

Training anomaly detection model...

Epoch 1/15

fusr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an “input_shape™/ input_dim™ argument to a 1
super()._ init_ (activity_regularizer=activity regularizer, **kwargs)

5076/5076 ——————————— 15s 3ms/step - accuracy: ©.9996 - loss: nan - val accuracy: 1.0000 - val loss: nan

Epoch 2/15

5076/5076 = - 21s 3ms/step - accuracy: 1.000@ - loss: nan - val accuracy: 1.ee0e - val loss: nan

Epoch 3/15

5076/5076 — = 19s 2ms/step - accuracy: 1.0000 - loss: nan - val accuracy: 1.00ee - val loss: nan

Epoch 4/15

5876/5076 ————————————— 12s 2ms/step - accuracy: 1.880@ - loss: nan - val accuracy: 1.0000 - val loss: nan

Epoch 5/15

5876/5876 ——————— 2@s 2ms/step - accuracy: 1.0000 - loss: nan - val accuracy: 1.0000 - val loss: nan

Epoch 6/15

5876/5076 ————————————— - 13s 3ms/step - accuracy: 1.8000 - loss: nan - val_accuracy: 1.0000 - val loss: nan

Epoch 7/15

5076/5076 —— 13s 3ms/step - accuracy: 1.0000 - loss: nan - val accuracy: 1.0ee0 - val loss: nan

Epoch 8/15

5076/5876 —————————— 2@s 2ms/step - accuracy: 1.000@ - loss: nan - val accuracy: 1.00ee - val loss: nan

Epoch 9/15

5876/5076 - = 12s 2ms/step - accuracy: 1.000@ - loss: nan - val accuracy: 1.0000 - val loss: nan

Epoch 10/15

5876/5076 - = 13s 3ms/step - accuracy: 1.0000 - loss: nan - val accuracy: 1.8800 - val loss: nan

Epoch 11/15

5876/5076 ———————————— 12s 2ms/step - accuracy: 1.0000 - loss: nan - val accuracy: 1.0800 - val loss: nan

Epoch 12/15

5076/5676 ————————— 2@s 2ms/step - accuracy: 1.0000 - loss: nan - val accuracy: 1.0000 - val loss: nan

Epoch 13/15

5876/5076 ————————— 13s 3ms/step - accuracy: 1.0080 - loss: nan - val accuracy: 1.0000 - val loss: nan

Uploadable M oddl Files:

| can provide Python scripts or serialized modekf{e.qg., .h5 or .sav) that can be
loaded into TensorFlow or similar frameworks.

Accuracy Report:

- | will create an accuracy report with a table agr summarizing the
performance across all tasks (e.g., anomaly detedtitrusion detection).

WARNING:tensorflow:6 out of the last 6 calls to <function TensorFlowTrainer.make predict
—— @s 11ems/step
- @s 11ems/step
- @s 12@ms/step
—— @s 138ms/step
- @s 116ms/step

-—- Real-Time Detection Results ---
Anomaly - Normal

Intrusion - Normal

Biometrics - Normal

