

Comparing the Capabilities of Ensemble Learning

Algorithms and SAST Tools for Effective Code

Based Vulnerability Detection

MSc Research Project

MSc in Cybersecurity

Ashwathy Ajaykumar Marath

Student ID: x23166371

School of Computing

National College of Ireland

Supervisor: Prof. Arghir Nicolae Moldovan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ashwathy Ajaykumar Marath

Student ID:

X23166371

Programme:

MSc in Cybersecurity

Year:

2024-2025

Module:

MSc Research Project

Supervisor:

Prof. Arghir Nicolae Moldovan

Submission Due

Date:

12-12-2024

Project Title:

Comparing the Capabilities of Ensemble Learning Algorithms and

SAST Tools for Effective Code Based Vulnerability Detection

Word Count:

7146 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ashwathy Ajaykumar Marath

Date:

12-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Comparing the Capabilities of Ensemble Learning

Algorithms and SAST Tools for Effective Code Based

Vulnerability Detection

Ashwathy Ajaykumar Marath

X23166371

Abstract

Based on the VUDENC and DiverseVul benchmarks, this work evaluates ensemble

learning algorithms and SAST tools for software vulnerability detection. Secondary

qualitative research data was collected between 2016 and 2024, and quantitative

experiments were employed. For handling class imbalance, both Random Forest,

XGBoost, LightGBM, and CatBoost ensemble models were experimented on with and

without SMOTE. Ensemble models perform better than SAST techniques with XGBoost

having the highest ROC-AUC score of 0.76 and Random Forest having stable majority

class accuracy. SAST tools were okay for level L concerns but had higher levels of false

positives and lower precision. Hybrid techniques can be used in the future to minimize

false alarms and enhance immunity to software attacks in ensemble models.

1 Introduction

As a result of the increase in cyber risks and other related threats by code vulnerabilities,

software security has become more important. It is essential to identify these weaknesses

during execution of the software development life cycle. Although static technologies like

SAST are common, they have pre-identified patterns whereby challenges like high false

positive and false negative rates are common. Therefore, only advanced methods should

enhance and complement their performance (Baptista et al., 2021). Appealing possibilities

are presented by the potential of machine learning and more specifically by improvements in

ensemble learning algorithms concerning complicated data and forecast accuracy. A lot of

industries have endorsed techniques such as XGBoost, Decision Trees, and Random Forests

(Bhardwaj, 2022). These algorithms need to be advanced more now and to do so,

methodologies such as (SMOTE, for instance) must be used when dealing with unbalanced

datasets.

1.1 Background

Software security and reliability are all about identifying the vulnerable areas in the code but

the efficacy of traditional Static Analysis Application Security Testing approaches, which are

still popular, is relatively low because of problems like high false positive and false negative

ratios (Galinde, 2023). The performance of SAST tools on the VUDENC dataset, as well as

ensemble learning approaches on the DiverseVul dataset, are compared in this study. To

measure the degree to which the models intended to identify vulnerabilities, ensemble

methods like Decision Trees, Random Forest, XGBoost, LightGBM, and CatBoost were

applied. To compare, machine learning models were trained to make more accurate

2

predictions about the existence of novel susceptibilities by employing the Synthetic Minority

Oversampling Technique (SMOTE) to balance the class distribution of the DiverseVul

dataset. Ensemble learning may aid code-based vulnerability detection systems by

augmenting other SAST approaches. This research has sought to provide useful information

about this topic by comparing the various methods in question with the help of media such as

recall, accuracy, precision, and ROC-AUC.

1.2 Motivation

This research is being undertaken because there is a critical requirement to improve software

vulnerability detection systems due to increased cyber-attacks. Even though SAST

technologies had mass usage some time back they were largely ineffective due to high false

positive and negative rates. However, new ways of safer and more reliable detection have

been made possible due to the advancement of artificial intelligence technologies, especially

ensemble learning methods. The project’s objective is to integrate these methodologies as

well as novel approaches such as SMOTE to strengthen vulnerability detection systems. The

end goal is to contribute to reducing the risks involved in software development processes

and improve the state of the art of cybersecurity frameworks by managing imbalances in the

data.

1.3 Research Aim and Objectives

This study aims to compare ensemble learning algorithms and SAST tools for code-based

vulnerability detection, focusing on improving accuracy, reducing false positives and

negatives, and providing insights into optimizing detection systems through a comprehensive

evaluation of their capabilities

• To evaluate the performance of ensemble learning algorithms, including Decision

Trees, Random Forest, XGBoost, LightGBM, and CatBoost, in detecting software

vulnerabilities using the DiverseVul dataset.

• To analyze the effectiveness of SAST tools in identifying code vulnerabilities using

the VUDENC dataset, focusing on accuracy and reliability.

• To compare the strengths and limitations of ensemble learning techniques and SAST

tools, providing insights for optimizing vulnerability detection systems.

1.4 Research Question

How do ensemble learning algorithms compare to Static Application Security Testing

(SAST) tools in terms of accuracy, reliability, and reducing false positives and false negatives

for code-based vulnerability detection?

1.5 Contribution

• The main contribution of this study is to generate an in-depth knowledge of software

security, weaknesses in the code are also sought by employing ensemble learning

techniques in contrast with SAST.

3

• This emphasizes ensemble techniques such as Random Forest, XGBoost, Decision Tree,

LightGBM, and CatBoost can complement traditional SAST tools to enhance

identification rates and address underrepresented classes through SMOTE.

• The study tests the techniques on several data sets and indicates the benefits and

shortcomings of the different approaches applied to antibiotics such as DiverseVul and

VUDENC, thus aiding the enhancement of vulnerability detection systems.

• This will make it possible to develop more effective strategies for improving the security

of software systems.

2 Related Work

2.1 Overview

Tracking vulnerabilities that have been flagged by security scanning software takes a lot of

time, more so in large, advanced communication networks. In that sense, the impact that

different software vulnerabilities can have on a given IT system can vary depending on the

environment (Siewruk, G. and Mazurczyk, 2021). The number of faults reported by scanners

can run into thousands making research and setting levels of priority rather expensive for

organizations. The context-aware software vulnerability categorization method, referred to as

Mixeway, seeks to streamline this process with the use of machine learning. For example, we

show that once the selected parts of a deep learning network are frozen, a training procedure

performed with other known and evaluated vulnerabilities enables predicting the severity

class of a newly discovered vulnerability if the description is adequately processed using the

Natural Language Processing methods (Siewruk, G. and Mazurczyk, 2021). The results of

experiments on the 12-month collected dataset of one of the largest Polish mobile network

operators do suggest that the Mixeway approach is effective and beneficial.

The software business and cybersecurity community have observed that the growth of

disclosed security defects indicates that vulnerability discovery techniques require

improvement. The open-source community has emerged in the software domain, there exist

voluminous software codes for learning by machines and data mining (Lin et al., 2020). Deep

learning has recently been implemented in speech recognition and machine translation

applications which implies the neural models have a natural language comprehension ability.

This has led to the use of deep learning by software engineers alongside cybersecurity

engineers to learn some of the patterns and semantics of vulnerable code (Lin et al., 2020).

The study reviews literature on software vulnerability detection using deep learning or neural

networks to understand how the current research applies neural approaches to code semantics

for vulnerability identification. There are the challenges of this new field and potential search

strategies identified here.

4

2.2 Static Application Security Testing (SAST) Tools: Strengths,

Limitations, and Use Cases

There has been a rise recently in smart contract attacks, and therefore security has become

vital. To solve this, several approaches in SAST methods have been suggested for improving

smart contract vulnerability detection. It is not easy to compare these instruments logically to

consider their effectiveness (Li et al., 2024). To address this gap, the authors advance an

improved, high-level classification of 45 smart contract vulnerability types in this study. The

authors give an overview that contains 40 types of code and various characteristics and

patterns of DVCs and applications using this as a reference. In evaluating these 8 SAST tools

in line with this benchmark of 788 smart contract files, and 10,394 vulnerabilities, the authors

came up with the following. The findings provide evidence that conventional SAST

instruments fail to detect as many as 50% of the benchmark flaws, combined with high levels

of imprecision and false positives that equal 10% (Li et al., 2024). This study also establishes

the use of various techniques as decreasing the false negative rate but identifies 36.77

percentage points more functions as questionable.

Static code analysis or source code analysis is important to software development and one of

the most important dimensions of an application is static application security testing.

Nevertheless, a comparison of SAST tools to select the appropriate tools for identifying

vulnerabilities is challenging (Li et al., 2023). From 161 available SAST tools, following

criteria we selected exemplar 7 free or open-source tools considered in this work. We

compared these SAST tools based on their effectiveness, reliability, and efficiency with

synthetic and recently invented realistic benchmarks. Tools for SAST achieve good

performances on synthetic datasets, but only 12.7% of realistic weaknesses (Li et al., 2023).

The detection capabilities of the tools rise to 70.9% of all vulnerability’s unseen, and most

importantly different from resource management vulnerabilities and somewhat poorly

handled input/output vulnerabilities. They built the detecting criteria and incorporated them

into abilities; however, the detection result was not satisfactory.

2.3 Ensemble Learning Algorithms for Software Vulnerability Detection

Preventative strategies and techniques utilized during software development help identify

many vulnerable software parts at an early stage to reduce testing costs and produce a

dependable and robust software system. Past studies have indicated that intelligent prediction

methods might reveal weaknesses of the system, but the lack of enough training datasets

limits their application (Pang et al., 2016). This research provides a method for early

prediction of software component vulnerability. The proposed method refers to potentially

susceptible components as mislabelled data that may contain actual, though disguised,

vulnerabilities. The ensemble learning and support vector machine algorithm is incorporated

into the hybrid method to identify the susceptible components. The proposed vulnerability

detection system is evaluated and considered against the background of Java Android apps

(Pang et al., 2016). From the empirical evaluation, it was found that the proposed hybrid

method was effective in identifying susceptible classes with high precision and acceptable

accuracy as well as recall.

5

One of the greatest emerging software security issues is the use of automated tools for

vulnerability identification. It is possible to automate a process of extracting vulnerabilities

with the help of deep learning to a certain extent (Wang et al., 2020). This work employs the

deep representation learning method and heterogeneous ensemble learning to identify these

vulnerabilities smartly and independently. Only vulnerability portions of the source code are

used in the trials first, original code files are pre-processed to reduce code analysis and

increase detectability. Second, the authors focus on the corpus with pre-training and retain

semantic features to express data samples as vectors. Third, the vectors are processed via a

deep-learning model to identify if a device is vulnerable (Wang et al., 2020). Lastly, the

authors obtain multiple classifiers for each case and train homogenous and heterogenous

ensemble classifiers. In evaluating the detection approach, we therefore compare the

efficiency and resource utilization of both the network models, the pre-training techniques,

classifiers, and vulnerabilities. The experimental observation indicates our technique

enhanced false positive, false negative, accuracy, recall, and F1 Features.

2.4 Comparative Studies on Machine Learning and Traditional Tools for

Code Security

Source code static analysis is used by software developers to identify weaknesses. Human-

expert vulnerability patterns are difficult and time-consuming, and therefore, they must rely

on machine learning to identify vulnerability (Li et al., 2019). Current research proposes

employing deep learning to detect vulnerabilities with little to no need for professionals to

define rules or traits. As with vulnerability detection, there is no clear understanding of how

the various factors influence it. This research employs two datasets of two programs with 126

types of vulnerability for the first comparison analysis to determine the impact of various

parameters on vulnerability detection (Li et al., 2019). The results also show that the

accommodation of control dependence helps to enhance vulnerability detection F1-measure

by 20.3%, and there is no significant difference between the unbalanced data processing

approaches for the datasets. Using the last output corresponding to the time step for the

bidirectional long short-term memory (BLSTM) can decrease the false negative rate by 2.0%,

at the same time it increases false positives by 0.5%.

Due to these techniques’ development in the broader field of machine learning, academics

have attempted to use the same in many software engineering activities that involve source

code analysis including testing and identification of vulnerabilities (Sharma et al., 2021). Due

to many publications, it can be challenging for people to understand the scientific

environment. It provides a state-of-the-art understanding of applied machine learning for

source code analysis. A discussion of the machine learning techniques, resources, and applied

methodologies for addressing twelve problems in software engineering is presented. Based on

the database literature search the authors get 479 main study collecting data from the period

of 2011 to 2021 (Sharma et al., 2021). The listed studies enable us to draw conclusions and

summarise our observations and findings. The author's investigation showed that machine

learning is being employed for source code analyses.

6

2.5 Addressing Class Imbalance in Machine Learning for Vulnerability

Detection

There is minimum empirical literature on SDD which is a binary classifier problem having

skewed data distribution and tilted learning in favor of one class (Kim and Chung, 2024). The

richness of information is maintained by deep learning and machine learning to employ four

class balancing methods including SMOTE, ADASYN, SMOTE-Tomek, and SMOTE-ENN

for the SDD problem. Deep learning employs MLP, CNN, and LSTM and machine learning

employs decision trees, random forest, logistic regression, and XGB (Kim and Chung, 2024).

Therefore, we evaluate and discuss class balancing techniques on those models. Our

investigation revealed that the applications of class balancing strategies were positive on

MLP, negative on CNN and LSTM, and positive on all machine learning techniques.

2.6 Summary

Study

(Author,

Year)

Purpose Key Features Strengths Weaknesses
Proposed

Algorithm/Approach

Siewruk

and

Mazurczyk

(2021)

To streamline

vulnerability

tracking using

machine

learning in

large

communication

networks.

Introduced

Mixeway, a

context-aware

software

categorization

method using

NLP and deep

learning.

Demonstrated

effectiveness in

predicting

severity class

with a 12-

month dataset

from a Polish

mobile

operator.

Requires

adequately

processed

vulnerability

descriptions

and is

environment

dependent.

Mixeway method

with selected frozen

layers and NLP for

severity prediction.

Lin et al.

(2020)

To review

software

vulnerability

detection using

deep learning

and neural

networks.

Neural

models

comprehend

code

semantics,

leveraging

deep learning

for

vulnerability

identification.

Highlights the

potential of

deep learning

for pattern

recognition and

vulnerability

detection in

software code.

Identifies

challenges and

gaps in

applying

neural models

to code

semantics.

Use of deep

learning to capture

patterns and

semantics of

vulnerable code.

7

Li et al.

(2024)

To classify and

evaluate SAST

tools for

detecting smart

contract

vulnerabilities.

Evaluated 8

SAST tools

on 788 smart

contract files

and 10,394

vulnerabilities

Identified high

false positives

(10%) and

evidence that

SAST tools

miss 50% of

benchmark

flaws.

SAST tools

performed

inconsistently

and failed to

detect a

significant

portion of

vulnerabilities

High-level

classification of 45

smart contract

vulnerabilities to

refine detection

benchmarks.

Li et al.

(2023)

To assess the

effectiveness

of open source

SAST tools in

detecting

realistic

vulnerabilities

Compared to

7 free/open-

source tools

using

synthetic and

realistic

benchmarks

Improved

detection

capabilities on

unseen

vulnerabilities

(70.9%) with

12.7% success

on realistic

weaknesses.

Poor

performance

in handling

input/output

vulnerabilities

and resource

management

flaws.

Developed

detection criteria

and incorporated

them into SAST

tools

Pang et al.

(2016)

To propose a

hybrid method

for early

prediction of

software

component

vulnerabilities.

Combined

ensemble

learning and

SVM to

identify

susceptible

components.

Achieved high

precision,

accuracy, and

recall in

identifying

vulnerable

classes in Java

Android apps.

The lack of

sufficient

training

datasets limits

broader

applications.

Hybrid approach

combining

ensemble learning

and SVM for early

vulnerability

detection.

Wang et

al. (2020)

To automate

vulnerability

detection using

deep

representation

and ensemble

learning

methods.

Pre-processed

original code,

retained

semantic

features, and

used

ensemble

classifiers.

Enhanced false

positive, and

false negative

rates, and

improved

accuracy,

recall, and F1

score in

experimental

observations.

Resource-

intensive due

to pre-training

techniques and

large-scale

trials.

Heterogeneous and

homogeneous

ensemble classifiers

for automated

vulnerability

detection.

Li et al.

(2019)

To employ

deep learning

for

vulnerability

detection with

minimal

human

intervention.

BLSTM

model with

control

dependence

for analyzing

code and

datasets.

Improved the

F1 measure by

20.3% and

decreased false

negatives by

2.0%.

Slight increase

in false

positives

(0.5%) and

limited dataset

scope for

evaluation.

Bidirectional long

short-term memory

(BLSTM) with

control dependence

for enhanced

detection.

Sharma et

al. (2021)

To provide an

overview of

machine

learning

techniques for

source code

analysis and

Reviewed

479 studies

on ML

techniques

applied to

software

engineering

Comprehensive

overview of

applied

machine

learning in

source code

analysis,

Generalized

findings may

not apply

directly to

specific use

cases or tools.

Summary of state-

of-the-art machine

learning techniques

for source code

analysis.

8

vulnerability

detection.

problems. summarizing

trends and

methodologies.

Kim and

Chung

(2024)

To address the

class

imbalance in

software defect

detection

(SDD)

problems using

class balancing

Evaluated

SMOTE,

ADASYN,

SMOTE-

Tomek, and

SMOTE-

ENN on

various deep

learning &

ML models

Positive impact

on MLP,

decision tree,

random forest,

and XGB

models, with

improved

richness of info

for imbalanced

datasets

Negative

impact on

CNN and

LSTM

models,

highlighting

inconsistencies

across

different

techniques

Class balancing

techniques applied

to MLP, CNN,

LSTM, and various

ML models for

SDD.

3 Research Methodology
Using both qualitative and quantitative methodologies this paper uses an assessment of

software vulnerability identification employing SAST tools and ensemble learning

algorithms. The application includes data exploration, analysis, and interpretation by

following the Knowledge Discovery in Databases (KDD) process. The papers selected are

from 2016–2024 literature review forms the basis of the qualitative component of the study.

This study describes the SAST tool, ensemble learning, and software vulnerability detection

development. The summary table in the literature review provided an aggregate perspective

of their strengths, weaknesses, and trends based on the information in scholarly publications,

technical reports, and case studies. The qualitative study gives the theoretical background for

the comparison of the classical SAST methods and Ensemble Learning. Specifically, for the

quantitative evaluation of SAST tools and ensemble learning approaches, the VUDENC and

DiverseVul datasets are utilized. The dataset DiverseVul was analyzed with Decision Trees,

Random Forests, XGBoost, LightGBM, and Cat Boost ensemble learning models.

DiverseVul employed SMOTE to enhance model detection because of the issue of class

imbalance. It is analyzed for accuracy, precision, recall, F1 score, and ROC AUC and both

methods were compared. The paper comparing SAST tools and ensemble learning algorithms

is based on a qualitative review of the related literature as well as a quantitative analysis of

the obtained datasets. The integration of qualitative and quantitative approaches provides a

multidimensional investigation making the vulnerability detection systems more credible.

3.1 KDD Framework

Knowledge Discovery in Databases, or KDD, is a systematic technique for deriving useful

lessons and patterns from large sets of data. Data selection, pre-processing, transformation,

data mining, interpretation, or evaluation are processes involved in this procedure. The KDD

framework was chosen because it offers a structured approach to handling complex datasets,

thus ensuring robust pre-processing and evaluation workflows. Other frameworks, such as

CRISP-DM or SEMMA, were considered, but the iterative process of KDD fit better with the

dynamic nature of the tasks related to vulnerability detection.

9

Figure 1: KDD Framework. Source: (Chehab, 2020)

Data Selection: This study used the VUDENC dataset because of its comprehensive labeling

of vulnerabilities and good alignment with SAST tools. DiverseVul is selected because of the

diversity of its vulnerabilities, which provides good training of machine learning models. As

compared to the Juliet Test Suite or CodeXGLUE, these datasets gave richer and more

applicable benchmarks to this study.

Data Pre-processing: Concerning the previous case, additional data were added to fill the

empty spaces aiming to increase the effectiveness of the model. A standard preprocessing

method was used to enable relevant conclusions to be drawn from the output of SAST tools

before feeding them to VUDENC.

Data Transformation: To convert the textual information into numerical information which

can be utilized by ensemble methods, feature extraction of the DiverseVul dataset was

performed by using TF-IDF (term frequency-inverse document frequency). Scale features

were split into a training set, which is used to fit the data, and a test set which is used to

assess performance for statistical analysis.

Data Mining: DiverseVul dataset was used to train and test Decision Trees, Random Forest,

XGBoost, LightGBM, and CatBoost ensemble learning algorithms. Recall that VUDENC

was used to test SAST vulnerability detection tools. Accuracy, precision, recall, and ROC-

AUC statistics were computed for performance evaluation.

Interpretation and Evaluation: Utilization of an ensemble learning algorithm in

conjunction with the SAST tool results dynamics enabled insight into the comparative

advantages and weaknesses of the two variables. This research demonstrates the possibility of

enhancing vulnerability detection systems based on SAST techniques by using ensemble

methods.

3.2 Libraries Imported

The project required data processing, machine learning, and assessment of Python packages.

Pandas allows structure data manipulation and JSON-loaded datasets. Visualization tasks

drew graphs and distributions with the use of Matplotlib. The SMOTE was chosen instead of

other techniques like ADASYN since this method generates synthetic samples without losing

the general distribution of the data. Thus, it can be very effective for handling the class

imbalance found in DiverseVul. Other techniques like SMOTE-ENN were not used here

10

since these require more computational overhead with a greater risk of overfitting. The

function of TfidfVectorizer from sklearn.feature_extraction.text is to summarize text for the

feature. Ensemble techniques were used using machine learning models such as

DecisionTreeClassifier, RandomForestClassifier, XGBClassifier, LGBMClassifier, and

CatBoostClassifier from sklearn, xgboost, lightgbm, and catboost. When the machine

learning model’s performance was evaluated using metrics obtained from scikit-learn’s

metrics module, the obtained accuracy, ROC-AUC score, as well as a classification report.

The train_test_split of the sklearn.model_selection package separated the data into a training

and a testing set. During dataset preparation, attempts at modeling; and analysis, these

packages provided a good platform.

3.3 Feature Extraction

This research converted unstructured text into numerical features suitable for use in machine

learning models. Using the TfidfVectorizer tool, the func column of the DiverseVul dataset

was transformed into a TF-IDF matrix. TF-IDF was used because it is simple and efficient

for text-based datasets. Methods like Word2Vec or BERT capture contextual information of

the words; however, TF-IDF was more computationally efficient for the goals in this study.

This approach enhanced the performance of vulnerability detection by training systems based

on ensembling learning using textual information.

3.4 Data Split

In this research, the dataset was separated for training and testing machine learning models.

The dataset was partitioned 80:20 to form the training and the testing sets using

Train_test_split from sklearn.model_selection. This approach enabled models to learn from

80 percent of the data and use the remaining 20 percent to test their performance. The use of

this splitting method maintained the integrity of the class distributions so that the training and

testing datasets were representative of the primary dataset. In this respect, these methods

evaluated models and thus provided a means for more detailed comparisons of the 12-

vulnerability detection and overfitting/bias reduction capabilities of ensemble learning

algorithms.

3.5 Dataset Description

This study worked on VUDENC and DiverseVul, two datasets that are devoted to individual

analysis (LauraWartschinski, 2019; surrealyz, 2024). The VUDENC dataset used in the

experiments is comprised of labeled vulnerabilities of different software systems which were

used to evaluate the effectiveness of the SAST tools in terms of accuracy, precision, and

reliability. The DiverseVul project has sufficient detailed information on the functional

behavior of the source code and vulnerabilities which is applicable for machine learning. To

deal with the class imbalance problem in this dataset, SMOTE feature extraction and

balancing were applied. These datasets permitted extensive research of the traditional SAST

approaches as well as the relatively recent combined learning techniques for the search of

vulnerabilities.

11

3.6 Justification of SAST and Ensemble Learning Algorithms

This research used SAST tools and a collection of learning methods due to their combined

strengths in the identification of vulnerabilities. SAST tools are mostly employed in static

code analysis revealing vulnerabilities as the software is being developed. However, their

highly high false positive and negative rates necessitate new solutions. Ensemble learning

methods such as Random Forest, Decision Tree, XGBoost, LGBM, and CatBoost improve

accuracy and work well with complex datasets. This work integrates the rule-based detection

capabilities of SAST tools with the data-driven insights of ensemble models to increase the

accuracy, reliability, and resiliency performance of code-based vulnerability detection

systems.

4 Design Specification
This study systematically assesses the SAST tools and Ensemble Learning approaches for the

identification of vulnerabilities. The data preparation includes loading VUDENC and

DiverseVul followed by SMOTE imbalance correction and TFIDF feature extraction. The

data is split into training and testing sets for model training. The study employed Random

Forest, XGBoost, LightGBM, and CatBoost ensemble learning methods. Evaluation

measures include accuracy, precision, recall, F1-score, and ROC-AUC.

Figure 2: Workflow Diagram

5 Implementation

• Python and a host of libraries were employed. Data processing was done with the aid

of Pandas which ensured that the initial data received was structured in a consistent

manner for analysis. Initially, VUDENC and DiverseVul were imported separately.

They were then cleaned and merged into a single DataFrame with a modeling traintest

proportion of 80:20.

12

• SAST and machine learning were integrated to detect and capture vulnerabilities.

Bandit and SonarQube SASTs were used to assess the presence of codes that were a

cause of concern. Among the challenges addressed were severity and confidence

issues within the source code.

• Some of the machine learning models applied included Decision Trees, Random

Forest, XGBoost, and CatBoost as well as LightGBM. In the case of class imbalance,

the SMOTE technique was utilized on the preprocessed data. Numbers for feature

extractions were generated from text through the TF-IDF vectorizer.

• Grid and random search were the approaches used in fine tuning the models to

improve accuracy. Evaluation metrics that were deployed include measures such as

ROC-AUC values, precision, recall and F1-score.

• The comparison sought to demonstrate how SAST tools stack up against ensemble

learning techniques in locating code vulnerabilities while minimizing false positive

and negatives.

• Hardware: RAM – 8GB, Operating System – Windows 11, Processor – i5

6 Evaluation

6.1 EDA – Exploratory Data Analysis

Figure 3: Class Distribution

As the class distribution graph indicates, the dataset has more instances of non-vulnerable

instances than vulnerable ones. This disparity means that the model training must incorporate

oversampling, under sampling, or appropriate techniques so that bias does not occur, and the

right predictions are given.

13

Figure 4: Top 10 Most Common CWEs

CWE-787 (Out-of-Bounds Write) is the most common in the chart above. This highlights the

important issues which must be tackled by developers as well as security teams. The

frequency distribution supports the aim of focusing on certain classes of CWE for

vulnerability and software security enhancement.

6.2 Decision Tree Classifier

Table 1: Result of Decision Tree Classifier

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.94 0.71 0.94 0.83 0.93 0.68

Recall 1 0.02 0.51 0.94

F1-Score 0.97 0.03 0.5 0.92

Support

(Samples)
62,310 3,789 66099 66099 66099

In Table 1, the modified Decision Tree yields a high accuracy of 94% and precision for non-

vulnerable samples (class 0) but performs very poorly on vulnerable samples, class

1, with low recall of 0.02 and F1 score of 0.03. The macro F1 score is 0.50, showing uneven

performance, while the weighted average F1 score is 0.92, reflecting class imbalance. The

ROC-AUC is 0.68, which suggests that there is room for improvement by balancing classes

or features.

6.3 Random Forest

Table 2: Result of Random Forest Classifier

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.95 0.2 0.92 0.57 0.9 0.73

Recall 0.97 0.12 0.54 0.92

F1-Score 0.96 0.15 0.55 0.91

Support

(Samples)
62,310 3,789 66099 66099 66099

14

In Table 2, the Random Forest model yielded 92% accuracy, with 0.95 precision and 0.97

recall for the non-vulnerable samples of Class 0, showing very low recall for the vulnerable

samples of Class 1 at 0.12 and an F1 score of 0.15. The weighted F1 score is 0.91, reflecting

the dominance of Class 0. A ROC-AUC of 0.73 reflects fair but improvable discriminative

ability.

6.4 XGB Classifier

Table 3: Result of XGB Classifier

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.94 0.47 0.94 0.71 0.92 0.78

Recall 1 0.04 0.52 0.94

F1-Score 0.97 0.08 0.53 0.92

Support

(Samples)
62,310 3,789 66099 66099 66099

In Table 3, it gives an accuracy of 94% in the XGBoost model, where recall for Class 0 (not

vulnerable) was 1.00, and the F1 score was at 0.97, while for Class 1, representing vulnerable

ones, it was extremely low, 0.04 and 0.08, respectively. The macro metrics clearly indicate

poor handling of the minority class, though at a ROC-AUC of 0.78, which was better

compared to most models.

6.5 SOTA Implementation

6.5.1 LGBM Classifier

Table 4: Result of LGBM Classifier

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.94 0.62 0.94 0.78 0.93 0.79

Recall 1 0.02 0.51 0.94

F1-Score 0.97 0.05 0.51 0.92

Support

(Samples)
62,310 3,789 66099 66099 66099

In Table 4, the LightGBM model yielded an accuracy of 94%, where Class 0 had perfect

recall of 1.00 and an F1 score of 0.97, while Class 1 had very poor recall of 0.02 with an F1

score of 0.05, which shows class imbalance. However, the ROC-AUC score is 0.79, which

was higher than earlier models.

15

6.5.2 CatBoost Classifier

Table 5: Result of CatBoost Classifier

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.94 0.49 0.94 0.72 0.92 0.79

Recall 1 0.04 0.52 0.94

F1-Score 0.97 0.08 0.53 0.92

Support

(Samples)
62,310 3,789 66099 66099 66099

In Table 5, CatBoost demonstrates its full capability in detecting non-vulnerable samples

(class 0) with a perfect recall of 1.00 and a good F1 score of 0.97. Overall accuracy

performance is 94%. However, it has a hard time detecting the susceptible samples (Class 1)

having a recall of 0.04 and a very low F1 score of 0.08, which points to poor performance in

terms of handling the minority class.

6.6 ROC Curve

Figure 5: ROC Curve Comparison

The ROC curve comparison of ensemble models depicts their ability to classify susceptible

and non-susceptible samples. The highest AUC values belonged to CatBoost and LightGBM

at (0.79), indicating better discrimination. The AUC for Random Forest is good at 0.73 while

XGBoost comes next with 0.78. Decision Tree had low AUC of 0.68 suggesting poor

prediction. These curves show the degree to which the models can achieve high true positive

rates without increasing false positives, where CatBoost and LightGBM were the best

models. The results confirm the effectiveness of the new methods of ensemble-based

vulnerability detection techniques.

16

6.7 Comparative Analysis of Ensemble Learning Algorithm without

SMOTE

Table 6: Comparative Analysis of Ensemble Learning Algorithm without SMOTE

Metric
Decision

Tree

Random

Forest
XGBoost LightGBM CatBoost

Precision

(Class 0)
0.94 0.95 0.94 0.94 0.94

Precision

(Class 1)
0.71 0.2 0.47 0.62 0.49

Recall (Class

0)
1 0.97 1 1 1

Recall (Class

1)
0.02 0.12 0.04 0.02 0.04

F1-Score

(Class 0)
0.97 0.96 0.97 0.97 0.97

F1-Score

(Class 1)
0.03 0.15 0.08 0.05 0.08

Accuracy 0.94 0.92 0.94 0.94 0.94

Macro Avg

Precision
0.83 0.57 0.71 0.78 0.72

Macro Avg

Recall
0.51 0.54 0.52 0.51 0.52

Macro Avg

F1-Score
0.5 0.55 0.53 0.51 0.53

Weighted

Avg F1-Score
0.92 0.91 0.92 0.92 0.92

ROC-AUC

Score
0.68 0.73 0.78 0.79 0.79

The ROC-AUC values of LightGBM and CatBoost were the highest (0.79), which means

better performance. The precision and recall for Class 0 are good, with Class 1 having a more

erratic performance, however. While Random Forest and XGBoost achieved similar

accuracy, the recall for Class 1 was lower relative to the results for LightGBM and CatBoost.

The Decision Tree has a low AUC value but is correct. Therefore, LightGBM and CatBoost

seem to be performing well in terms of predictive power and discrimination.

6.8 Comparative Analysis of Ensemble Learning Algorithm with SMOTE

Table 7: Random Forest with SMOTE Results

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.95 0.17 0.9 0.56 0.91 0.72

Recall 0.94 0.19 0.57 0.9

F1-Score 0.95 0.18 0.56 0.9

Support 62,310 3,789 66,099 66,099 66,099

17

In Table 7, Random Forest model using SMOTE performs with an accuracy of 90% with a

ROC-AUC score of 0.72. Class 0 (non-vulnerable) successfully predicted non-vulnerable

samples with a good level of accuracy (0.95), recall (0.94), and an F1 score of (0.95).

SMOTE balancing helps but Class 1 (Vulnerable) still has a very low accuracy of 0.17 and

recall of 0.19 which signifies challenges in detecting susceptible samples. To improve

vulnerability detection these results, indicate that optimization is needed.

Table 8: Decision Tree with SMOTE Results

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.96 0.12 0.79 0.54 0.91 0.69

Recall 0.81 0.43 0.62 0.79

F1-Score 0.88 0.19 0.53 0.84

Support 62,310 3,789 66,099 66,099 66,099

In Table 8, Decision Tree model, enhanced by SMOTE, reaches an accuracy of 79% with the

ROC-AUC indicator at 0.69. However, Class 0 (Non-Vulnerable) managed to maintain

relatively good accuracy 0.96 with an F1 score grading of 0.88 for identification of non-

vulnerable samples. Class 1 (Vulnerable) had a fair F1 score of 0.19, a relatively lower

accuracy of 0.12 with recall at 0.43. In practice, this means that despite SMOTE improving

the recall over the susceptible sample, the overall performance indicates the challenge of

balancing for class detection. More efforts must be applied in detecting Class 1

vulnerabilities.

Table 9: XGBoost with SMOTE Results

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.96 0.18 0.86 0.57 0.92 0.76

Recall 0.88 0.43 0.66 0.86

F1-Score 0.92 0.26 0.59 0.88

Support 62,310 3,789 66,099 66,099 66,099

In Table 9, XGBoost model with SMOTE has an overall accuracy of 86% and ROC-AUC

0.76. Class 0 (non-vulnerable) achieved an accuracy score of 0.96 as well as an F1 score of

0.92. Class 1 (vulnerable) increased from previous models achieving 0.18 accuracy and 0.43

recall, which provides an average F1 score of 0.26. Susceptible samples are easy to identify

after applying SMOTE and this increases class balance but tuning of Class 1 precision and

recall is still required.

18

Table 10: LightGBM with SMOTE Results

Metric
Class 0 (non-

vulnerable)

Class 1

(vulnerable)
Accuracy

Macro

Avg

Weighted

Avg

ROC-

AUC

Score

Precision 0.97 0.18 0.84 0.57 0.92 0.77

Recall 0.86 0.49 0.67 0.84

F1-Score 0.91 0.26 0.59 0.87

Support 62,310 3,789 66,099 66,099 66,099

In Table 10, the model also includes LightGBM with SMOTE having an 84% accuracy and

0.77 ROC AUC. Non-Vulnerable or Class 0 achieved an accuracy of 0.97 and an F1 Score of

0.91. The vulnerable class 1 improved with a recall of 0.49 while the F1-score was 0.26 and

accuracy remained low at 0.18. Compared to the previous model, SMOTE helped in

enhancing the detection of vulnerabilities with a slight imbalance in Class 1 accuracy and F1-

score. This model has a somewhat better balance than previous ensemble methods.

6.9 Analysis using SAST

(1) Bandit:

Figure 6: Output of Bandit

Figure 6 are the output results from the VUDENC dataset. There were no lines skipped

because of #nosec comments and based on the Bandit scan data, the scan was completed on

3205 lines of code. The study reports 54 problems, out of which 32 are of low priority, 15 of

medium priority, and 7 of high priority. Of these, 41 issues have high confidence, and the rest

of them, have low- or medium-confidence. Uniquely, there was a syntax error during AST

processing and one file which is xsrf-3.py was excluded; this file requires close look or

coding correction. To enhance the reliability as well as the security of the obtained code,

therefore, the study underscores the importance of addressing high-severity and high-

confidence issues. This should be done perhaps when reviewing stalled or inactive files for

possible threats.

19

(2) SonarQube:

Figure 7: Output of SonarQube

Figure 7 are the results from the VUDENC dataset. Based on the SonarQube it is found that a

few areas need improvement, however, the quality gate was cleared. There is a risk that must

be fixed first because there is still one that possesses a high problem (severe) that was

reported in the security section. There are 6 unresolved problems in the code base structure 4

are critical and 2 are medium even though they reside in the reliability section. This has in

turn the risk of impacting the reliability of the code. Of the 100 outstanding issues related to

maintainability, 33 hours is estimated to be the time required for the worst 100 issues. The

other 100 looks like they need further research as out of the 24,000 lines checked, some lines

remain untested, and there is no code coverage. In total, there are 28 manual security review

required code fragments that must be scanned to assess the threat they might cause.

6.10 Limitations

Ensemble learning was not performed on VUDENC because of issues with the dataset split

provided in the repository, which did not have proper training and validation sets and was not

clearly mentioned in their respective repository too. SAST tools were not applicable to

DiverseVul since the dataset contained incomplete code snippets, which these tools cannot

analyze. Ensemble learning was applied to DiverseVul, while Bandit and SonarQube were

used on VUDENC, giving their respective suitability for static and dynamic analysis.

Pre-processing for both methods in these two datasets was not practical due to time and

resource limitations. Hence based on both dataset’s compatibility, the decision was made to

use these methods on different datasets. The comparison demonstrated the strength of each

approach in their contexts respectively rather than a direct competition.

20

7 Conclusion and Future Work

7.1 Conclusion

Based on this research, it is established that both ensemble learning algorithms and SAST

tools detect software defects. Comparing Random Forest with other ensemble techniques

while using the evaluation metrics Accuracy, precision for the vulnerable class, and Recall

for the ‘non-vulnerable’ class, it was observed that the Random Forest’s results were the best.

Including SMOTE enhanced the model in detecting weakness of the minority class since it

has a problem of class imbalance. The traditional SAST technology primarily targets rule-

based vulnerability discovery on code and may not offer a perfect prediction and adaptation

to complex patterns and may have higher numbers of false positives. Random Forest was

more effective for the precise determination of vulnerability since it can work with different

data sets and reduce false negatives. Since SAST techniques and ensemble learning models

are synergistic, this research suggests implementing these techniques in parallel to detect and

eliminate software flaws.

7.2 Future Work

This work can be extended in the future to enhance the integration of SAST tools with

ensemble learning algorithms to offer an ensembled vulnerability detection option. To deal

with class imbalance, advanced preprocessing methods such as dynamic data enhancement

might be applied. Transformers used for categorizing the vulnerability that uses deep learning

as its base may increase the rates of correct detection and minimize false negatives. The

inclusion of datasets from another programming language will greatly enhance the study’s

applicability. Ultimately, running the proposed models online with real limitations explored

can specify the models’ scalability and robustness.

21

References

Baptista, T., Oliveira, N. and Henriques, P.R., 2021. Using machine learning for vulnerability

detection and classification. In 10th Symposium on Languages, Applications and

Technologies (SLATE 2021).

Bhardwaj, P., 2022. Finding IoT privacy issues through malware Detection using XGBoost

machine learning technique (Doctoral dissertation, Dublin, National College of Ireland).

Chehab, M., 2020. Knowledge Discovery Data (KDD). [Online] Available at:

https://medium.com/analytics-vidhya/knowledge-discovery-data-kdd-a8b41509bff9

Galinde, D.R., 2023. Effective approach for Malware Detection using Machine Learning and

Deep Learning for IoT-Devices (Doctoral dissertation, Dublin, National College of Ireland).

Harer, J.A., Kim, L.Y., Russell, R.L., Ozdemir, O., Kosta, L.R., Rangamani, A., Hamilton,

L.H., Centeno, G.I., Key, J.R., Ellingwood, P.M. and Antelman, E., 2018. Automated

software vulnerability detection with machine learning. arXiv preprint arXiv:1803.04497.

Kim, D.K. and Chung, Y.K., 2024. Addressing class imbalances in software defect detection.

Journal of Computer Information Systems, 64(2), pp.219-231.

LauraWartschinski, 2019. VUDENC - Vulnerability Detection with Deep Learning on a

Natural Codebase. [Online] Available at:

https://github.com/LauraWartschinski/VulnerabilityDetection/tree/master?tab=readme-ov-file

Li, K., Chen, S., Fan, L., Feng, R., Liu, H., Liu, C., Liu, Y. and Chen, Y., 2023, November.

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java. In

Proceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (pp. 921-933).

Li, K., Xue, Y., Chen, S., Liu, H., Sun, K., Hu, M., Wang, H., Liu, Y. and Chen, Y., 2024.

Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We?

Proceedings of the ACM on Software Engineering, 1(FSE), pp.1447-1470.

Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M. and Jin, H., 2019. A comparative study of deep

learning-based vulnerability detection system. IEEE Access, 7, pp.103184-103197.

Lin, G., Wen, S., Han, Q.L., Zhang, J. and Xiang, Y., 2020. Software vulnerability detection

using deep neural networks: a survey. Proceedings of the IEEE, 108(10), pp.1825-1848. 24

Logan, T., 2020. A practical, iterative framework for secondary data analysis in educational

research. The Australian educational researcher, 47(1), pp.129-148.

Pang, Y., Xue, X. and Namin, A.S., 2016, December. Early identification of vulnerable

software components via ensemble learning. In 2016 15th IEEE International Conference on

Machine Learning and Applications (ICMLA) (pp. 476-481). IEEE.

https://medium.com/analytics-vidhya/knowledge-discovery-data-kdd-a8b41509bff9
https://github.com/LauraWartschinski/VulnerabilityDetection/tree/master?tab=readme-ov-file%20

22

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H. and Sarro, F., 2021.

A survey on machine learning techniques for source code analysis. arXiv preprint

arXiv:2110.09610.

Siewruk, G. and Mazurczyk, W., 2021. Context-aware software vulnerability classification

using machine learning. IEEE Access, 9, pp.88852-88867.

surrealyz, 2024. DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning

Based Vulnerability Detection. [Online] Available at: https://github.com/wagner-

group/diversevul

Wang, L., Li, X., Wang, R., Xin, Y., Gao, M. and Chen, Y., 2020. PreNNsem: A

heterogeneous ensemble learning framework for vulnerability detection in software. Applied

Sciences, 10(22), p.7954.

Zaharia, S., Rebedea, T. and Trausan-Matu, S., 2022. Machine Learning-Based Security

Pattern Recognition Techniques for Code Developers. Applied Sciences, 12(23), p.12463.

https://github.com/wagner-group/diversevul
https://github.com/wagner-group/diversevul

