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Algorithms and SAST Tools for Effective Code Based 

Vulnerability Detection 
 

Ashwathy Ajaykumar Marath  

X23166371  
 

 

Abstract 

Based on the VUDENC and DiverseVul benchmarks, this work evaluates ensemble 

learning algorithms and SAST tools for software vulnerability detection. Secondary 

qualitative research data was collected between 2016 and 2024, and quantitative 

experiments were employed. For handling class imbalance, both Random Forest, 

XGBoost, LightGBM, and CatBoost ensemble models were experimented on with and 

without SMOTE. Ensemble models perform better than SAST techniques with XGBoost 

having the highest ROC-AUC score of 0.76 and Random Forest having stable majority 

class accuracy. SAST tools were okay for level L concerns but had higher levels of false 

positives and lower precision. Hybrid techniques can be used in the future to minimize 

false alarms and enhance immunity to software attacks in ensemble models. 
 

1 Introduction 
 

As a result of the increase in cyber risks and other related threats by code vulnerabilities, 

software security has become more important. It is essential to identify these weaknesses 

during execution of the software development life cycle. Although static technologies like 

SAST are common, they have pre-identified patterns whereby challenges like high false 

positive and false negative rates are common. Therefore, only advanced methods should 

enhance and complement their performance (Baptista et al., 2021). Appealing possibilities 

are presented by the potential of machine learning and more specifically by improvements in 

ensemble learning algorithms concerning complicated data and forecast accuracy. A lot of 

industries have endorsed techniques such as XGBoost, Decision Trees, and Random Forests 

(Bhardwaj, 2022). These algorithms need to be advanced more now and to do so, 

methodologies such as (SMOTE, for instance) must be used when dealing with unbalanced 

datasets. 

1.1 Background 

Software security and reliability are all about identifying the vulnerable areas in the code but 

the efficacy of traditional Static Analysis Application Security Testing approaches, which are 

still popular, is relatively low because of problems like high false positive and false negative 

ratios (Galinde, 2023). The performance of SAST tools on the VUDENC dataset, as well as 

ensemble learning approaches on the DiverseVul dataset, are compared in this study. To 

measure the degree to which the models intended to identify vulnerabilities, ensemble 

methods like Decision Trees, Random Forest, XGBoost, LightGBM, and CatBoost were 

applied. To compare, machine learning models were trained to make more accurate 
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predictions about the existence of novel susceptibilities by employing the Synthetic Minority 

Oversampling Technique (SMOTE) to balance the class distribution of the DiverseVul 

dataset. Ensemble learning may aid code-based vulnerability detection systems by 

augmenting other SAST approaches. This research has sought to provide useful information 

about this topic by comparing the various methods in question with the help of media such as 

recall, accuracy, precision, and ROC-AUC. 

1.2 Motivation 

This research is being undertaken because there is a critical requirement to improve software 

vulnerability detection systems due to increased cyber-attacks. Even though SAST 

technologies had mass usage some time back they were largely ineffective due to high false 

positive and negative rates. However, new ways of safer and more reliable detection have 

been made possible due to the advancement of artificial intelligence technologies, especially 

ensemble learning methods. The project’s objective is to integrate these methodologies as 

well as novel approaches such as SMOTE to strengthen vulnerability detection systems. The 

end goal is to contribute to reducing the risks involved in software development processes 

and improve the state of the art of cybersecurity frameworks by managing imbalances in the 

data. 

1.3 Research Aim and Objectives 

This study aims to compare ensemble learning algorithms and SAST tools for code-based 

vulnerability detection, focusing on improving accuracy, reducing false positives and 

negatives, and providing insights into optimizing detection systems through a comprehensive 

evaluation of their capabilities 

• To evaluate the performance of ensemble learning algorithms, including Decision 

Trees, Random Forest, XGBoost, LightGBM, and CatBoost, in detecting software 

vulnerabilities using the DiverseVul dataset. 

• To analyze the effectiveness of SAST tools in identifying code vulnerabilities using 

the VUDENC dataset, focusing on accuracy and reliability. 

• To compare the strengths and limitations of ensemble learning techniques and SAST 

tools, providing insights for optimizing vulnerability detection systems. 

1.4 Research Question 

How do ensemble learning algorithms compare to Static Application Security Testing 

(SAST) tools in terms of accuracy, reliability, and reducing false positives and false negatives 

for code-based vulnerability detection? 

1.5 Contribution 

 

• The main contribution of this study is to generate an in-depth knowledge of software 

security, weaknesses in the code are also sought by employing ensemble learning 

techniques in contrast with SAST.  
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• This emphasizes ensemble techniques such as Random Forest, XGBoost, Decision Tree, 

LightGBM, and CatBoost can complement traditional SAST tools to enhance 

identification rates and address underrepresented classes through SMOTE.  

• The study tests the techniques on several data sets and indicates the benefits and 

shortcomings of the different approaches applied to antibiotics such as DiverseVul and 

VUDENC, thus aiding the enhancement of vulnerability detection systems.  

• This will make it possible to develop more effective strategies for improving the security 

of software systems.  

 
 

2 Related Work 

2.1 Overview 

Tracking vulnerabilities that have been flagged by security scanning software takes a lot of 

time, more so in large, advanced communication networks. In that sense, the impact that 

different software vulnerabilities can have on a given IT system can vary depending on the 

environment (Siewruk, G. and Mazurczyk, 2021). The number of faults reported by scanners 

can run into thousands making research and setting levels of priority rather expensive for 

organizations. The context-aware software vulnerability categorization method, referred to as 

Mixeway, seeks to streamline this process with the use of machine learning. For example, we 

show that once the selected parts of a deep learning network are frozen, a training procedure 

performed with other known and evaluated vulnerabilities enables predicting the severity 

class of a newly discovered vulnerability if the description is adequately processed using the 

Natural Language Processing methods (Siewruk, G. and Mazurczyk, 2021). The results of 

experiments on the 12-month collected dataset of one of the largest Polish mobile network 

operators do suggest that the Mixeway approach is effective and beneficial.  

 

The software business and cybersecurity community have observed that the growth of 

disclosed security defects indicates that vulnerability discovery techniques require 

improvement. The open-source community has emerged in the software domain, there exist 

voluminous software codes for learning by machines and data mining (Lin et al., 2020). Deep 

learning has recently been implemented in speech recognition and machine translation 

applications which implies the neural models have a natural language comprehension ability. 

This has led to the use of deep learning by software engineers alongside cybersecurity 

engineers to learn some of the patterns and semantics of vulnerable code (Lin et al., 2020). 

The study reviews literature on software vulnerability detection using deep learning or neural 

networks to understand how the current research applies neural approaches to code semantics 

for vulnerability identification. There are the challenges of this new field and potential search 

strategies identified here. 
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2.2 Static Application Security Testing (SAST) Tools: Strengths, 

Limitations, and Use Cases 

There has been a rise recently in smart contract attacks, and therefore security has become 

vital. To solve this, several approaches in SAST methods have been suggested for improving 

smart contract vulnerability detection. It is not easy to compare these instruments logically to 

consider their effectiveness (Li et al., 2024). To address this gap, the authors advance an 

improved, high-level classification of 45 smart contract vulnerability types in this study. The 

authors give an overview that contains 40 types of code and various characteristics and 

patterns of DVCs and applications using this as a reference. In evaluating these 8 SAST tools 

in line with this benchmark of 788 smart contract files, and 10,394 vulnerabilities, the authors 

came up with the following. The findings provide evidence that conventional SAST 

instruments fail to detect as many as 50% of the benchmark flaws, combined with high levels 

of imprecision and false positives that equal 10% (Li et al., 2024). This study also establishes 

the use of various techniques as decreasing the false negative rate but identifies 36.77 

percentage points more functions as questionable.  

 

Static code analysis or source code analysis is important to software development and one of 

the most important dimensions of an application is static application security testing. 

Nevertheless, a comparison of SAST tools to select the appropriate tools for identifying 

vulnerabilities is challenging (Li et al., 2023). From 161 available SAST tools, following 

criteria we selected exemplar 7 free or open-source tools considered in this work. We 

compared these SAST tools based on their effectiveness, reliability, and efficiency with 

synthetic and recently invented realistic benchmarks. Tools for SAST achieve good 

performances on synthetic datasets, but only 12.7% of realistic weaknesses (Li et al., 2023). 

The detection capabilities of the tools rise to 70.9% of all vulnerability’s unseen, and most 

importantly different from resource management vulnerabilities and somewhat poorly 

handled input/output vulnerabilities. They built the detecting criteria and incorporated them 

into abilities; however, the detection result was not satisfactory. 

 

2.3 Ensemble Learning Algorithms for Software Vulnerability Detection 

Preventative strategies and techniques utilized during software development help identify 

many vulnerable software parts at an early stage to reduce testing costs and produce a 

dependable and robust software system. Past studies have indicated that intelligent prediction 

methods might reveal weaknesses of the system, but the lack of enough training datasets 

limits their application (Pang et al., 2016). This research provides a method for early 

prediction of software component vulnerability. The proposed method refers to potentially 

susceptible components as mislabelled data that may contain actual, though disguised, 

vulnerabilities. The ensemble learning and support vector machine algorithm is incorporated 

into the hybrid method to identify the susceptible components. The proposed vulnerability 

detection system is evaluated and considered against the background of Java Android apps 

(Pang et al., 2016). From the empirical evaluation, it was found that the proposed hybrid 

method was effective in identifying susceptible classes with high precision and acceptable 

accuracy as well as recall.  
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One of the greatest emerging software security issues is the use of automated tools for 

vulnerability identification. It is possible to automate a process of extracting vulnerabilities 

with the help of deep learning to a certain extent (Wang et al., 2020). This work employs the 

deep representation learning method and heterogeneous ensemble learning to identify these 

vulnerabilities smartly and independently. Only vulnerability portions of the source code are 

used in the trials first, original code files are pre-processed to reduce code analysis and 

increase detectability. Second, the authors focus on the corpus with pre-training and retain 

semantic features to express data samples as vectors. Third, the vectors are processed via a 

deep-learning model to identify if a device is vulnerable (Wang et al., 2020). Lastly, the 

authors obtain multiple classifiers for each case and train homogenous and heterogenous 

ensemble classifiers. In evaluating the detection approach, we therefore compare the 

efficiency and resource utilization of both the network models, the pre-training techniques, 

classifiers, and vulnerabilities. The experimental observation indicates our technique 

enhanced false positive, false negative, accuracy, recall, and F1 Features. 

 

2.4 Comparative Studies on Machine Learning and Traditional Tools for 

Code Security 

Source code static analysis is used by software developers to identify weaknesses. Human-

expert vulnerability patterns are difficult and time-consuming, and therefore, they must rely 

on machine learning to identify vulnerability (Li et al., 2019). Current research proposes 

employing deep learning to detect vulnerabilities with little to no need for professionals to 

define rules or traits. As with vulnerability detection, there is no clear understanding of how 

the various factors influence it. This research employs two datasets of two programs with 126 

types of vulnerability for the first comparison analysis to determine the impact of various 

parameters on vulnerability detection (Li et al., 2019). The results also show that the 

accommodation of control dependence helps to enhance vulnerability detection F1-measure 

by 20.3%, and there is no significant difference between the unbalanced data processing 

approaches for the datasets. Using the last output corresponding to the time step for the 

bidirectional long short-term memory (BLSTM) can decrease the false negative rate by 2.0%, 

at the same time it increases false positives by 0.5%.  

 

Due to these techniques’ development in the broader field of machine learning, academics 

have attempted to use the same in many software engineering activities that involve source 

code analysis including testing and identification of vulnerabilities (Sharma et al., 2021). Due 

to many publications, it can be challenging for people to understand the scientific 

environment. It provides a state-of-the-art understanding of applied machine learning for 

source code analysis. A discussion of the machine learning techniques, resources, and applied 

methodologies for addressing twelve problems in software engineering is presented. Based on 

the database literature search the authors get 479 main study collecting data from the period 

of 2011 to 2021 (Sharma et al., 2021). The listed studies enable us to draw conclusions and 

summarise our observations and findings. The author's investigation showed that machine 

learning is being employed for source code analyses. 
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2.5 Addressing Class Imbalance in Machine Learning for Vulnerability 

Detection 

There is minimum empirical literature on SDD which is a binary classifier problem having 

skewed data distribution and tilted learning in favor of one class (Kim and Chung, 2024). The 

richness of information is maintained by deep learning and machine learning to employ four 

class balancing methods including SMOTE, ADASYN, SMOTE-Tomek, and SMOTE-ENN 

for the SDD problem. Deep learning employs MLP, CNN, and LSTM and machine learning 

employs decision trees, random forest, logistic regression, and XGB (Kim and Chung, 2024). 

Therefore, we evaluate and discuss class balancing techniques on those models. Our 

investigation revealed that the applications of class balancing strategies were positive on 

MLP, negative on CNN and LSTM, and positive on all machine learning techniques. 

2.6 Summary 
 

Study 

(Author, 

Year) 

Purpose Key Features Strengths Weaknesses 
Proposed 

Algorithm/Approach 

Siewruk 

and 

Mazurczyk 

(2021) 

To streamline 

vulnerability 

tracking using 

machine 

learning in 

large 

communication 

networks. 

Introduced 

Mixeway, a 

context-aware 

software 

categorization 

method using 

NLP and deep 

learning. 

Demonstrated 

effectiveness in 

predicting 

severity class 

with a 12-

month dataset 

from a Polish 

mobile 

operator. 

Requires 

adequately 

processed 

vulnerability 

descriptions 

and is 

environment 

dependent. 

Mixeway method 

with selected frozen 

layers and NLP for 

severity prediction. 

Lin et al. 

(2020)  

To review 

software 

vulnerability 

detection using 

deep learning 

and neural 

networks.  

Neural 

models 

comprehend 

code 

semantics, 

leveraging 

deep learning 

for 

vulnerability 

identification.  

Highlights the 

potential of 

deep learning 

for pattern 

recognition and 

vulnerability 

detection in 

software code.  

Identifies 

challenges and 

gaps in 

applying 

neural models 

to code 

semantics.  

Use of deep 

learning to capture 

patterns and 

semantics of 

vulnerable code.  
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Li et al. 

(2024)  

To classify and 

evaluate SAST 

tools for 

detecting smart 

contract 

vulnerabilities.  

Evaluated 8 

SAST tools 

on 788 smart 

contract files 

and 10,394 

vulnerabilities  

Identified high 

false positives 

(10%) and 

evidence that 

SAST tools 

miss 50% of 

benchmark 

flaws.  

SAST tools 

performed 

inconsistently 

and failed to 

detect a 

significant 

portion of 

vulnerabilities 

High-level 

classification of 45 

smart contract 

vulnerabilities to 

refine detection 

benchmarks.  

Li et al. 

(2023)  

To assess the 

effectiveness 

of open source  

SAST tools in 

detecting 

realistic 

vulnerabilities 

Compared to 

7 free/open-

source tools 

using 

synthetic and 

realistic 

benchmarks 

Improved 

detection 

capabilities on  

unseen 

vulnerabilities 

(70.9%) with 

12.7% success 

on realistic 

weaknesses.  
 

Poor 

performance 

in handling  

input/output 

vulnerabilities 

and resource 

management 

flaws.  

  

Developed 

detection criteria 

and incorporated 

them into SAST 

tools 

Pang et al. 

(2016)  

To propose a 

hybrid method 

for early 

prediction of 

software 

component 

vulnerabilities.  

Combined 

ensemble 

learning and 

SVM to 

identify 

susceptible 

components.  

Achieved high 

precision, 

accuracy, and 

recall in 

identifying 

vulnerable 

classes in Java 

Android apps.  

The lack of 

sufficient 

training 

datasets limits 

broader 

applications.  

Hybrid approach 

combining 

ensemble learning 

and SVM for early 

vulnerability 

detection.  

Wang et 

al. (2020)  

To automate 

vulnerability 

detection using 

deep 

representation 

and ensemble 

learning 

methods.  

Pre-processed 

original code, 

retained 

semantic 

features, and 

used 

ensemble 

classifiers.  

Enhanced false 

positive, and 

false negative 

rates, and 

improved 

accuracy, 

recall, and F1 

score in 

experimental 

observations.  

Resource-

intensive due 

to pre-training 

techniques and 

large-scale 

trials.  

Heterogeneous and 

homogeneous 

ensemble classifiers 

for automated 

vulnerability 

detection.  

Li et al. 

(2019)  

To employ 

deep learning 

for 

vulnerability 

detection with 

minimal 

human 

intervention.  

BLSTM 

model with 

control 

dependence 

for analyzing 

code and 

datasets.  

Improved the 

F1 measure by 

20.3% and 

decreased false 

negatives by 

2.0%.  

Slight increase 

in false 

positives 

(0.5%) and 

limited dataset 

scope for 

evaluation.  

Bidirectional long 

short-term memory 

(BLSTM) with 

control dependence 

for enhanced 

detection.  

Sharma et 

al. (2021)  

To provide an 

overview of 

machine 

learning 

techniques for 

source code 

analysis and 

Reviewed 

479 studies 

on ML 

techniques 

applied to 

software 

engineering 

Comprehensive 

overview of 

applied 

machine 

learning in 

source code 

analysis, 

Generalized 

findings may 

not apply 

directly to 

specific use 

cases or tools.  

Summary of state-

of-the-art machine 

learning techniques 

for source code 

analysis.  
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vulnerability 

detection.  

problems.  summarizing 

trends and 

methodologies.  

Kim and 

Chung 

(2024)  

To address the 

class 

imbalance in 

software defect 

detection 

(SDD) 

problems using 

class balancing  

Evaluated 

SMOTE, 

ADASYN, 

SMOTE-

Tomek, and 

SMOTE-

ENN on 

various deep 

learning & 

ML models 

Positive impact 

on MLP, 

decision tree, 

random forest, 

and XGB 

models, with 

improved 

richness of info 

for imbalanced 

datasets 

Negative 

impact on 

CNN and 

LSTM 

models, 

highlighting 

inconsistencies 

across 

different 

techniques 

Class balancing 

techniques applied 

to MLP, CNN, 

LSTM, and various 

ML models for 

SDD.  

 

 

3 Research Methodology 
Using both qualitative and quantitative methodologies this paper uses an assessment of 

software vulnerability identification employing SAST tools and ensemble learning 

algorithms. The application includes data exploration, analysis, and interpretation by 

following the Knowledge Discovery in Databases (KDD) process. The papers selected are 

from 2016–2024 literature review forms the basis of the qualitative component of the study. 

This study describes the SAST tool, ensemble learning, and software vulnerability detection 

development. The summary table in the literature review provided an aggregate perspective 

of their strengths, weaknesses, and trends based on the information in scholarly publications, 

technical reports, and case studies. The qualitative study gives the theoretical background for 

the comparison of the classical SAST methods and Ensemble Learning. Specifically, for the 

quantitative evaluation of SAST tools and ensemble learning approaches, the VUDENC and 

DiverseVul datasets are utilized. The dataset DiverseVul was analyzed with Decision Trees, 

Random Forests, XGBoost, LightGBM, and Cat Boost ensemble learning models. 

DiverseVul employed SMOTE to enhance model detection because of the issue of class 

imbalance. It is analyzed for accuracy, precision, recall, F1 score, and ROC AUC and both 

methods were compared. The paper comparing SAST tools and ensemble learning algorithms 

is based on a qualitative review of the related literature as well as a quantitative analysis of 

the obtained datasets. The integration of qualitative and quantitative approaches provides a 

multidimensional investigation making the vulnerability detection systems more credible. 

 

3.1 KDD Framework 

Knowledge Discovery in Databases, or KDD, is a systematic technique for deriving useful 

lessons and patterns from large sets of data. Data selection, pre-processing, transformation, 

data mining, interpretation, or evaluation are processes involved in this procedure. The KDD 

framework was chosen because it offers a structured approach to handling complex datasets, 

thus ensuring robust pre-processing and evaluation workflows. Other frameworks, such as 

CRISP-DM or SEMMA, were considered, but the iterative process of KDD fit better with the 

dynamic nature of the tasks related to vulnerability detection. 
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Figure 1: KDD Framework. Source: (Chehab, 2020) 

  

Data Selection: This study used the VUDENC dataset because of its comprehensive labeling 

of vulnerabilities and good alignment with SAST tools. DiverseVul is selected because of the 

diversity of its vulnerabilities, which provides good training of machine learning models. As 

compared to the Juliet Test Suite or CodeXGLUE, these datasets gave richer and more 

applicable benchmarks to this study.  

Data Pre-processing: Concerning the previous case, additional data were added to fill the 

empty spaces aiming to increase the effectiveness of the model. A standard preprocessing 

method was used to enable relevant conclusions to be drawn from the output of SAST tools 

before feeding them to VUDENC. 

Data Transformation: To convert the textual information into numerical information which 

can be utilized by ensemble methods, feature extraction of the DiverseVul dataset was 

performed by using TF-IDF (term frequency-inverse document frequency). Scale features 

were split into a training set, which is used to fit the data, and a test set which is used to 

assess performance for statistical analysis. 

Data Mining: DiverseVul dataset was used to train and test Decision Trees, Random Forest, 

XGBoost, LightGBM, and CatBoost ensemble learning algorithms. Recall that VUDENC 

was used to test SAST vulnerability detection tools. Accuracy, precision, recall, and ROC-

AUC statistics were computed for performance evaluation. 

Interpretation and Evaluation: Utilization of an ensemble learning algorithm in 

conjunction with the SAST tool results dynamics enabled insight into the comparative 

advantages and weaknesses of the two variables. This research demonstrates the possibility of 

enhancing vulnerability detection systems based on SAST techniques by using ensemble 

methods. 

3.2 Libraries Imported 

The project required data processing, machine learning, and assessment of Python packages. 

Pandas allows structure data manipulation and JSON-loaded datasets. Visualization tasks 

drew graphs and distributions with the use of Matplotlib. The SMOTE was chosen instead of 

other techniques like ADASYN since this method generates synthetic samples without losing 

the general distribution of the data. Thus, it can be very effective for handling the class 

imbalance found in DiverseVul. Other techniques like SMOTE-ENN were not used here 
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since these require more computational overhead with a greater risk of overfitting. The 

function of TfidfVectorizer from sklearn.feature_extraction.text is to summarize text for the 

feature. Ensemble techniques were used using machine learning models such as 

DecisionTreeClassifier, RandomForestClassifier, XGBClassifier, LGBMClassifier, and 

CatBoostClassifier from sklearn, xgboost, lightgbm, and catboost. When the machine 

learning model’s performance was evaluated using metrics obtained from scikit-learn’s 

metrics module, the obtained accuracy, ROC-AUC score, as well as a classification report. 

The train_test_split of the sklearn.model_selection package separated the data into a training 

and a testing set. During dataset preparation, attempts at modeling; and analysis, these 

packages provided a good platform. 

3.3 Feature Extraction 

This research converted unstructured text into numerical features suitable for use in machine 

learning models. Using the TfidfVectorizer tool, the func column of the DiverseVul dataset 

was transformed into a TF-IDF matrix. TF-IDF was used because it is simple and efficient 

for text-based datasets. Methods like Word2Vec or BERT capture contextual information of 

the words; however, TF-IDF was more computationally efficient for the goals in this study. 

This approach enhanced the performance of vulnerability detection by training systems based 

on ensembling learning using textual information. 

3.4 Data Split 

In this research, the dataset was separated for training and testing machine learning models. 

The dataset was partitioned 80:20 to form the training and the testing sets using 

Train_test_split from sklearn.model_selection. This approach enabled models to learn from 

80 percent of the data and use the remaining 20 percent to test their performance. The use of 

this splitting method maintained the integrity of the class distributions so that the training and 

testing datasets were representative of the primary dataset. In this respect, these methods 

evaluated models and thus provided a means for more detailed comparisons of the 12-

vulnerability detection and overfitting/bias reduction capabilities of ensemble learning 

algorithms. 

3.5 Dataset Description 

This study worked on VUDENC and DiverseVul, two datasets that are devoted to individual 

analysis (LauraWartschinski, 2019; surrealyz, 2024). The VUDENC dataset used in the 

experiments is comprised of labeled vulnerabilities of different software systems which were 

used to evaluate the effectiveness of the SAST tools in terms of accuracy, precision, and 

reliability. The DiverseVul project has sufficient detailed information on the functional 

behavior of the source code and vulnerabilities which is applicable for machine learning. To 

deal with the class imbalance problem in this dataset, SMOTE feature extraction and 

balancing were applied. These datasets permitted extensive research of the traditional SAST 

approaches as well as the relatively recent combined learning techniques for the search of 

vulnerabilities. 
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3.6 Justification of SAST and Ensemble Learning Algorithms 

This research used SAST tools and a collection of learning methods due to their combined 

strengths in the identification of vulnerabilities. SAST tools are mostly employed in static 

code analysis revealing vulnerabilities as the software is being developed. However, their 

highly high false positive and negative rates necessitate new solutions. Ensemble learning 

methods such as Random Forest, Decision Tree, XGBoost, LGBM, and CatBoost improve 

accuracy and work well with complex datasets. This work integrates the rule-based detection 

capabilities of SAST tools with the data-driven insights of ensemble models to increase the 

accuracy, reliability, and resiliency performance of code-based vulnerability detection 

systems. 

 

4 Design Specification 
This study systematically assesses the SAST tools and Ensemble Learning approaches for the 

identification of vulnerabilities. The data preparation includes loading VUDENC and 

DiverseVul followed by SMOTE imbalance correction and TFIDF feature extraction. The 

data is split into training and testing sets for model training. The study employed Random 

Forest, XGBoost, LightGBM, and CatBoost ensemble learning methods. Evaluation 

measures include accuracy, precision, recall, F1-score, and ROC-AUC. 

 

 
 

Figure 2: Workflow Diagram 

 

5 Implementation 
 

• Python and a host of libraries were employed. Data processing was done with the aid 

of Pandas which ensured that the initial data received was structured in a consistent 

manner for analysis. Initially, VUDENC and DiverseVul were imported separately. 

They were then cleaned and merged into a single DataFrame with a modeling traintest 

proportion of 80:20. 
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• SAST and machine learning were integrated to detect and capture vulnerabilities. 

Bandit and SonarQube SASTs were used to assess the presence of codes that were a 

cause of concern. Among the challenges addressed were severity and confidence 

issues within the source code. 

• Some of the machine learning models applied included Decision Trees, Random 

Forest, XGBoost, and CatBoost as well as LightGBM. In the case of class imbalance, 

the SMOTE technique was utilized on the preprocessed data. Numbers for feature 

extractions were generated from text through the TF-IDF vectorizer. 

• Grid and random search were the approaches used in fine tuning the models to 

improve accuracy. Evaluation metrics that were deployed include measures such as 

ROC-AUC values, precision, recall and F1-score. 

• The comparison sought to demonstrate how SAST tools stack up against ensemble 

learning techniques in locating code vulnerabilities while minimizing false positive 

and negatives. 

• Hardware: RAM – 8GB, Operating System – Windows 11, Processor – i5 

 

6 Evaluation 

6.1 EDA – Exploratory Data Analysis 
 

 
 

Figure 3: Class Distribution 

 

As the class distribution graph indicates, the dataset has more instances of non-vulnerable 

instances than vulnerable ones. This disparity means that the model training must incorporate 

oversampling, under sampling, or appropriate techniques so that bias does not occur, and the 

right predictions are given. 
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Figure 4: Top 10 Most Common CWEs 

 

CWE-787 (Out-of-Bounds Write) is the most common in the chart above. This highlights the 

important issues which must be tackled by developers as well as security teams. The 

frequency distribution supports the aim of focusing on certain classes of CWE for 

vulnerability and software security enhancement. 

6.2 Decision Tree Classifier  

Table 1: Result of Decision Tree Classifier 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.94 0.71 0.94 0.83 0.93 0.68 

Recall 1 0.02  0.51 0.94  

F1-Score 0.97 0.03  0.5 0.92  

Support 

(Samples) 
62,310 3,789 66099 66099 66099  

 

In Table 1, the modified Decision Tree yields a high accuracy of 94% and precision for non-

vulnerable samples (class 0) but performs very poorly on vulnerable samples, class 

1, with low recall of 0.02 and F1 score of 0.03. The macro F1 score is 0.50, showing uneven 

performance, while the weighted average F1 score is 0.92, reflecting class imbalance. The 

ROC-AUC is 0.68, which suggests that there is room for improvement by balancing classes 

or features. 

6.3 Random Forest 

Table 2: Result of Random Forest Classifier 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.95 0.2 0.92 0.57 0.9 0.73 

Recall 0.97 0.12  0.54 0.92  

F1-Score 0.96 0.15  0.55 0.91  

Support 

(Samples) 
62,310 3,789 66099 66099 66099  
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In Table 2, the Random Forest model yielded 92% accuracy, with 0.95 precision and 0.97 

recall for the non-vulnerable samples of Class 0, showing very low recall for the vulnerable 

samples of Class 1 at 0.12 and an F1 score of 0.15. The weighted F1 score is 0.91, reflecting 

the dominance of Class 0. A ROC-AUC of 0.73 reflects fair but improvable discriminative 

ability. 

6.4 XGB Classifier 

Table 3: Result of XGB Classifier 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.94 0.47 0.94 0.71 0.92 0.78 

Recall 1 0.04  0.52 0.94  

F1-Score 0.97 0.08  0.53 0.92  

Support 

(Samples) 
62,310 3,789 66099 66099 66099  

 

In Table 3, it gives an accuracy of 94% in the XGBoost model, where recall for Class 0 (not 

vulnerable) was 1.00, and the F1 score was at 0.97, while for Class 1, representing vulnerable 

ones, it was extremely low, 0.04 and 0.08, respectively. The macro metrics clearly indicate 

poor handling of the minority class, though at a ROC-AUC of 0.78, which was better 

compared to most models. 

6.5 SOTA Implementation 

6.5.1 LGBM Classifier 

Table 4: Result of LGBM Classifier 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.94 0.62 0.94 0.78 0.93 0.79 

Recall 1 0.02  0.51 0.94  

F1-Score 0.97 0.05  0.51 0.92  

Support  

(Samples) 
62,310 3,789 66099 66099 66099  

 

In Table 4, the LightGBM model yielded an accuracy of 94%, where Class 0 had perfect 

recall of 1.00 and an F1 score of 0.97, while Class 1 had very poor recall of 0.02 with an F1 

score of 0.05, which shows class imbalance. However, the ROC-AUC score is 0.79, which 

was higher than earlier models. 
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6.5.2 CatBoost Classifier 

Table 5: Result of CatBoost Classifier 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.94 0.49 0.94 0.72 0.92 0.79 

Recall 1 0.04  0.52 0.94  

F1-Score 0.97 0.08  0.53 0.92  

Support 

(Samples) 
62,310 3,789 66099 66099 66099  

 

In Table 5, CatBoost demonstrates its full capability in detecting non-vulnerable samples 

(class 0) with a perfect recall of 1.00 and a good F1 score of 0.97. Overall accuracy 

performance is 94%. However, it has a hard time detecting the susceptible samples (Class 1) 

having a recall of 0.04 and a very low F1 score of 0.08, which points to poor performance in 

terms of handling the minority class. 

6.6 ROC Curve 

 
 

Figure 5: ROC Curve Comparison 

The ROC curve comparison of ensemble models depicts their ability to classify susceptible 

and non-susceptible samples. The highest AUC values belonged to CatBoost and LightGBM 

at (0.79), indicating better discrimination. The AUC for Random Forest is good at 0.73 while 

XGBoost comes next with 0.78. Decision Tree had low AUC of 0.68 suggesting poor 

prediction. These curves show the degree to which the models can achieve high true positive 

rates without increasing false positives, where CatBoost and LightGBM were the best 

models. The results confirm the effectiveness of the new methods of ensemble-based 

vulnerability detection techniques. 
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6.7 Comparative Analysis of Ensemble Learning Algorithm without 

SMOTE 
 

Table 6: Comparative Analysis of Ensemble Learning Algorithm without SMOTE 

Metric 
Decision 

Tree 

Random 

Forest 
XGBoost LightGBM CatBoost 

Precision 

(Class 0) 
0.94 0.95 0.94 0.94 0.94 

Precision 

(Class 1) 
0.71 0.2 0.47 0.62 0.49 

Recall (Class 

0) 
1 0.97 1 1 1 

Recall (Class 

1) 
0.02 0.12 0.04 0.02 0.04 

F1-Score 

(Class 0) 
0.97 0.96 0.97 0.97 0.97 

F1-Score 

(Class 1) 
0.03 0.15 0.08 0.05 0.08 

Accuracy 0.94 0.92 0.94 0.94 0.94 

Macro Avg 

Precision 
0.83 0.57 0.71 0.78 0.72 

Macro Avg 

Recall 
0.51 0.54 0.52 0.51 0.52 

Macro Avg 

F1-Score 
0.5 0.55 0.53 0.51 0.53 

Weighted 

Avg F1-Score 
0.92 0.91 0.92 0.92 0.92 

ROC-AUC 

Score 
0.68 0.73 0.78 0.79 0.79 

 

The ROC-AUC values of LightGBM and CatBoost were the highest (0.79), which means 

better performance. The precision and recall for Class 0 are good, with Class 1 having a more 

erratic performance, however. While Random Forest and XGBoost achieved similar 

accuracy, the recall for Class 1 was lower relative to the results for LightGBM and CatBoost. 

The Decision Tree has a low AUC value but is correct. Therefore, LightGBM and CatBoost 

seem to be performing well in terms of predictive power and discrimination. 

6.8 Comparative Analysis of Ensemble Learning Algorithm with SMOTE 

Table 7: Random Forest with SMOTE Results 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.95 0.17 0.9 0.56 0.91 0.72 

Recall 0.94 0.19  0.57 0.9  

F1-Score 0.95 0.18  0.56 0.9  

Support 62,310 3,789 66,099 66,099 66,099  
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In Table 7, Random Forest model using SMOTE performs with an accuracy of 90% with a 

ROC-AUC score of 0.72. Class 0 (non-vulnerable) successfully predicted non-vulnerable 

samples with a good level of accuracy (0.95), recall (0.94), and an F1 score of (0.95). 

SMOTE balancing helps but Class 1 (Vulnerable) still has a very low accuracy of 0.17 and 

recall of 0.19 which signifies challenges in detecting susceptible samples. To improve 

vulnerability detection these results, indicate that optimization is needed. 

 

Table 8: Decision Tree with SMOTE Results 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.96 0.12 0.79 0.54 0.91 0.69 

Recall 0.81 0.43  0.62 0.79  

F1-Score 0.88 0.19  0.53 0.84  

Support 62,310 3,789 66,099 66,099 66,099  

 

In Table 8, Decision Tree model, enhanced by SMOTE, reaches an accuracy of 79% with the 

ROC-AUC indicator at 0.69. However, Class 0 (Non-Vulnerable) managed to maintain 

relatively good accuracy 0.96 with an F1 score grading of 0.88 for identification of non-

vulnerable samples. Class 1 (Vulnerable) had a fair F1 score of 0.19, a relatively lower 

accuracy of 0.12 with recall at 0.43. In practice, this means that despite SMOTE improving 

the recall over the susceptible sample, the overall performance indicates the challenge of 

balancing for class detection. More efforts must be applied in detecting Class 1 

vulnerabilities. 

 

Table 9: XGBoost with SMOTE Results 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.96 0.18 0.86 0.57 0.92 0.76 

Recall 0.88 0.43  0.66 0.86  

F1-Score 0.92 0.26  0.59 0.88  

Support 62,310 3,789 66,099 66,099 66,099  

 

In Table 9, XGBoost model with SMOTE has an overall accuracy of 86% and ROC-AUC 

0.76. Class 0 (non-vulnerable) achieved an accuracy score of 0.96 as well as an F1 score of 

0.92. Class 1 (vulnerable) increased from previous models achieving 0.18 accuracy and 0.43 

recall, which provides an average F1 score of 0.26. Susceptible samples are easy to identify 

after applying SMOTE and this increases class balance but tuning of Class 1 precision and 

recall is still required. 
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Table 10: LightGBM with SMOTE Results 

Metric 
Class 0 (non-

vulnerable) 

Class 1 

(vulnerable) 
Accuracy 

Macro 

Avg 

Weighted 

Avg 

ROC-

AUC 

Score 

Precision 0.97 0.18 0.84 0.57 0.92 0.77 

Recall 0.86 0.49  0.67 0.84  

F1-Score 0.91 0.26  0.59 0.87  

Support 62,310 3,789 66,099 66,099 66,099  

 

In Table 10, the model also includes LightGBM with SMOTE having an 84% accuracy and 

0.77 ROC AUC. Non-Vulnerable or Class 0 achieved an accuracy of 0.97 and an F1 Score of 

0.91. The vulnerable class 1 improved with a recall of 0.49 while the F1-score was 0.26 and 

accuracy remained low at 0.18. Compared to the previous model, SMOTE helped in 

enhancing the detection of vulnerabilities with a slight imbalance in Class 1 accuracy and F1-

score. This model has a somewhat better balance than previous ensemble methods. 

6.9 Analysis using SAST 
 

(1) Bandit: 
 

 
 

Figure 6: Output of Bandit 

 

Figure 6 are the output results from the VUDENC dataset. There were no lines skipped 

because of #nosec comments and based on the Bandit scan data, the scan was completed on 

3205 lines of code. The study reports 54 problems, out of which 32 are of low priority, 15 of 

medium priority, and 7 of high priority. Of these, 41 issues have high confidence, and the rest 

of them, have low- or medium-confidence. Uniquely, there was a syntax error during AST 

processing and one file which is xsrf-3.py was excluded; this file requires close look or 

coding correction. To enhance the reliability as well as the security of the obtained code, 

therefore, the study underscores the importance of addressing high-severity and high-

confidence issues. This should be done perhaps when reviewing stalled or inactive files for 

possible threats. 
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(2) SonarQube: 

 

 
 

Figure 7: Output of SonarQube 

Figure 7 are the results from the VUDENC dataset. Based on the SonarQube it is found that a 

few areas need improvement, however, the quality gate was cleared. There is a risk that must 

be fixed first because there is still one that possesses a high problem (severe) that was 

reported in the security section. There are 6 unresolved problems in the code base structure 4 

are critical and 2 are medium even though they reside in the reliability section. This has in 

turn the risk of impacting the reliability of the code. Of the 100 outstanding issues related to 

maintainability, 33 hours is estimated to be the time required for the worst 100 issues. The 

other 100 looks like they need further research as out of the 24,000 lines checked, some lines 

remain untested, and there is no code coverage. In total, there are 28 manual security review 

required code fragments that must be scanned to assess the threat they might cause. 

 

6.10 Limitations 

Ensemble learning was not performed on VUDENC because of issues with the dataset split 

provided in the repository, which did not have proper training and validation sets and was not 

clearly mentioned in their respective repository too. SAST tools were not applicable to 

DiverseVul since the dataset contained incomplete code snippets, which these tools cannot 

analyze. Ensemble learning was applied to DiverseVul, while Bandit and SonarQube were 

used on VUDENC, giving their respective suitability for static and dynamic analysis. 

 

Pre-processing for both methods in these two datasets was not practical due to time and 

resource limitations. Hence based on both dataset’s compatibility, the decision was made to 

use these methods on different datasets. The comparison demonstrated the strength of each 

approach in their contexts respectively rather than a direct competition. 
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7 Conclusion and Future Work 

7.1 Conclusion 

Based on this research, it is established that both ensemble learning algorithms and SAST 

tools detect software defects. Comparing Random Forest with other ensemble techniques 

while using the evaluation metrics Accuracy, precision for the vulnerable class, and Recall 

for the ‘non-vulnerable’ class, it was observed that the Random Forest’s results were the best. 

Including SMOTE enhanced the model in detecting weakness of the minority class since it 

has a problem of class imbalance. The traditional SAST technology primarily targets rule-

based vulnerability discovery on code and may not offer a perfect prediction and adaptation 

to complex patterns and may have higher numbers of false positives. Random Forest was 

more effective for the precise determination of vulnerability since it can work with different 

data sets and reduce false negatives. Since SAST techniques and ensemble learning models 

are synergistic, this research suggests implementing these techniques in parallel to detect and 

eliminate software flaws. 

7.2 Future Work 

This work can be extended in the future to enhance the integration of SAST tools with 

ensemble learning algorithms to offer an ensembled vulnerability detection option. To deal 

with class imbalance, advanced preprocessing methods such as dynamic data enhancement 

might be applied. Transformers used for categorizing the vulnerability that uses deep learning 

as its base may increase the rates of correct detection and minimize false negatives. The 

inclusion of datasets from another programming language will greatly enhance the study’s 

applicability. Ultimately, running the proposed models online with real limitations explored 

can specify the models’ scalability and robustness. 
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