

“FAST: Fortifying API Security Testing
A framework for

automated API security testing.”

MSc Research Project

Programme Name: Cybersecurity

Aniket Kasturi

Student ID: x23136243

School of Computing

National College of Ireland

Supervisor: Rohit Verma

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Aniket Kasturi
………

Student ID:

X23136243
………

Programme:

MSc. Cybersecurity
………………………………………………………………

Year:

2024-25
…………………………

Module:

Practicum Part 2
…….………

Supervisor:

Rohit Verma
…….………

Submission
Due Date:

12/10/2024
…….………

Project Title:

FAST- Fortifying API Security Testing-A framework for automated API
security testing.
…….………

Word Count:

7961 Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

12/10/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

FAST: Fortifying API Security Testing - A framework
for

automated API security testing
Aniket Kasturi

Student ID: 23136243

Abstract

The rise in demand for incorporating API (Application Programming
Interface) in various software and systems has increased the use of enhanced
security. API-integrated systems and software provide a wide range of facilities
to the users but have a wide range of security gaps which are the potential paths
for the attackers to gain malicious access. Manual form of testing offers a wide
range of benefits and has the potential to detect weaknesses but has sets of
drawbacks. Manual forms of testing practices sometimes are not efficient enough
in modern applications and software which is continuously upgraded based on
the needs and demands of the customers and also is time consuming on repetitive
test cases. API Security testing tool is majorly used by different developers to
develop and initiate testing of different APIs. The tool offers an advanced user-
friendly platform which allows the developers to configure APIs and initiate
testing phases for the APIs. On the other hand, different testing tools also have
features that are used by the developers to achieve better security. Different
security testing tool is generally used by the testers to develop different security
test cases that can be further initiated. This helps the penetration testers to detect
different sets of security flaws and vulnerabilities which are present within the
system. This dissertation will mainly involve describing the wide range of roles
and features of automation API security testing in the conduction of different
ranges of security testing activities. It will majorly focus on the process of
development of different test cases and delivering effective security activities.
Moreover, the limitations of these are also discussed and further
recommendations are also provided which can be used to enhance the security
mechanism of the APIs.. Automated forms of security testing offer various sets
of facilities which help in lowering the vulnerabilities and problems of manual
testing. Automated forms of testing are associated with more scalable and
enhanced security mechanisms. These sets of automated API security testing are
incorporated with various sets of test cases which allows the security
professionals to deal with the process of penetration testing. It also allows the
manual testers to focus on more sensitive areas rather than dealing with sets of
repetitive tasks.

2

1 Introduction

1.1 Background to the problem
The ongoing development of software has resulted in the formation and development of
application programming interfaces. APIs are the main parts of developing different software
applications (Manikas, K. and Manikas, K, 2016). This helps different systems to establish
interaction and sharing of huge data sets without any delays. APIs majorly help different
systems and applications to establish a connection and provide seamless communication
among them. In the era of modernization, APIs are considered the heart of different sets of
IoT devices and mobile applications as they help in initiating and controlling data flow.
Different organizations are readily accepting different APIs to gain seamless experiences in
their work environment as well as provide support to the customers (De, 2023). The result of
incorporating APIs in the internal systems increases the amount of exposure to huge datasets
in the external environments. The exposure of large data sets in the external environments
allows malicious attackers to facilitate attacks to gain unauthorized access to the systems.
The main role of the APIs is to establish direct contact and connection between various
internal systems and external environments which consists of different users and customers.
These sets of interactions are associated with a huge number of sensitive data which are
related to customer details, payment history, and other confidential information. The presence
of sensitive information makes the systems the main target of attackers to gain malicious
access into the system. This will finally result in disruption of the business environment as
well as financial losses.
Using API security has no doubt enhanced the security levels of different systems and
applications but there is a presence of different levels of vulnerabilities. There are wide
ranges of vulnerability activities that emerged as the need to make enhancements in the
security levels of different systems. Different sets of security flaws have been visualized
which are related to insufficient authentication, validation of inputs, improper access control
mechanisms and many more. These sets of high range of vulnerabilities are highlighted by
the “OWASP API security Top 10” which states that there is a need to implement better
security practices.
On the other hand, modern software is developed which readily depends on continuous
integration and deployment methodologies. In this process, the sets of APIs are developed in
the systems and software and continuously upgraded and the updated versions are released
for use the customers or users. This is a challenging situation for the manual testers to design
and initiate the testing process within a short time, resulting in the development of potential
gaps and security flaws within the systems and the software. These sets of drawbacks of
using manual testing methodologies have resulted in the sincere demand for automated
testing practices which are readily scalable and efficient providing a high level of security in
the absence of human testing interference. Automated forms of testing can automate different
test cases in different environments and help in providing better sets of desired results (Paiva
et al. 2022). It allows the security testers to provide a keen focus on other more difficult
security activities instead of proving times on repetitive tasks.

1.2 Justification for the choice of the research
With the growing complexity of APIs and the need for continuous security testing, custom
automation scripts provide a valuable tool for API penetration testing. This research is
justified by the increasing demand for efficient, scalable, and real-time security assessments
in modern environments.

3

Configuration and Setup: It involves the initiation of configuration phases for dealing with
security tests. It also deals with integrating different sets of tools to facilitate the testing phase
and development of test cases.
Custom Security Test Cases: The development of different test cases helps in determining
different sets of potential risks and vulnerabilities that are present within the system.
Automation vs. Manual Testing: Detailed discussions are also made which focus on
discussing the positive and negative side of manual testing over automated testing. It involves
making comparisons by taking factors such as false and positive rates as well as testing rates.
Efficiency and Accuracy: It deals with discussing the efficiency of automated API security
in providing an efficient platform to achieve more better level of security features for the
systems and software.
Benefits and Limitations: Lastly it involves keeping a keen focus on the limitations that are
present within the security testing tool majorly in the areas where high demand for API
settings is required.
1.3 Gap in the literature it seeks to fill
This research fills the gap in evaluating the automation role as an automated API security
testing framework. Existing literature focuses on tools like OWASP ZAP and Burp Suite,
but lacks an in-depth examination of automation scripting capabilities and its integration
within CI/CD pipelines for continuous testing.
1.4 Aim and Objective
Aim
The major aim associated with this research is to focus on the roles of automated API
security which helps in automating penetrating testing for APIs and keeping a major focus on
the development of different sets of test cases.
Objective

• To analyze the effectiveness of custom scripting in automating API security
penetration testing by developing and executing tailored security test cases for
identifying vulnerabilities such as Broken Object Level Authorization (BOLA) and
Mass Assignment.

• To evaluate the benefits and limitations of automation scripts in API security testing
compared to traditional manual testing methods, focusing on key factors such as time
efficiency, accuracy, resource utilization, and scalability.

1.5 Research question
1. RQ1: How can custom scripting be leveraged as an automated tool for driving API

security penetration testing, with a focus on creating custom security test cases?
2. RQ2: What are the benefits and limitations of using automation scripts for conducting

API security penetration testing compared to traditional manual testing methods?

2 Related Work

2.1 API Security: An Evolving Threat Landscape
From the studies made by Vaghela et al., (2024), APIs are considered as the major part of
different software systems which helps in establishing communication between various sets
of devices and platforms. With the increase in the demand for using APIs, it has been a major
target for malicious attackers to theft information and cause harm to the system. Nowadays,
every advanced system is integrated with APIs, making them the prime targets for attackers
to perform malicious activities. The Open Web Application Security Project Top Ten List is
listed as the third most attacked and the riskiest one. This results in different malicious
activities like SQL injections, code execution, and other vulnerable attacks. Moreover, there

4

are sets of applications that are developed on the cloud platforms in which APIs can be
considered as the major targets for the attackers to plan for malicious activities. Cloud
computing environments readily rely on different sets of APIs and user interfaces as these
systems help in establishing contact with cloud computing services. These sets of APIs used
in the cloud services generally provide security to the systems. On the other hand, different
sets of web applications are also dependent on APIs which makes them vulnerable to various
advanced attacks.
According to Rao et al. 2020, the major shipment from the traditional process to integration
of APIs has no doubt made advancements in the process of communication and has increased
the need to develop a more secure environment to deal with advanced attacks. Generally,
APIs provide sets of sensitive information public which makes them the prime targets for
attackers to gain malicious access.

2.2 Manual Penetration Testing: Strengths and Limitations
From the argument made by Shah et al. (2020), manual forms of testing are considered the
standard form of process in detecting wide ranges of vulnerabilities across different APIs. In
this process, there are sets of security testers who design different test cases and perform
attacks to gain information about the weaknesses present within the system. Instead of
various sets of advantages, it has different limitations majorly in the areas where there is the
presence of a large number of systems. Moreover, in the process of manual form of testing
the groups of experienced testers design advanced test cases which helps in the early
detection of flaws and vulnerabilities which may be lacking in modern automated testing. The
manual testers provide a high level of flexibility and adaptability which is one of the positive
forms of manual testing.
According to Gupta and Singh (2019), there are certain ranges of drawbacks of manual
testing in the areas of APIs as manual forms of testing are associated with the usage of an
intense number of human labourers as well as time-consuming.

2.3 The Role of APIs in Modern Software Architecture
As studied by Efuntade et al., (2023), API can be defined as a set of functions which helps
the developers gain access to the data and features integrated inside an application or
software. API is used in developing different power systems such as maps, e-commerce
platforms, social media platforms and many more. These are the sets of routine protocols or
guidelines that help in standardizing of developing software which are compatible to the
database or programs. APIs play a major role as the pillar of modern tech architectures, this
develops an environment of interoperability among different software which is beneficial for
different consumers and enterprises. The shift from the Monolithic architect to microservices
has increased the demand of the APIs. This increase in demand has resulted in the
development of Rest and Graph QL automatic programming interfaces. According to Lancos,
(2021) The APIs are nowadays prime targets of attackers as large amounts of data are
transferred with the APIs. API is also associated with the transportation of different sets of
sensitive data which are required to be protected with advanced security mechanisms.

2.4 Common Vulnerabilities in API Security
As mentioned by Basheer et al., (2024), APIs are associated with diverse varieties of
vulnerabilities which result in unauthorised exposure of sensitive information and data. The
most common API security risks as categorised by the OWASP include Broken Object level
authorisation, SQL Injection and many more. Patan et al., (2021) states that, Broken Object
Level Authorisation can be defined as the security risks having a lower level of access control

5

mechanisms which allows the attacks to gain unauthorised access into the system. These sets
of vulnerabilities are the prime targets for the attackers to gain malicious access to the
system. Malicious commands are executed to gain unauthorised access to the systems. These
sets of security vulnerabilities arise due to the lack of access control mechanisms, security
barriers, insecure configurations and many more. API often deals with diverse varieties of
data and the transportation of the data across different systems. On the other hand, security
issues may arise due to the insertion of improper inputs which can lead to different attacks
such as SQL injections. In this type of Attack sets of malicious SQL queries are injected
which results in the modification, retrieving and deletion of various important information
and data. The presence of these wide ranges of vulnerabilities across different systems
underlines the requirements to develop and integrate advanced security mechanisms across
different APIs. Manual forms of testing will not be able to provide advanced security
mechanisms while protecting the endpoints across complex situations and security
vulnerabilities. Whereas the API security testing tools will help in providing advanced
security to the APIs.

2.5 Evaluation Metrics for API Security Testing
From the perspectives of Abdelfattah et al., (2024), for dealing with the evaluation phase of
API security testing development of metrics is required which will help in detaining the
accuracy of the test cases. Various sets of metrics include False positives, coverage and many
more which are used in assessing the effective working of the security tools. the rate of
detection with the help of identified metrics will help in the frequency with which sets of
vulnerabilities are detected. The delivery of high false negative rates will indicate that some
sets of vulnerabilities are missed. The accuracy of the API security testing tools is essential in
the detection of a wide range of unknown threats and vulnerabilities. According to Baniaș et
al ., (2021), response time is also another key metrics which helps in evaluating the time
required for commencing tests. In the CI/CD environments various sets of test cases need to
be commenced in a short time or else delays can take place during the phases of deployments.
The ability of the different security testing tool to commence test cases in a short period
makes an effective choice for developers.
3 Research Methodology

The section will focus on the applied methods while dealing with the phase of development
of the testing frameworks. The main aim associated with this is to deal with the objectives in
the identification and mitigation wide range of API vulnerabilities with the help of an API
security testing tool. Different diagrams will help in the illustration of the workings and
different phases associated with the development and implementation.

3.1 Requirements and Contextual Analysis
Purpose: In the first phase which deals with the identification of a wide range of security
requirements in the APIs. Various common vulnerabilities are specified such as BOLA, SQL
Injection, Input validation and Mass assignment (Condal Fontanet, 2023). In the traditional
methods are associated with the exploration of different sets of vulnerabilities manually. The
manual phases are generally time-consuming and have risks associated with the development
of manual errors. To address these sets of challenges automation methods are chosen or better
solutions.
Methodology: This stage is associated with the collection of different requirements from the
APIs, it includes the vulnerabilities which are listed in the OWASP API security top 10 list.
This helps in the identification of risky areas related to vulnerability testing. These

6

frameworks are further reviewed to generate different security test cases that can be used in
the automation processes.
Justification: The developed test cases help in dealing with overall requirements and
commence with speed. This helps in dealing with the phases of checking all sets of
vulnerabilities in less amount of time. The developed test cases help in targeting specific
areas having higher risks.

3.2 API Documentation and Endpoint Identification
In the next phase various sets of API documentation are gathered which are required for a
detailed understanding of the overall structure, and potential vulnerabilities present across
different endpoints of the APIs. The process of data gathering is also an identification process
which helps in designing and developing security test cases.
Different sets of API documentation are used to gather more details related to the parameters,
and structures associated with the responses and requirements for the process of
authorisation. To commence with the test phase of BOLA and Mass assignment scenario
different sets of endpoints are identified. The testing of the APIs helps in the verification of
unauthorised manipulation by different users.
The data collected from various API documentation helped in the development of different
test cases (Viglianisi et al., 2020). This helps in dealing with the higher accuracy of the
automated test cases and lowers the rate of abnormalities.

3.3 Test Environment Configuration
The main purpose of this phase is to prepare data which are essential to deal with the phases
of the configuration of different varieties of environmental variables. These ranges of
variables have essential requirements for the development of different test case scenarios. In
this phase, various object IDs are generated for dealing with the phases of tests and saved in
environment file.
Environment Variables: It includes the setting of different sets of environmental variables
such as API tokens, URLs and session cookies in the security testing tool. This helps in the
effective execution of the security test cases without the need for manual modification.
Random ID Selection: In this phase different random IDs are automatedly generated for
simulating test cases like IDOR. These sets of object ID are generated automatically by the
attackers as the valid IDs are not known to them.
Header Manipulation: Various ranges of custom headers are generated which helps in
developing requests for testing different vulnerabilities across the APIs.
The preparation of different data and the overall process of standardisation help in the
development of the test cases. This varied process will help in commencing the test cases
across different environments. This will also reduce the need to incorporate manual changes.

3.4 Test Case Development
This phase is the core area which is related to the development of different test cases for
detecting sets of vulnerabilities. These sets of developed test cases are conducted in API
security testing tool.
Mass Assignment (Unauthorized Field Injection) Along with Broken Access Control: In
this type of test case different fields such as in our case “isAdmin” parameter was modified
to ‘false’ as initially it was set to ‘true’ check where unauthorised changes can be made or
not. Unauthorized POST request was constructed by manipulating authentication credentials
here in my case without the authentication password. This request was sent to restricted API
endpoint to assess whether the system allows unauthorized users to create resource or not.

7

This process helps identify weaknesses in the access control mechanisms, ensuring that only
authorized users can perform privileged operations.
SQL Injection: There are diverse varieties of SQL payloads that were integrated into the
parameters to deal with the SQL injection attacking phases.
Broken Object Level Authorization (BOLA): Wide ranges of IDs were delivered with
different a GET request which helps in analysing whether unauthorised access was provided
or not (Ball, 2022).
Input Validation: A wide range of incorrect data was inserted into the requests to check the
the APIs were able to validate the accurate inputs or not.
The developed test cases help in the analysis of the wide range of vulnerabilities that can be
used by the attacker to gain unauthorised access. The phase of automation helps in the early
detection of vulnerabilities. The different varieties of test cases are developed with accuracy
which focuses on testing of different endpoints.

3.5 Implementation Using Postman
This phase deals with the implementation of the test cases with the help of API security
testing tool. It provided various sets of core tools which helped in the development and
execution of the planned test cases.
Different API security testing collections are developed to deal with each of the test case
scenarios. The requests are organised with the help of different headers, scripts and payloads.
JavaScript codes are generated to adjust the sets of requests and help in the execution of the
test cases across different environments (Loikkanen, 2024).
The API security testing tool allows in execution of the test cases automatically. Moreover,
new codes are implemented resulting in prodigy feedback related to errors or security issues.

3.6 Testing and Evaluation
This phase is associated with the commencing of the developed test cases and detailed
evaluations are made based on the results gathered. Various sets of performance metrics are
also visualised to detail the quality and effectiveness of the developed test cases.
Methodology:
Execution: The developed test cases are executed in the API security testing (Postman) tool
environment and the responses are addressed in each of the scenarios.
Performance Metrics: Various key metrics are recorded which include false rates, deduction
rates and many more. For example, 200 OK status in the API security testing tool indicates
the presence of BOLA vulnerabilities.
Response Analysis: The gathered responses are analysed to gather more information related
to the identification of malicious attempts and blockage of the malicious inputs.
The evaluation of the performances helps in gathering more insights related to the
effectiveness of automated testing as compared to the manual forms. The constant detection
and reduced false positives are important for providing surety to the effectiveness of different
test cases.

3.7 Pseudocode
A. Testing for Mass Assignment Along with Broken Access Control
// Endpoint: https://restful-booker.herokuapp.com/booking (POST)
// Input: Payload with restricted fields
// Output: Response indicating if unauthorized update was successful
 START

https://restful-booker.herokuapp.com/booking

8

 1. Initialize request payload by changing an unauthorized field:
 payload ← {
 For eg. //In body
 "isAdmin": true, // Unauthorized field change the value to ‘false’ for testing
 }
 2. Send the POST request:
 response ← POST("https://restful-booker.herokuapp.com/booking", payload)
 3. Check the API response:
 IF response.status == 200 then
 PRINT "Request was successful."
 IF "isAdmin" in response.body OR "role" in response.body then
 PRINT "Vulnerability found: Unauthorized field modification detected."
 ELSE
 PRINT "No vulnerability: Unauthorized fields were ignored."
 ELSE
 PRINT "Request failed with status: ", response.status
 4. Report the vulnerability:
 IF unauthorized fields are accepted then
 PRINT "Mass Assignment Vulnerability confirmed. Report this issue."
 END

B. SQL Injection Vulnerability Detection
// Endpoint: https://restful-booker.herokuapp.com/booking/{{parameters}} (GET)
// Input: SQL payload strings injected into URL parameters
// Output: SQL errors or unexpected results indicating vulnerability
 START
 1. Initialize SQL injection payloads:
 payloads ← ["Choose your own SQL payload/list"
]
 2. Identify vulnerable field:
 target_field ← "id"
 3. FOR each payload IN payloads DO
 3.1. Construct API request:
 url ← "https://restful-booker.herokuapp.com/booking/" + payload
 3.2. Send GET request with payload:
 response ← GET(url)
 3.3. Monitor response:
 IF response.status == 200 OR "SQL error" in response.body then
 PRINT "SQLi Vulnerability found with payload: ", payload
 EXIT
 ELSE
 PRINT "No vulnerability with payload: ", payload
 4. IF no vulnerabilities found THEN
 PRINT "SQL Injection vulnerability not detected."
 END

C. Input Validation Vulnerability Detection
// Endpoint: https://restful-booker.herokuapp.com/booking/{{parameters}} (PUT)
// Input: Invalid data payload with incorrect data types
// Output: Response indicating validation error or potential vulnerability

https://restful-booker.herokuapp.com/booking
https://restful-booker.herokuapp.com/booking/

9

 START
 1. Prepare invalid data type and its value payload:
 payload ← { for eg.
 "firstname": "John",
 "lastname": 12345, // Try to change the data type to invalid data type for 'lastname'
 }
 2. Set up the API endpoint:
 url ← "https://restful-booker.herokuapp.com/booking/{{parameters}}"
 3. Send API request:
 response ← PUT(url, payload)
 4. Track the server's response:
 IF response.status == 400 then
 PRINT "Validation error detected: Input data rejected correctly."
 ELSE IF response.status == 500 then
 PRINT "Internal Server Error: Validation logic may be broken."
 ELSE
 PRINT "Unexpected behavior: Status - ", response.status
 5. Assess vulnerability:
 IF response.status == 500 OR input accepted unexpectedly then
 PRINT "Validation vulnerability found: Input validation is not enforced."
 END

D. Broken Object Level Authorization (BOLA) along with IDOR Vulnerability
Detection
// Endpoint: https://restful-booker.herokuapp.com/booking/{{id}} (GET)
// Input: Random ID without authentication
// Output: Response indicating unauthorized access
 START
 1. Select a random object ID:
 object_id ← random(1, 1000) //Choose/set any random id from 1-1000
 2. Set up the API endpoint:
 url ← "https://restful-booker.herokuapp.com/booking/" + object_id
 3. Send the GET request without authentication:
 response ← GET(url)
 4. Track the server’s response:
 IF response.status == 200 then
 PRINT "BOLA vulnerability found: Access granted to object ", object_id
 PRINT "Response Data: ", response.body
 ELSE IF response.status == 401 OR response.status == 403 then
 PRINT "Access denied: Proper authorization required."
 ELSE
 PRINT "Unexpected behavior: Status - ", response.status
 5. Assess vulnerability:
 IF response.status == 200 then
 PRINT "BOLA confirmed: Sensitive data accessible without authentication."
 END

https://restful-booker.herokuapp.com/booking/

10

3.8 Automated API security Architectural Diagram

Figure 1: Architectural Diagram of API Security Automation

(Source: Self-Made)
As seen in the figure 1 the tester launches postman application and writes custom scripts for
securtity testing according to the functionality of the API at collection level and individual
API’s Pre Request and Post response tab. The scripts are then run with collection runner tab
giving results of PASS and FAILED (Detected Vulnerabilities) security cases.

3.9 Comparison, Benefits, and limitations (Manual Vs Automated testing)

Workflow
Comparison

Manual Testing Automation Testing

Setup and
Initialization

Time-consuming and repetitive (van
der Poel, 2022).

Dynamic with environment
variables (Ranta, 2023)

Execution Manual request crafting for each
endpoint (van der Poel, 2022).

Automated execution across
multiple endpoints

Analysis Labor-intensive response analysis
(van der Poel, 2022).

Automated logging and
analysis

Documentation Manual report generation (van der
Poel, 2022).

Automated report generation

Scalability Limited Highly scalable

4 Design Specification

The designed code is about the automation of different detection techniques for
vulnerabilities. The phase of implementation of this code is associated with API security
testing tool which is an API testing interface (Westerveld, 2021), to develop a custom
security est case java script is used. The below section will describe the techniques,
architectures and other areas of the different test cases.

4.1 Techniques and Architecture

4.1.1 Mass Assignment with Broken Access Control:
Technique: In this phase, vulnerabilities are detected with the insertion of different
unauthorised data into the POST method. In this process the system returns a payload which
includes fields such as “role” and “isadmin”, these roles cannot be modified by an unknown

11

user and later the responses of the API are recorded. Along with this requests was crafted
without valid authentication credentials to determine if the API allows unauthorized users to
create resource. The test evaluates whether the API correctly enforces access control by
rejecting unauthorized requests.
Framework: To deal with this process API security testing tool is used for sending the
requests and check the API allows unauthorised access or not. On the other hand, JavaScript
is used for monitoring the gained responses. The response handling process assesses whether
the API returns appropriate status codes (e.g., 401 Unauthorized or 403 Forbidden) to
indicate proper access control enforcement, or if it erroneously processes the request,
revealing a potential vulnerability. The flow is described visually in figure 2.

Figure 2: Flowchart – Mass Assignment with Broken access control

4.1.2 SQL Injection Vulnerability Detection:
Technique: In this testing phase different vulnerabilities are assessed which are related to the
injection of malicious SQL codes. In this test phase payloads are crafted in the URL and
further evaluations are made based on the response.
Framework: In this phase, API security testing tool is used for sending the unauthorised
payloads and the role of JavaScript is to automate the process of construction of requests.
Further, the responses are analysed for the SQL errors generated. The flow is described
visually in figure 3.

Figure 3: Flowchart – SQL Injection Vulnerability Detection

4.1.3 Input Validation Vulnerability Detection :
Technique: in this test phase codes are designed for checking the invalid inputs with the help
of sending PUT requests in the security testing tool. The PUT request consists of malicious or
unauthorised datatypes. In this scenario, integers are given in place of strings.
Framework: In this scenario JavaScript and the security testing tool send unauthorised or
unknown statements into the API, it checks whether the API makes a response in rejecting
the malicious data or not. The mechanism flow is shown in figure 4.

12

Figure 4: Flowchart – Input Validation Vulnerability Detection

4.1.4 Broken Object Level Authorization (BOLA) Vulnerability Detection:
Technique: In this type of vulnerability, API provides access to unauthorised objects without
making detailed verification of the authorisation of the user. A random object ID is selected
and attempts are made to gather information without any authorisation. In this testing
scenario, various attempts are developed to gain access to as certain restricted resources with
the help of different objects that are not authenticated.
Framework: As per figure 5 which shows flow of the mechanism of API security testing
tool which sends requests to access randomly chosen objects. JavaScript analyses the
responses associated with unknown access without proper authorisation.

Figure 5: Flowchart – Broken Object Level Authorization Vulnerability Detection

4.2 Associated Requirements:
API Access: To deal with this task different endpoints are required along with an
authorisation token to deal with authenticated testing.
Custom Test Cases: Proper test case definitions are required for each testing scenario to
target vulnerabilities.
Automation: API security collections are made which helps in the proper organisation of
different sets of test cases. Single collections made consist of different API endpoints that are
further integrated with payloads, headers and many more.
Error Handling: The integration of JavaScript in the security testing tool helps handle and
analyse responses made by API. Scripts are developed which is used in checking the HTTP
status code for errors
5 Implementation

5.1 Tools and Languages:
Postman: API requests are developed and sent with the help of Postman. Moreover, different
HTTP methods are also handled and responses are analysed.
JavaScript: It is used in Postman's scripting area to automate different requests. The
responses gathered are further analysed for the presence of various security weaknesses.
JSON: This is the used format for developing payloads and processing various responses
made by the API.

5.2 Outputs Produced:
1. Transformed Data: From the request generated from the API data are responses that
consist of different status codes, messages and many more. The output data is further
analysed for the detection of vulnerabilities. Vulnerabilities such as unauthorised access,
malicious SQL code injection and others. In the case of the test scenario SQL injection errors
or other responses are visualised which notifies that the vulnerabilities are present or not.

13

2. Code Written: For dealing with the phase of automation modifying API requests
javascript is used. API requests such as injection of malicious fields, SQL queries,
unauthorised data and many more. The scripts developed are integrated inside the Postman to
handle different requests and validate the responses provided by the API. In the case of the
first test case, it is used to detect unauthorised fields which were injected. In the case of the
second scenario injection of malicious queries were used with results of SQL errors are
present or not .
3. Test Cases Developed: Five test cases are designed which are unique in their types, these
test cases are integrated with custom logic at their endpoints of the APIs.
4. Report Generation: Postman is used to generate reports with detail summaries associated
with the developed test cases. The report contains a scenario of the execution of the tests.

5.3 Results

5.3.1 From Figure 6 which shows Mass Assignment Vulnerability Detection: By
changing an unauthorized field here in our case “isAdmin” was set to true
we changed to “false”

Figure 6: Mass Assignment vulnerability Detected as we got response as 200 ok

5.3.2 Figure 7 Demonstrating SQL Injection Vulnerability Detection:

14

Figure 7: SQL Injection Vulnerability Detected

5.3.3 Figure 8 shows Input Validation Vulnerability detection: Changed the
value of the ‘lastname’ parameter to integer value instead of string.

Figure 8: Input Validation vulnerability Not detected as response received was 500.

5.3.4 Figure 9 demonstrating Broken access control (Password kept blank) for
authorization of creating a booking (POST request) still was send the
request with authorization

Figure 9: Broken Access Control Vulnerability Detected

15

5.3.5 From figure 10 which shows Broken Object Level Authorization was
found as the booking ID’s GET call’s functionality should be with
authorization but found to be without it.

Figure 10: Broken Object level Authorization Vulnerability Detected

5.3.6 Figure 11 Describing Insecure Direct Object Reference (IDOR)
Vulnerability Detection. By just changing any user’s booking ID one can
see his details such as ‘totalprice’, ‘bookingdates’

Figure 11: IDOR Vulnerability Detected

16

5.3.7 Figure 12 showing Runner Tab Collection Results which shows automated
security test cases runs for each API call here in my case I have shown
result of one API call.

Figure 12: Postman Automation Runner Tab Results

6 Evaluation

6.1 Time Efficiency
From the Figure 13 an automated form of testing is considered effective due to the
requirement of less time to commence with different test cases (Liu et al., 2024). The manual
form of testing requires time for inspecting requests and its responses across different
endpoints. On the other hand automated form of testing helps ease the execution of various
repetitive tasks that are present across different endpoints.
Comparison:

• Manual Testing: This form of testing process requires a high amount of time to
commence with tests per endpoint (Yandrapally et al., 2023). It requires an
approximate amount of 30 to 60 minutes of time and this time varies based on the
complexities.

• Automated Testing: This form of testing requires less amount of time due to the
incorporation of automated scripts. It requires 5 to 10 minutes of the period to
commence with test cases per endpoint.

Graph 1: Figure 13 representing -Time Taken per Endpoint (Manual vs. Automated
Testing)
X-axis: Number of Endpoints
Y-axis: Time (minutes)

End Points Time for manual testing Automated testing time

1 5.38 0.016

4 30 0.033

7 45 0.066

17

Graph Representation:

Figure 13: Time Efficiency Graph

6.2 Attack time consumed Manual VS Automated testing.
From Figure 14 it is clear that Automated testing significantly reduces the time required to
detect common vulnerabilities. In contrast, manual testing relies on human expertise,
making it a labour-intensive process that takes considerably longer to execute and analyse.
Manual testing is often slower due to the need to manually create requests, analyse responses,
and document findings as show in figure 14.
Comparison:

• Manual Testing: Manual testing is time-consuming, requiring an average of 30–45
minutes per endpoint (Average Self tested time for 5 iterations) depending on the
complexity of the API security test cases to be performed. The process involves
manually crafting and sending requests, monitoring responses, and logging results.
development environments.

• Automated Testing: Automated testing significantly reduces attack time, with each
endpoint tested in a short amount of time. Automated scripts can run multiple tests
concurrently and analyse results automatically, enabling faster identification of
vulnerabilities. This efficiency makes automated testing well-suited for integration
into CI/CD pipelines.

Graph 3: Figure 14 showing Attack time consumed Manual VS automated testing
Attacks Manual Automated

Security Headers 1.5 0.0083

Mass assignment 2 0.033

Broke Object Level Authorization 5 0.033

Input (I/P) validation 2 0.016

Broke Access Control 5 0.025

18

Graph Representation:

Figure 14: Manual VS Automated Attack time consumption

6.3 Cost Implications
An automated form of testing requires extensive costing and investments in the prior phases
due to the complexities of various processes like configuration and setup (Moseh et al.,
2024). This form of testing provides long-term effectiveness in providing better testing
results. Manual form of testing in the initial phases requires a lower amount of costs but after
a certain period it increases and requires extensive costs and it is dependent on human
resources.
Comparison:

• Manual Testing: This type of testing has the requirement of long-term investments
because of the involvement of a high number of human resources to commence with
various testing phases.

• Automated Testing: It requires less long-term costs due to automated configuration
and reduction in the requirement of human resources.

6.4 Computational resources
Before Execution: Figure 15 showing utilization of resources.
Time CPU(%) Memory(mb)
0.01041865349 4.6 80.6
1.01658535 10 80.4
2.021544695 5.1 80.4
3.033410072 9.9 80.3
4.126435518 27 80.7
5.135279417 35.4 80.9
6.142272711 6.9 80.9
7.148488045 2.3 80.9
8.154577732 5.8 80.8
9.163725376 5.9 80.6

19

Figure 15: Before Execution CPU & Memory Consumption

After Execution: Figure 16 showing utilization of resources.

Time CPU (%) Memory(mb)
0.006520986557 17.9 80.3

1.089769363 38.5 80.8
2.09533906 41.5 81.2

3.104598761 20.3 81.3
4.115250349 56.1 81.4
5.125889063 55.8 81.4
6.136854649 41.2 81.5
7.14413166 30.4 81.7

8.155305386 36.7 81.9
9.162173271 11.5 81.9

Figure 16: After Execution CPU & Memory Consumption

20

6.5 Discussion:
This research demonstrates the effectiveness of implementing automated API security testing
frameworks in tackling the research questions. We were able to develop and run test cases for
critical vulnerabilities such as Broken Object Level Authorization (BOLA), Mass
Assignment along with broken access control, IDOR, and SQL Injection by using Postman
with custom scripts. These direct implementations correspond to the stated objectives and
illustrate how automation facilitates the process of vulnerability detection while being less
resource-intensive and minimizing human mistakes.

Our solutions bring significant improvement in time efficiency, scalability, and accuracy over
a manual testing method. Automating endpoint testing reduced its time from 30-45 minutes
(from figure no. 13) to under 5 minutes, thus improving productivity. Moreover, the use of
custom scripts has ensured high detection rates while minimizing false positives.

This approach well answers the research questions because it depicts how automation tackles
the challenges of scalability and complexity in API security. The results underscore that
automation security is a robust solution for modern fast-paced API development
environments.
7 Conclusion and Future Work

7.1 Restating the Research Question and Objectives
Research Questions

• RQ1: How can custom scripting be leveraged as an automated tool for driving API
security penetration testing, with a focus on creating custom security test cases?

• RQ2: What are the benefits and limitations of using automation scripts for conducting
API security penetration testing compared to traditional manual testing methods?

Objectives
• To analyse the effectiveness of custom scripting in automating API security

penetration testing by developing and executing tailored security test cases for
identifying vulnerabilities such as Broken Object Level Authorization (BOLA), Mass
Assignment, IDOR, Input Validation and SQLi.

• To evaluate the benefits and limitations of automation scripting in API security testing
compared to traditional manual testing methods, focusing on key factors such as time
efficiency, accuracy, resource utilization, and scalability.

Summary of Work Done

7.2 Key Findings and Implications

7.2.1 Key Findings
Efficiency: The use of API security testing tool to commence the process of automated
testing helped in the reduction of time and lowered the number of human resources. Different
sets of tests which are executed manually require extensive time and this automated form of
testing requires less amount of time.
Coverage and Accuracy: In the case of automated testing, a higher percent accuracy and less
time consumption is observed. On the other hand, in the case of the manual form of testing,
the rate of time was higher and subject to human error (refer figure no. 13). Automated
testing mechanisms helped in the reduction of false positive rates due to the incorporation of
automated scripts.

21

Limitations: API security testing tool is useful in the detection of different sets of common
vulnerabilities but the absence of different sets of advanced features which are essential for
the detection of zero-day vulnerability and finding of advanced vulnerable vectors.

7.2.2 Implications
The research provided a detailed evaluation of the potentiality of automated tools which are
associated with addressing different consistency and scalability challenges that are majorly
faced by manual testing processes. From the findings, it can be ensured that there is a higher
level of importance of integration of automated testing mechanisms for the achievement of
better workflow. With the help of API security testing tool different organisations can able to
make advancements across security tests.

7.3 Efficacy of the Research
The research helps in effectively answering different research questions and effective
alignment with various objectives. In this case of automated testing, API security testing tool
is one of the effective tools which helps with automated API security testing. The automated
framework helps in the effective delivery of positive test cases and better results. There are
certain limitations of the research which include

• Limited scripting processes across API security testing tool provided a high range of
implications while dealing with complex vulnerabilities.

• Various sets of advanced scenarios are effectively addressed with the help of different
sets of specialised tools and technologies.

7.4 Limitations
Tool-Specific Constraints: While API security testing tool supports scripting, it lacks
advanced security features, such as traffic interception and active scanning, available in tools
like Burp Suite.
Narrow Scope of Vulnerabilities: The study focused on a predefined set of vulnerabilities,
leaving out more complex or lesser-known attack vectors.
Context-Specific Results: The framework was tested on specific APIs, and results may vary
depending on the API architecture, complexity, and configuration.

7.5 Future Work
Advanced Vulnerability Detection: In the coming future other sets of advanced tools and
technologies can be integrated with the API security testing tool for addressing different
limitations. An effective combination of Burp Suite with API security testing tool will help in
the development of an advanced framework which will help in the detection of advanced
vulnerabilities.
Machine Learning for Dynamic Testing: Integration of advanced machine learning
algorithms with API security testing will help in dealing with diverse varieties of threats
(Chen and Babar, 2024). With the help of machine learning models patterns across traffic can
be analysed for detection of various vulnerabilities.
Continuous Security testing in CI/CD Pipeline: Enhancing research for integrating this
framework into CI/CD pipeline such as GitHub actions to automatically test the application
every time when a release is pushed.

8 References

22

Abdelfattah, A.S., Cerny, T., Yero, J., Song, E. and Taibi, D., 2024. Test Coverage in
Microservice Systems: An Automated Approach to E2E and API Test Coverage Metrics.
Electronics, 13(10), p.1913.

Ball, C.J., 2022. Hacking APIs: Breaking Web Application Programming Interfaces. No
Starch Press.
Baniaș, O., Florea, D., Gyalai, R. and Curiac, D.I., 2021. Automated specification-based
testing of REST APIs. Sensors, 21(16), p.5375.

Basheer, N., Islam, S., Alwaheidi, M.K. and Papastergiou, S., 2024. Adoption of Deep-
Learning Models for Managing Threat in API Calls with Transparency Obligation Practice
for Overall Resilience. Sensors, 24(15), p.4859.

Basics of JavaScript and Modern Web App Development (pp. 223-258). Berkeley, CA:
Condal Fontanet, J.O., 2023.

Analysis of web applications penetration testing and its realization (Master's thesis,
Universitat Politècnica de Catalunya) creating, testing, and managing APIs for automated
software testing. Packt Publishing Ltd.

De, B., 2023. Build APIs as a Product. In API Management: An Architect's Guide to
Developing and Managing APIs for Your Organization (pp. 365-383).
Berkeley, CA: Apress. education: A state-of-the-art review. ACM Transactions on
Computing Education (TOCE), 22(3), pp.1-40.

Efuntade, O.O., Efuntade, A.O. and FCIB, F., 2023. Application Programming Interface
(API) And Management of Web-Based Accounting Information System (AIS): Security of
Transaction Processing System, General Ledger and Financial Reporting System. Journal of
Accounting and Financial Management, 9(6), pp.1-18.

Lancos, P., 2021. Transforming the future of digital banking with APIs and DataSecOps.
Journal of Digital Banking, 6(3), pp.270-276.\

Loikkanen, I., 2024. Improving End to End Testing of a Complex Full Stack Software.
Paiva, J.C., Leal, J.P. and Figueira, Á., 2022. Automated assessment in computer science.

Patan, R. and Parizi, R.M., 2023, July. Automatic Detection of API Access Control
Vulnerabilities in Decentralized Web3 Applications. In 2023 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS) (pp. 76-85). IEEE.

Rao, S., Rajesh, M., & Singh, T. (2020). Microservices architecture and its impact on API
security. Journal of Cloud Computing and Security, 17(2), 133-145.

Shah, M., Patel, J., & Mehta, A. (2020). Manual vs automated penetration testing: Evaluating
the pros and cons in API security. Cybersecurity Strategies, 16(3), 100-112.

Vaghela, R.A., Solanki, K., Popat, R.R., Vaghela, I.R. and Chhangani, N., 2024. Usage of
Modern API for Automation of Government Procedures. In Transforming Public Services—
Combining Data and Algorithms to Fulfil Citizen’s Expectations (pp. 131-150).Cham:
Springer Nature Switzerland.

23

Viglianisi, E., Dallago, M. and Ceccato, M., 2020, October. Resttestgen: automated black-
box testing of restful apis. In 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST) (pp. 142-152). IEEE.

Westerveld, D., 2021. API Testing and Development with Postman: A practical guide to
creating, testing, and managing APIs for automated software testing. Packt Publishing Ltd.

Liu, J., Xia, C.S., Wang, Y. and Zhang, L., 2024. Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. Advances in
Neural Information Processing Systems, 36.

Yandrapally, R., Sinha, S., Tzoref-Brill, R. and Mesbah, A., 2023, May. Carving ui tests to
generate api tests and api specification. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE) (pp. 1971-1982). IEEE.

Chakraborty, S., Krishna, R., Ding, Y. and Ray, B., 2021. Deep learning based vulnerability
detection: Are we there yet?. IEEE Transactions on Software Engineering, 48(9), pp.3280-
3296.

Ranta, J., 2023. Testing AWS Hosted RESTful APIs with Postman.

Manikas, K. and Manikas, K., 2016. Revisiting software ecosystems research. Journal of
Systems and Software. Available at: https://dlnext.acm.org/doi/abs/10.1016/j.jss.2016.02.003
(Accessed: 12 December 2024).

Moseh, M.A., Al-Khulaidi, N.A., Gumaei, A.H., Alsabry, A. and Musleh, A.A., 2024,
August. Classification and Evaluation Framework of Automated testing tools for agile
software: Technical Review. In 2024 4th International Conference on Emerging Smart
Technologies and Applications (eSmarTA) (pp. 1-12). IEEE.

Chen, H. and Babar, M.A., 2024. Security for Machine Learning-based Software Systems: A
Survey of Threats, Practices, and Challenges. ACM Computing Surveys, 56(6), pp.1-38.

van der Poel, L., 2022. Towards automated discovery of access control vulnerabilities
(Doctoral dissertation, Department of Software Technology Faculty EEMCS, Delft
University of Technology).

https://dlnext.acm.org/doi/abs/10.1016/j.jss.2016.02.003

