\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Cybersecurity

Elsamma Joshy
Student ID: 23171847

School of Computing
National College of Ireland

Supervisor: Arghir Nicolae Moldovan

‘—
National College of Ireland \ National

MSc Project Submission Sheet College of
School of Computing
Ireland
Student
Name: Elsamma Joshy

Student ID: 23171847

Programme: MSc Cybersecurity Year: 2024-25
Module: MSc Research Project
Lecturer: Arghir Nicolae Moldovan

Submission
Due Date: 18/12/2024

Project Title: Comparing Zero Trust Model with traditional network and Machine Learning
enhancement in OpenZiti

Word Count: 1422 Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author's
written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Elsamma Joshy

Date: 18/12/2024

Office Use Only
Signature:
Date:

Penalty Applied (if applicable):
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assighment box located outside the office.

Configuration Manual

Elsamma Joshy
Student ID:23171847

1 Introduction

This configuration manual provides a guide to setting up the environment for implementing
and evaluating Zero Trust Network Access (ZTNA) and Virtual Private Network (VPN)
models using machine learning. It includes instructions for installing the required Python
modules necessary for data collection and performance analysis. The manual focuses on key
network metrics such as throughput, jitter, and latency to evaluate the efficiency and reliability
of both networks. The goal is to compare ZTNA and VPN to determine which provides
superior performance in various network conditions and enhance the network using machine
learning.

Hardware Requirement

Operating System: Windows 10 or above

RAM: 16GB

Processor: Intel Core i3 9" gen or above or AMD Ryzen 3 3™ gen or above

Storage: 256GB SSD (Solid Slate Drive)
System Type: 64-bit Operating System

Software Requirement

Google Colab

Python 3.6 version

Python Libraries like seaborn, keras, pandas, scikit learn and matplotlib

Python programming is used in this research project to implement Machine Learning model
to evaluate the datasets. Google Colab is used as a cloud-based platform for running and
executing the python code. In this project, many python libraries were used to evaluate and
visualize the models.

2 Python Libraries

The following libraries were used and installed in the research implementation with the help of
python standard command called ‘pip’ to evaluate the dataset.
a) Scikit learn:
Scikit-learn is a versatile Python library offering efficient tools for machine learning tasks
such as classification, regression, clustering, dimensionality reduction, preprocessing, and
model evaluation, making it suitable for building and validating predictive models.

b)

c)

d)

Matplotlib:

Matplotlib is a powerful library for creating detailed visualizations, including line plots, bar
charts, histograms, scatter plots, and more, allowing users to customize and export their
plots in various formats effectively.

XGBOOST:

XGBoost is a cutting-edge gradient-boosting library, designed for building fast, scalable, and
accurate machine learning models, with features like regularization, missing value handling, and
GPU support for improved performance and model precision(Farook et al., 2022).

Pandas:

Pandas is a widely used Python library for data manipulation, cleaning, aggregation, and
analysis, offering tools to work seamlessly with structured datasets like tables, spreadsheets,
and time-series, enabling efficient and intuitive data workflows.

3 Dataset Used

The UNSW-NBI1S5 dataset contains realistic network traffic generated using the IXIA PerfectStorm
tool, including normal and malicious data. It features 49 attributes and nine attack types, offering a
diverse and comprehensive representation of real-world network traffic for training and testing
intrusion detection systems. It contains network traffic data, which includes both benign (normal)
traffic and malicious traffic. The data is structured in the form of network flow records, each
representing a connection or session between two devices on a network. The dataset provides
information about various attributes of these network connections, categorized as follows:

l.

Benign (Normal) Traffic :

This includes data representing typical, non-malicious network activity. It consists of regular
browsing, file transfers, email exchanges, and other standard network services under typical
conditions. These records provide a baseline for distinguishing between normal and malicious
traffic.

Malicious (Attack) Traffic:

This data represents different types of malicious activities, each categorized into specific attack
classes. The malicious traffic is generated by a wide range of attack types to simulate realworld
cyber threats. These attacks are categorized into the following types:

A)Denial of Service (DoS): Attacks designed to overwhelm a system, such as flooding
traffic or resource exhaustion.

B) Intrusion Attacks: Attacks aimed at unauthorized access to systems, including exploits
and brute-force attempts.

C)Malware: Malicious software designed to disrupt or harm systems, including viruses,
worms, and Trojans.

D)Botnets: Traffic generated by networks of compromised devices used for malicious
purposes, often in coordinated attacks.

E) Web Attacks: Attacks targeting web servers, including SQL injection, cross-site
scripting (XSS), and other vulnerabilities.

F) Zero-Day Attacks: Exploits that take advantage of previously unknown vulnerabilities,

often used in sophisticated attacks.

Snapshots of the Dataset

J *ziti-tunneler.log.202412040000.log - Notepad — O X

File Edit Format View Help

[2024-12-04T04:10:29.336Z] INFO ziti-sdk:utils.c:198 ziti_log_set_leve
[2024-12-04T04:10:29.336Z] INFO ziti-sdk:utils.c:167 ziti_log_init() z
[2024-12-04T04:10:29.336Z] INFO ziti-edge-tunnel:instance-config.c:85

[2024-12-04T04:10:29.353Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:2@
[2024-12-04T04:10:29.353Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:2@
[2024-12-04T04:10:29.353Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:2@
[2024-12-04T04:10:29.353Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:2@

[2024-12-04T04:10:29.353Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:2@
[2024-12-04T04:10:29.354Z] INFO ziti-sdk:utils.c:198 ziti_log_set_leve
[2024-12-04T04:10:29.366Z] INFO ziti-edge-tunnel:tun.c:195 tun_open()

[2024-12-04T04:10:29.366Z] INFO ziti-edge-tunnel:tun.c:170 flush_dns()
[2024-12-04T04:10:29.367Z] hNFO ziti-edge-tunnel:tun.c:107 WintunLogge
[2024-12-04T04:10:30.203Z] INFO ziti-edge-tunnel:tun.c:101 WintunLogge
[2024-12-04T04:10:30.221Z] INFO ziti-edge-tunnel:tun.c:101 WintunLogge
[2024-12-04T04:10:30.576Z] INFO ziti-edge-tunnel:tun.c:443 if_change_c
[2024-12-04T04:10:30.576Z] INFO ziti-edge-tunnel:tun.c:449 if_change_c
[2024-12-04T04:10:36.107Z] INFO ziti-edge-tunnel:windows-scripts.c:469
[2024-12-04T04:10:38.201Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:15
[2024-12-04T04:10:38.216Z] INFO tunnel-sdk:ziti_tunnel.c:60 create_tun
[2024-12-04T04:10:38.2317] INFO tunnel-cbs:ziti_dns.c:173 seed_dns() D
[2024-12-04T04:10:38.231Z] INFO ziti-edge-tunnel:ziti-edge-tunnel.c:17

Ln 12, Col 31 100% Windows (CRLF) UTF-8

Fig 1: OpenZITI dataset

| zitiDesktopEdge.log - Notepad = O X
File Edit Format View Help
H2024-12-04T04:03:56.6692] INFO ZitiDesktopEdge.MainWindow = A
[2024-12-04T04:03:56.790Z] INFO ZitiDesktopEdge.MainWindow i
[2024-12-04T04:03:56.790Z] INFO ZitiDesktopEdge.MainWindow
[2024-12-04T04:03:56.814Z] INFO ZitiDesktopEdge.MainWindow
[2024-12-04T04:03:57.016Z] INFO ZitiDesktopEdge.MainWindow
[2024-12-04T04:03:57.016Z] INFO ZitiDesktopEdge.MainWindow =
[2024-12-04T04:03:58.315Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:03:58.779Z] INFO ZitiDesktopEdge.MainMenu u
[2024-12-04T04:03:58.779Z] INFO ZitiDesktopEdge.MainWindow S
[2024-12-04T04:04:58.513Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:05:19.608Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:06:19.743Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:07:19.996Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:08:20.192Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:09:20.406Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:10:20.614Z] INFO ZitiDesktopEdge.ServiceClient.Dat
[2024-12-04T04:10:23.178Z] INFO ZitiDesktopEdge.MainWindow S
[2024-12-04T04:10:38.339Z] INFO Ziti.Desktop.Edge.Utils.UIUtils r
[2024-12-04T04:10:38.339Z] INFO Ziti.Desktop.Edge.Utils.UIUtils 1
[2024-12-04T04:10:38.384Z] INFO ZitiDesktopEdge.MainWindow S
[2024-12-04T04:10:40.653Z] INFO Ziti.Desktop.Edge.Utils.UIUtils r
[2024-12-04T04:10:40.653Z] INFO Ziti.Desktop.Edge.Utils.UIUtils 1
[2024-12-04T04:11:19.639Z] INFO ZitiDesktopEdge.MainMenu oS
FANA"NA 11 AATAA.11 .1n 70071 TAIFEA TadaNanlbdanmTden MasuManmoe ;
Ln 1, Col 1 100% Windows (CRLF) UTF-8

Fig 2: OpenVPN dataset

These figures are the sample data from the dataset which is used for evaluating which configuration is
the best, which is either OpenZITI or OpenVPN. The dataset consist of date, timestamp, protocol used,
type of configuration, and so on.

Class Distribution in Training Data

120000 -+

100000 A

80000 -

60000 +

Count

40000 A

20000 4

0..

0 1
Label (0: Benign, 1: Malicious)

Fig 3: Classification of Data

This part of the code is focused on visualizing the distribution of benign (normal) and malicious
(attack) network traffic within the training dataset. It uses the seaborn and matplotlib libraries to

create a bar chart (count plot) showing how many instances of each class are present(Gunuganti,
2023).

Distribution of Protocol Types

80000 A

70000

60000 A

50000

40000 A

Count

30000 A

20000 A

10000 A ||

Protocol Type

Fig 4: Types of Protocols found in the dataset

This code snippet is creating a bar plot to visualize the distribution of different protocol types within
the training dataset (train_data). It's essentially showing how many times each protocol appears in the
network traffic data.

Distribution of Services

80000 A
60000 A
€
3
O
40000 A
20000 A
o_
KR b(\" & PR ¢ Q") ¥ R @Q ,‘?‘\ &
& P ¢ &
o8 ¢ o N

Service

Fig 5: Types of Services found in Dataset

This code snippet is designed to visualize the distribution of the service feature within the train_data
dataset. It essentially shows how many times each distinct service appears in the dataset

Performance Metrics Comparison
1.0

0.8

0.6

Score

0.4

Accuracy
Precision
Recall

F1 Score
ROC-AUC

0.2 1

0.0 -

Model

Fig 6: Performance Metric Comparison between Models

The image presents a comparison of performance metrics for three different machine learning models:
Random Forest, Logistic Regression, and XGBoost. Each model is evaluated across five metrics:
Accuracy, Precision, Recall, F1-Score, and ROC-AUC.

Training and Testing Summary of the Machine Learning Models

t pandas as pd

t matplotlib.pyplot as plt

t seaborn as sns
1 sklearn.model_selection rt train_test_split

sklearn.ensemble i RandomForestClassifier

sklearn.linear_model t LogisticRegression

xgboost i t XGBClassifier

sklearn.metrics inm accuracy_score, precision_score, recall score, fl1_score, roc_auc_score, classification_report
1 sklearn.preprocess port StandardScaler, LabelEncoder

train_data = pd.read_parquet(’
test_data = pd.read_parquet('U

X_train = train_data.drop(', axis=1)
y_train = train_data['l

X_test = test_data.drop(', axis=1)
y_test = test_data[’'l

categorical_cols = X_train.select dtypes(include=[" t']).columns
le = LabelEncoder()
for col in categorical cols:

X_train[col] = le.fit_transform(X_train[col])

X_test[col] = le.transform(X_test[col])

numeric_cols = X_train.select dtypes(include=["int64°, 'fl 1) .columns
scaler = StandardScaler()

X_train[numeric_cols] = scaler.fit_transform(X_train[numeric_cols])
X_test[numeric_cols] = scaler.transform(X_test[numeric_cols])

Fig 7: Python code for importing libraries and storing the dataset into variables

The code loads the training and testing datasets from Parquet files, separates features and labels into

X train, y train, X test, and y test. It encodes categorical features using LabelEncoder and normalizes
numeric features with StandardScaler to ensure proper scaling, improving compatibility with machine
learning models and their performance.

numeric_cols = X_train.select_dtypes(include=['int64’, ° 64']).columns

scaler = StandardScaler()
X_train[numeric_cols] = scaler.fit_transform(X_train[numeric_cols])
X_test[numeric_cols] = scaler.transform(X_test[numeric_cols])

rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
rf_clf.fit(X_train[numeric_cols], y_ train)

1r_clf = LogisticRegression(random_state=42)
Ir_clf.fit(X_train[numeric_cols], y train)

xgb_clf = XGBClassifier(n_estimators=100, random_state=42)
xgb_clf.fit(X_train[numeric_cols], y_train)

Fig 8: Training the Dataset using Models

The code normalizes numeric features by scaling them with StandardScaler, ensuring they have a mean
of 0 and standard deviation of 1. Then, it trains three machine learning models: Random Forest,
Logistic Regression, and XGBoost, using the normalized data and their corresponding labels to
predict outcomes effectively(Haddon, 2021).

y_pred_rf = rf_clf.predict(X_test[numeric_cols])

print(” = - ”ﬂ

print(f faccuracy_score(y test, y pred rf)}")

print(f : {precision_score(y test, y pred rf)}")

print(f recall score(y test, y pred rf)}")

print(f {(f1_score(y_test, y pred rf)}")

print(f C-AUC: oc_auc_score(y_test, rf_clf.predict_proba(X_test[numeric_cols])[:, 1])}"
print(" t for Random F s24)

print(classification_report(y_test, y pred_rf))

y_pred_ Ir_clf.predict(X_test[numeric_cols])

print(" ’ 4 n - Tes =)

print(f p accuracy_score(y test, y pred 1r)}")

print(f : {precision_score(y test, y pred 1r)}")

print(f recall score(y test, y pred_1lr)}")

print(f {f1_score(y_test, y pred_1r)}")

print(f"ROC-AUC: {roc_auc_score(y test, 1lr_clf.predict_proba(X test[numeric_cols])[:, 1]
print("\ncCl i t for Logistic i &)
print(classification_report(y_test, y pred 1r))

y_pred_xgb = xgb_clf.predict(X_test[numeric_cols])

print(" -)

print(f accuracy_score(y test, y pred xgb)}")

print(f : {precision_score(y test, y pred xgb)}")

print(f recall score(y test, y pred_xgb)}")

print(f {(f1_score(y_test, y pred xgb)}")

print(f oc_auc_score(y test, xgb clf.predict proba(X_test[numeric_cols])[:, 1])}"
print("] t for X =)

print(classification_report(y_test, y pred xgb))

Fig 9: Python code to display the evaluation of each model

The code normalizes numeric features by scaling them with StandardScaler, ensuring they have a mean
of 0 and standard deviation of 1. Then, it trains three machine learning models: Random Forest,
Logistic Regression, and XGBoost, using the normalized data and their corresponding labels to
predict outcomes effectively.

Random Forest - Test Set:
Accuracy: 0.6869625419035126
Precision: 0.6467489983643703
Recall: ©.9587632577428748

F1 Score: 0.769828440784832
ROC-AUC: 0.6672391685009814

Classification Report for Random Forest:
precision recall fl-score support

0.51 370600
0.77 45332

accuracy 82332
macro avg 82332
weighted avg 82332

Fig 10: Random Forest Classification Report

The output shows the performance metrics for a Random Forest model evaluated on the test set. The
accuracy is 68.7%, with precision of 64.7%, recall of 95.1%, and F1 score of 77%. The classification
report further breaks down precision, recall, and F1 score for both classes, indicating a strong
performance in detecting class 1 (malicious) traffic.

Logistic Regression - Test Set:
Accuracy: 06.59082079385900987
Precision: 0.5826595365418895
Recall: ©.9013279802347128

F1 Score: 0.7077786535246888
ROC-AUC: ©.68407344254163238

Classification Report for Logistic Regression:

precision recall fi-score support

0.63 0.21 0.31 37600
0.58 0.90 0.71 45332

accuracy : 82332
macro avg : : : 82332
weighted avg . : - 82332

Fig 11: Logistic Regression Classification Report

The Logistic Regression model's overall accuracy is 59%, meaning it correctly predicts whether a
patient has a disease or not in 59% of cases. It's better at identifying patients with the disease (recall of
90%) but less accurate at correctly identifying healthy patients (precision of 58%). The F1-score of
71% balances precision and recall, while the ROC-AUC of 68% measures how well the model
distinguishes between classes.

XGBoost - Test Set:

Accuracy: 0.6885900986250789

Precision: 0.6462011314199172
Recall: ©.9600502955969293

F1 Score: 0.7724638581482237

ROC-AUC: ©.6928534174892267

Classification Report for XGBoost:

precision recall fl-score

0.51
.77

accuracy
macro avg
weighted avg

Fig 12: XGBOOST Classification Report

The XGBoost model's overall accuracy is 69%, meaning it correctly predicts whether a patient has a
disease or not in 69% of cases. It's better at identifying patients with the disease (recall of 96%) but
less accurate at correctly identifying healthy patients (precision of 65%). The F1-score of 77%
balances precision and recall, while the ROC-AUC of 69% measures how well the model distinguishes

between classes.

Confusion Matrix - XGBoost

L
o
£
27 13172
o
z
7]
=
E
<
g = 1811
1
No Attack Attack

Predicted

Fig 13: XGBOOST Confusion Matrix

support

37000
45332

82332
82332
82332

Confusion Matrix - Logistic Regression Confusion. Matrix - Random Forest

7734 13459

No Attack
1

No Attack
1

nuc

3 223
= 4473 2

Attack
Attack

|
|
No Attack Atack No Attack edicted Attack
Predicted

Fig 14: Logistic Regression Confusion Matrix Fig 15: Random Forest Confusion Matrix

The XGBoost model has the best overall performance with an accuracy of 69%, outperforming both
Logistic Regression (59%) and the other XGBoost model (68%). All models struggle with false

negatives (incorrectly predicting benign traffic as malicious traffic), but XGBoost models are better at
identifying malicious traffic (high recall).

References

Farook, M., Macklin, T., Ahmadinia, A., & Tyagi, S. (2022). THE PROJECT HAS BEEN
ACCEPT (vlongmmgqd Fgqroo/< Zero Trust Evolution and Transforming Enterprise
Security Sanjay Kak THE PROJECT HAS BEEN ACCEPTED BY THE PROJECT
COMMITTEE IN SCIENCE IN CYBERSECURITY.

Gunuganti, A. (2023). Citation: Gunuganti A. Identity Based-Zero Trust. J Artif Intell Mach
Learn & Data Sci, 2023(2), 492-497. https://doi.org/10.51219/JAIMLD/anvesh-
gunuganti/133

Haddon, D. A. E. (2021). Zero Trust networks, the concepts, the strategies, and the reality.
Strategy, Leadership, and Al in the Cyber Ecosystem: The Role of Digital Societies in

Information Governance and Decision Making, 195-216. https://doi.org/10.1016/B978-0-
12-821442-8.00001-X

10

