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Abstract 

The healthcare industry faces challenges in protecting sensitive data amidst rising 

cyber threats. Fully Homomorphic Encryption (FHE) offers a transformative solution by 

enabling computations on encrypted data without decryption. This ensures privacy 

throughout data handling. This study explores the practical implementation of FHE in 

healthcare, leveraging the Microsoft SEAL library to create a secure framework for 

encrypted data analytics and sharing. The framework integrates BFV and CKKS 

encryption schemes for integer and real-number computations, respectively. It is tested 

using synthetic datasets simulating healthcare scenarios. Evaluations demonstrate high 

accuracy, robust noise management, and scalability for moderate dataset sizes. Results 

from encrypted computations align closely with plaintext benchmarks validating FHE's 

effectiveness in privacy preservation. While challenges such as computational overhead 

and noise depletion in complex operations remain, this research underscores the potential 

of FHE to secure healthcare data, meeting HIPAA standards and enabling safe, efficient 

data usage. Future work will focus on scalability and optimization strategies. 

Key words – Fully homomorphic encryption (FHE), noise, BFV, CKKS, Microsoft 

SEAL 

 
 

1 Introduction 
 

The healthcare industry in particular manages sensitive data including patient health 

records, financial information and personally identifiable information. These data are 

classified as Protected Health Information (PHI) Under the HIPAA act. Therefore, ensuring 

the protection of this data is of utmost priority. While advanced technologies such as 

Artificial Intelligence and Machine Learning have improved efficiency in handling tasks 

which include medical imaging analysis, streamlining administrative workflow and faster 

diagnosis. However, there is an alarming increase in global attacks on data, with healthcare 

organizations being the major targets. In 2023 alone, 725 data breaches affecting 500 or more 

health records were reported—more than double the number in 2017 (Alder 2024). Such 

trends are alarming, and it emphasizes the need to develop not only powerful, fresh solutions 

that will not only keep sensitive healthcare data safe but also allow for its safe use for 

essential processes and developments. 

 

This paper investigates the practicalities of using Fully Homomorphic Encryption 

(FHE) as a transformative technology to address critical privacy and security challenges. 

Unlike traditional encryption methods, where data must be decrypted before processing, FHE 

allows computations to be performed directly on encrypted data. This fundamental difference 
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ensures that sensitive information remains encrypted throughout its lifecycle, significantly 

reducing the risk of data leakage and unauthorized access. FHE has the potential to 

revolutionize the security of private healthcare data, enabling privacy-preserving data 

analytics, sharing, and collaboration. Critical health data, such as heart rate and blood 

pressure—classified as protected health information (PHI) under HIPAA can benefit from 

this advanced approach to encryption. By maintaining privacy and security without 

compromising functionality, FHE represents a paradigm shift in the management and 

utilization of sensitive information. 

In 2020, health entities experienced disproportionally large amount of data breaches 

compared to other industries: the average number of daily breaches in the healthcare industry 

is 1.76. HIPAA prescribes very strict rules on protecting health records and other healthcare 

sensitive data from unauthorized access, yet many health entities fail to implement the 

security controls (Kost, 2022). The research question that motivates this project is: How 

can Homomorphic Encryption be used in Healthcare industries? This work delves into 

methodologies for designing and deploying FHE, its integration into existing systems, and 

evaluates its effectiveness in real-world applications. 

 

1.1 Report structure 

  

Literature on research that has been done on existing FHE research, its applications in 

healthcare and the challenges and benefits that were observed in prior studies has been 

reviewed. This review provides context and identifies gaps in the current understanding of 

the potential for FHE in healthcare. The Methodology section details the research approach 

and steps employed to develop a practical implementation framework for FHE that is not 

only technically feasible, but also fits within the specific requirements of healthcare 

organizations. The Implementation and Design Specifications section presents detailed 

specifications of the artifact created, including the system architecture, properties of 

encryption protocols, and workflow, describing how FHE could be fully incorporated into 

healthcare data systems. The Evaluation section evaluates the implementation by identifying 

different metrics like performance which are crucial to the working of the project and tests to 

see how efficient they are, and at the end, the Conclusion summarizes the result, assess the 

potential significance of FHE in healthcare, and suggests possible future research and 

development directions. 

 

 

2 Related Work 
 

A cryptographic technique known as Fully Homomorphic Encryption (FHE) makes it 

possible to perform computations over encrypted data without decryption. F Armknecht 

published a paper (Armknecht et al., 2015) outlines how FHE can be used in a range of 

different possibilities and applications, e.g. privacy-preserving advertising, secure cloud 

processing, medical data analysis as well as financial data securities and applications where 
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FHE could be implemented. From this I gained an idea on the different platforms I could 

possibly implement this project. In Bansal’s paper (Bansal, 2021) he explains how this 

technology can be used in different areas. Like in cloud computing, processing can be done 

securely without exposing plaintext. In the case of electronic voting, HE (Homomorphic 

Encryption) is used to protect ballot privacy, and integrity while it allows us to have secure 

ranked choice voting systems like ElGamal. The IoT (Internet of Things) device’s massively 

generated data by interconnected devices is secured in HE. Research into the different areas 

in healthcare where privacy and data protection takes precedence was carried out. This gave 

rise to the main research question that is - how can Fully Homomorphic Encryption be used 

in Healthcare industries.  

 

Marcolla in his paper (Marcolla et al., 2022), discussed the security of FHE and revises 

concepts such as number theory and lattice based cryptography. It also discusses various 

generations of FHE. Third generation FHE methods have been incorporated in this project to 

optimize its performance with batching and modulus switching. The paper also covers 

opensource tools such as Helib and SEAL to implement FHE. The Microsoft SEAL library 

was further researched from the paper written by Fransisco (Fransisco Jose, Francisco-Jose 

Valera Rodriguez, Manzanares Lopez and Cano, 2024). The paper focused on the use of  

Microsoft SEAL on PC, as an efficient option dependant on dataset size and complexity poly 

modulus degree encryption. The paper produced by Fawaz (Fawaz et al., 2021), explained the 

different possibilities and applications where FHE could be implemented, such as privacy-

preserving advertising, secure cloud processing, medical data analysis, and financial data 

security. These papers provided insights on the different platforms the could be adopted for 

the implementing this project.  

2.1 Comparison 

 

There exists of many FHE libraries each with their own strengths and weaknesses. Here we 

compare the different opensource FHE libraries and explain why this project uses the 

Microsoft SEAL library. Zhu wrote a paper (Zhu et al., n.d.) comparing Microsoft SEAL and 

OpenFHE and it discusses the reasons why the Microsoft SEAL library was selected. 

Compared to its counterpart, Microsoft SEAL performed consistently better in all regards to 

latency. It was better optimized in memory management so the overhead was minimised. But 

it also performed better for people who were able to tweak the library well enough. After 

reading this paper, I dug some more into Microsoft SEAL paper which led to another 

published paper of Zhu et al(Zhu, Suzuki and Hayato Yamana, 2023) comparing Microsoft 

SEAL, OpenFHE and HElib. Just like this paper, Microsoft SEAL was shown to be more 

latent than OpenFHE and Helib. I also found that out of the three, SEAL gave excellent 

performance with more threads keeping it most scalable. This further led me to do further 

research into comparing Microsoft SEAL with other libraries. Microsoft SEAL, Helib, and 

PALISADE are compared in a paper by Alycia Carey (Carey, 2020). This paper then 

discusses the underlying encryption schemes used by the 3 libraries—BFV, CKKS and BGV. 

The thesis highlights the promise of FHE in changing data security by enabling computations 

on encrypted datasets. This justified my decision to choose Microsoft SEAL as my FHE 
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library. In the final paper that I mentioned in this section, it compared the 2 different types of 

encryption schemes that Microsoft SEAL utilizes: BFV, and CKKS. BFV is designed to 

support computations on integers and addition, multiplication, and squaring operations.  

CKKS is designed to work with approximate, real number computations which is ideal for 

applications such as data analytics and machine learning. Basic operations (e.g., addition and 

multiplication) performed by BFV were more time intensive with small to medium vector 

sizes, however CKKS had faster time for larger vectors at the cost of more computational 

overhead. I learned from this paper that BFV scheme is very suitable with applications 

involving integer arithmetic and in contrast CKKS is more suitable with applications with 

real value data in scientific computations (Fawaz et al., 2021). This allowed me to choose the 

encryption scheme that works best for this project. As Microsoft SEAL had access to both 

encryption schemes, it became more evident as how well it can be incorporated into my 

project which tries to answer the question of how fully homomorphic encryption can be used 

in healthcare industries.  

2.2 Drawbacks and Mitigations  

 

During my research on related work, I found papers that pointed out the limitations of the 

Microsoft SEAL libraries, and study by Zhiniang Peng (Peng, 2019). In this paper it 

identified critical issues, such as gaps in circuit privacy that may allow unintentional 

disclosure of sensitive details involved in encrypted computation. 

Moreover, Peng's work proposed practical countermeasures like noise flooding and re 

randomization, to combat such challenges and enhance security. Motivated by these 

recommendations, this project provides means to improve privacy against these attacks while 

explicitly addressing these previously mentioned shortcomings. With these enhancements 

incorporated, this work shows how SEAL’s limitations can be mitigated successfully, and 

how SEAL can be used with a strong security framework. 

 

Another paper that really stood out was a theoretical paper on how FHE could be deployed in 

healthcare. The paper was a purely theoretical. Certain tools like Microsoft SEAL make the 

implementation easier despite the presence of computational overhead, absence of standards, 

and ethical issues (Fotios Roumpies and Athanasios Kakarountas, 2023). The goal of this 

project is to give a practical implementation to the above paper.  
 

 

 

3 Research Methodology 
 

The research procedure and methodology focus on designing and implementing Fully 

Homomorphic Encryption (FHE) within the healthcare context. It aims to design a practical 

and efficient framework for integrating FHE into healthcare systems in a way that guarantees 

the privacy of sensitive patient data and allows computations to be performed while 

maintaining privacy. 
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The research began with defining clear objectives centred on addressing the question: How 

can Fully Homomorphic Encryption (FHE) can be deployed in the healthcare industry? 

Specifically, the project scope was concerned with assuring the security of Protected Health 

Information (PHI) following the HIPAA rules, including patient metrics (e.g. heart rate, 

blood pressure), and provide encrypted data analytics. First, there was preliminary research, a 

feasibility study, consisting of reviewing the existing literature and comparing FHE libraries 

to figure out the best possible tools. It was found that Microsoft SEAL provided optimal 

performance, having demonstrated scalability, aligning with the requirements of healthcare 

data processing. The research then moved towards a design for a framework that incorporates 

FHE into healthcare workflows in general, especially in cases such as encrypted patient data 

analysis and secure data sharing between providers. 

 

The chosen FHE software library for implementation is Microsoft SEAL in order to complete 

the goals of the project. Extensive benchmarking led to this decision and showed that the 

performance of Microsoft SEAL in latency, scalability, and memory optimization was 

superior to that of solutions such as OpenFHE and HElib. Two encryption schemes within 

Microsoft SEAL were utilized: for computations working with integer data, such as patient 

IDs and medical codes, the BFV scheme is used, while for arbitrary precision real number 

computations in analyzing the trends in patient metrics, CKKS scheme will be utilised. C++ 

was used to develop the framework so that it integrates smoothly with Microsoft SEAL. 

Datasets for this project were generated synthetically to produce realistic (but synthetic) 

datasets mimicking realistic healthcare settings, and also to ensure compliance with relevant 

ethical standards conducive for a robust testing environment. Numerical metrics, such as 

blood pressure readings, and heart rate, were included in the data. Each of these datasets were 

encrypted using Microsoft SEAL, optimized at the configurations for each dataset to optimize 

size of the dataset and its complexity. Polynomial modulus degree and plaintext modulus are 

tailored encryption parameters for the application of healthcare data. The data was encrypted 

end-to-end and encrypted computations were performed directly on the data, such as 

aggregation and anomaly detection. In the end, the decrypted outputs were compared to 

plaintext computations to show that all outputs were accurate and faithful. 

 

Based on dimensions like, performance, accuracy, robustness, and security, these metrics 

were analyzed to evaluate the implementation. Performance analysis involved measuring the 

time to encrypt, decrypt, and to run encrypted computations, as well as memory usage and 

total system latency. Validation of accuracy involved comparing the outcome of encrypted 

computation over encrypted data with the result from plaintext computation by using 

parameters like Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 

Robustness tests to quantify the effect of changing different encryption parameter 

configurations (e.g. polynomial modulus degree, plaintext modulus) on computation time, 

accuracy, and noise budget, and suggested parameter configurations optimal for healthcare 

datasets were run. System performance under increasing dataset size and under multi-

threaded configurations was assessed through scalability testing and at the same time, the 

framework was shown to scale up appropriately with large healthcare datasets. 
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Security assessments have been carried out for checking the adherence to the privacy 

principles on the implementation. To protect against vulnerabilities, certain concepts such as 

the integration of MPC (Multi-Party Computation) principles were discussed. Noise budget 

was also tracked to verify the system's robustness in performing complex computations. This 

project was driven by ethical considerations. Synthetic datasets were used to avoid handling 

of real patient data at all and to guarantee the compliance with HIPAA and other data privacy 

regulations.  

 

4 Design Specification 
 

The design of the Fully Homomorphic Encryption (FHE) framework for healthcare systems 

was guided by the need to secure sensitive patient data while enabling privacy-preserving 

computations. 

Existing literature was reviewed and existing FHE libraries had been compared to perform 

preliminary research and a feasibility study to identify the most suited tool. The performance, 

scalability, and suitability of Microsoft SEAL proved to be the best option when the criteria 

above are applied to healthcare data processing. The research then explored how to design a 

framework integrating FHE into healthcare workflows in situations such as encrypted patient 

data analysis and secure data sharing between providers. 

 

Microsoft SEAL was the FHE library that was chosen to reach project goals. Based on such 

extensive benchmarking, it was observed that the performance of this decision in terms of 

latency, scalability and memory optimization is better than those of any OpenFHE or HElib. 

Two encryption schemes within Microsoft SEAL were utilized: For computations with 

integer data — such as patient IDs, medical codes — the BFV scheme is used, and for 

approximate real number computations — useful for trending patient metrics — the CKKS 

scheme is used. The framework was developed using C++, and Microsoft SEAL. For this 

project, the datasets were synthetically generated to conform to realistic healthcare scenarios, 

as well as to a rigorous set of ethical standards and serve as an ideal testing environment. The 

numerical metrics were included in the data, such as blood pressure readings and heart rate. 

The datasets were encrypted using Microsoft SEAL with configurations optimized to the 

dataset size and complexity. Polynomial modulus degree and plaintext modulus were tailored 

to the parameters of healthcare data encryption. Encrypted computations were performed on 

the data, directly, using aggregation and anomaly detection operations, where the data itself 

stays encrypted across the whole workflow. Ultimately, the outputs were decrypted and 

compared to plaintext computations to ensure accuracy and fidelity. 

 

The different metrics analysed across different dimensions are performance, accuracy, 

robustness, scalability. These were used to evaluate the implementation. Specifically, 

performance analysis was done through measuring the time for encryption, decryption, and 

computation on the encrypted data, and measuring the memory usage and overall system 

latency. Accuracy validation was achieved through the comparison of the results of the 
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encrypted computation operations to the results of the same operations against plaintext data 

with metrics including Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 

The impact of varying encryption parameter configurations (e.g. polynomial modulus degree, 

plaintext modulus) was also investigated and evaluated with respect to computation time, 

accuracy and noise budget with regards to robustness testing, and also optimal configurations 

for healthcare datasets were identified. System performance under increasing dataset sizes 

and multi-threaded configurations was also evaluated via scalability testing to show the 

framework’s scalability when processing larger healthcare datasets. 

 

This document defines the techniques, architecture, and framework that was used to 

implement Fully Homomorphic Encryption (FHE) to ensure security of sensitive healthcare 

data. It offers in-depth description of the system components, the data handling methodology, 

the encryption framework and computational workflow in ways that meet the strict privacy 

and security standards that are to be practiced by healthcare industry. 

 

4.1 Framework Architecture 

Fully Homomorphic Encryption (FHE) is implemented using the Microsoft SEAL library in 

an implementation framework. To ensure privacy preserving computations and to give a 

scalable and seamless integration, this design incorporates the key elements of FHE. For 

computations on integer data (for example, patient IDs and medical codes), the BFV scheme 

is used; and for approximate computations with real numbers (for example, trends in heart 

rate and blood pressure), the CKKS scheme is used. 

 

The flow of data during the whole process is as follows: 

Data Collection: Realistic healthcare scenarios are simulated using data from simulated 

patient reads of systolic blood pressure and heart rate. 

Data Encryption: Microsoft SEAL’s batch encoding feature is used to encrypt patient data so 

that the vectorized operations on encrypted data are efficient. This data is then stored to be 

used later as needed. 

Encrypted Computation: Computations, like aggregation, anomaly detection, correlation 

analysis are typically performed directly on encrypted data. 

Decryption: The final result after the encrypted computation is then decrypted and displayed 

to the doctor who requested it.  
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Fig 1.1 flow of control 

4.2 Requirements 

In regards to implementing Fully Homomorphic Encryption (FHE) for secure healthcare data 

computation there are specific hardware needs for efficient performance. Outlined below are 

the hardware requirements to support FHE’s computationally intensive operations, namely 

encryption, decryption, and homomorphic computation. 

 

Minimum Hardware Requirements for FHE Implementation: 

 

• Processor: Quad-core CPU, 2.5 GHz or higher (e.g., Intel Core i5 8th Generation or 

newer, AMD Ryzen 5). 

• Memory: At least 16 GB RAM to handle large ciphertexts and polynomial operations. 

• Storage: Minimum 512 GB, preferably SSD for faster read/write access and handling 

intermediate computation files. 

 

Recommended Hardware for Optimal Performance: 

 

• Processor: 8-core CPU, 3.0 GHz or greater (e.g., Intel Core i7/i9, AMD Ryzen 7/9). 

• Memory: 32 GB or more RAM for enhanced performance. 

• Storage: 1 TB or greater NVMe SSD for maximum speed and capacity. 

• Parallel Computing: Support for multi-threading and GPUs, preferably dedicated 

GPUs such as NVIDIA GPUs for accelerated computations. 

 

5 Implementation 
 

The FHE implementation for security of healthcare data is in the form of encrypting patient 

metric shares such as the blood pressure and heart rate into encrypted shares which can be 

processed while preserving the strict data confidentiality. Robust cryptographic library 

Microsoft SEAL was chosen for its support for BFV and CKKS schemes, efficient batch 
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encoding and optimized performance. Both these schemes are considered to be quantum 

resistant and are widely used in homomorphic encryption schemes designed for privacy 

preserving computations. For performance reasons, the system was built in C++, leveraging 

Microsoft SEAL’s developed capabilities, while being compatible with healthcare 

workflows. 

 

Initial step of the implementation consists of data encryption, as synthetic patient datasets 

obtained from the previous stage are preprocessed to create realistic healthcare scenarios. 

Using Microsoft SEAL’s batch encoder, each share is encoded into vectors and metrics are 

divided into shares utilizing modular arithmetic. Using, in the setup phase, the public key, the 

encoded vectors are thus encrypted. Carefully chosen encryption parameters (e.g., 

polynomial modulus degree and coefficient modulus) are shown to be optimized to balance 

security and performance, so that the system can perform complex calculations efficiently. 

After encryption the data is directly subject to homomorphic computations in its encrypted 

state. Aggregate sums, cross-products, etc., are computed by performing operations such as 

addition, multiplication, etc., on variance terms and covariance terms. These are the 

workloads needed to analyze trends, detect anomalies or calculate the correlation between the 

systolic blood pressure and heart rate to keep the ciphertext sizes and numerical accuracy at 

manageable levels. 

Fidelity validation is performed on the decrypted outputs. The computation results, such as 

aggregated metrics and computed correlation coefficients, are also compared with those of 

plaintext computations and are shown to have negligible errors and demonstrate that the 

system is accurate. The security of circuit output is further increased through the use of noise 

flooding and re–randomization techniques to protect the circuit from various holes where the 

leakage of information can take place, thereby meeting the data privacy regulation such as 

HIPPA. 

In order to overcome performance difficulties, the system implements multi-threading to 

improve computational speed, and scaling to various degrees to deal with large amounts of 

data sets. The framework’s effectiveness is evident in the alignment of results from encrypted 

computations with plaintext benchmarks. The resulting implementation provides a practical 

solution for efficient and secure privacy preserving healthcare data analysis. 

 

6 Evaluation 
 

The evaluation of the proposed approach was conducted across four critical dimensions: 

performance, accuracy, noise budget, and scalability. They capture each part of a system’s 

overall efficacy and resilience, but from a distinct yet interconnected perspective. To assess 

the system’s performance, performance tests were designed to measure its efficiency under 

different operational conditions and metrics captured include: execution time. It is crucial to 

know about this criterion, in order to understand how the system works under normal and 

high demand situation. The accuracy of the system was evaluated on the basis of its ability to 

deliver the correct results with high precision. This analysis compares the system’s output 

with ground truth or reference benchmarks to illuminate the system’s consistency and to 
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inform whether it is meeting its expected performance in real applications. Analysis of the 

noise budget in the system was used to explore cryptographic integrity of the system, 

including analysis of the noise budget within the Microsoft SEAL Fully Homomorphic 

Encryption (FHE) framework. In this evaluation we examined how the system treats the FHE 

noise budget during operations by assessing its ability to perform encrypted operations 

correctly while accumulating noise. The scalability assessment examined the system in its 

ability to handle rising workloads, greater complexity, or more data volume. This criterion 

helps to determine how the system will perform and work when it comes to dealing with 

larger or more complex tasks that ensure the feasibility in wider areas of applications. 

6.1 Experiment 1 / Performance Analysis 

 

The performance evaluation centers on the computational efficiency of the operations of the 

Fully Homomorphic Encryption (FHE) pipeline using Microsoft SEAL. Performance 

characteristics are evaluated by measuring the amount of time required for key aspects such 

as encryption, homomorphic evaluation and decryption. Data sets encoded manually 

representing systolic blood pressure and heart rate values are used to assess encryption 

performance. In encryption, plaintext data is converted into ciphertexts using the public key, 

in an extremely secure way. while this guarantees security in FHE, it is a computationally 

intensive step. The operation is performed and the amount of time this takes is measured to 

understand the overhead of securing data at the input stage. Homomorphic evaluation 

performance is one of the key foci of this program. The encrypted data points are summed up 

here completely in the encrypted domain. It is then rotated using the Galois keys and adds the 

values iteratively to aggregate the data as the encrypted rows. In this step, the FHE scheme is 

simulated in real world encrypted computation, and demonstrates the efficiency and 

scalability of the FHE scheme. Evaluating the performance of decryption is done by 

decrypting the computed sums of systolic blood pressure and heart rate values. In this step, 

the time needed to decode the ciphertexts into plaintexts with the secret key is measured, plus 

the decoding overhead is used for accessing the final result. To see the results from encrypted 

computation quickly, it is vital to understand the decryption time. The lapsed time captured is 

in miliseconds to see what the overall performance of the encryption pipeline looks like. The 

evaluation analyzes these metrics to reveal that Microsoft SEAL is a practical tool to handle 

real world encrypted data processing jobs, and to highlight where it might need to be 

optimized in order to scale FHE based applications. 

6.2 Experiment 2 / Accuracy 

 

For this evaluation criteria, the code performs accuracy testing where results from 

computation in encrypted domain are rigorously compared with those in plaintext domain. 

The program calculates three key metrics: average systolic blood pressure (BP), average heart 

rate and average correlation coefficient between these two datasets. The final results are 

obtained by decryption, resulting from homomorphic computation of these metrics via 

encrypted summation, squared, and cross product operations. At the same time, the same 

metrics are computed on the plaintext data as regular benchmarks. The program measures 



12 
 

 

absolute errors between encrypted and plaintext results for each metric to evaluate accuracy 

of encrypted computations. To give a more detailed and standardized evaluation, two error 

metrics widely used among researchers—Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE)—are computed. A simple measure of the closeness of the encrypted result to 

the plaintext benchmark is provided by average magnitude of errors. The other, RMSE, 

squares, and then averages the differences, which penalizes big inaccuracies. Together, these 

metrics gives us a complete picture for fidelity of the FHE computations. The addition of 

MAE and RMSE helps because it provides more than just a measure of how far off the 

average is. It also provides an idea of how widely distributed the deviations are and the range 

of deviants. It is especially critical in cases where the smallest errors made in a sensitive 

computation like in healthcare data would have far-reaching implications. These metrics are 

then combined with absolute and relative error analysis to show that encrypted computations 

compare very favorably in terms of accuracy and precision. To achieve practicality of the 

system for privacy preserving applications without sacrificing the integrity of the results, this 

is guaranteed. These evaluations establish the FHE framework’s reliability and provide a 

stepping stone for its use in real world especially in privacy sensitive domains. 

 

6.3 Experiment 3 / Noise analysis 

 

A vital metric in homomorphic encryption is noise budget which describes the amount of 

noise that the system can tolerate from the encrypted data for computation, and is also crucial 

for achieving correct decryption. In the BFV encryption scheme for instance, noise (an 

arbitrarily small and unlikely to be picked random number) is introduced in order to secure 

the plaintext by obfuscating it, but every operation (such as addition, multiplication, rotation 

or relinearization) consumes one out of the limited noise budget, leaving a lower amount 

remaining to work with. It is necessary to evaluate the noise budget to the reliability of 

encrypted computations because if the noise level exceeds a critical threshold, decryption 

becomes impossible or introduces errors. Monitoring the noise budget serves a considerable 

number of purposes, including computing how deep the system can go computationally, 

ensuring that the intermediate result still stays under the cover of the lattice, and also 

allowing us to analyze how well techniques such as modulus switching and relinearization 

work. In addition, it offers recommendations for adjusting encryption parameters like the 

polynomial modulus degree, coefficient modulus, and plaintext modulus, so that security, 

performance, and function are reasonable. The decryptor.invariant_noise_budget(ciphertext) 

method displays the noise budget in the implementation at key points along the way in the 

computation process. As an example, this experiment show the noise budget after encryption, 

after the squaring operations, after re-linearization, after multiplications, and accumulate the 

sums within operations such as rotations. Real-time insights into the contributions of these 

operations in the noise budget are displayed, not only notifying you if operations are not 

within safe limits but also indicating what operation is having an impact and its contribution 

of that operations to the overall noise budget. You continuously validate that encryption 

parameters are sufficient. We also keep checking the computations remain robust and exact, 

by constantly reporting the noise budget where noise is introduced. In particular, this is 
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critical for practical applications like privacy preserving analysis of medical data. Possible 

operations like the correlation analysis needs to be done but not at the cost of losing the 

ability to be decrypted. A cornerstone of secure and efficient homomorphic encryption is 

noise budget analysis: these evaluations ensure correctness, and provide an avenue for 

performance optimization. 

 

6.4 Experiment 4 / scalability 

 

Scalability means that a system can handle increasing workloads or dataset sizes without 

considerable degradation with respect to accuracy and performance. In the homomorphic 

encryption context, scalability must be evaluated since it decides whether the system can 

compute secure operations within reasonable time when data volume increases. Scalability 

testing detects bottlenecks in the most important operations (which, in this model includes 

encryption, evaluation, and decryption) and guarantees that the system will be viable for real 

world use with massive datasets. A system without scalability may work well for small 

datasets but is likely to choke under heavier, more complex workloads. This is because the 

times for computation, systems total available resources, and noise budget are not dataset 

dependent. To analyze scalability, performance and noise budget tests were performed on 

datasets with different sizes (which correspond to 8, 30, 60, 90 and 120 elements) in this 

project. Setup time, key generation time, encryption time, homomorphic evaluation time, 

decryption time, total execution time were measured during performance testing. The 

experimental results confirmed that the encryption and decryption times as well as setup and 

key generation times scale well and are not dependent on the size of the dataset. However, it 

was found that the times for homomorphic evaluation grew significantly as dataset sizes 

increased, indicating a scalability bottleneck. In particular, rotations, summations and 

multiplications were proved to take the majority share of this overhead due to their 

computational intensity. Insights into the noise efficiency of the system were obtained via 

noise budget testing of the algorithms in increasing dataset size and computational 

complexity. Overall, it was found that the initial noise budget stayed the same across all 

datasets, but that operations like squaring or summation consume more noise with larger 

datasets. Deeper computations such as summation of squares suffered much greater noise 

depletion while final noise budgets for simpler operations such as summation remained 

stable. These tests show there are significant benefits to optimizing across operations to 

improve performance while maintaining acceptable noise levels for complex workflows. 

Through objective performance and noise evaluation metrics, the project demonstrates the 

system’s strengths in scaling initialization and simple operations, and identifies areas for 

improvement in initialization of larger datasets. 
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6.5 Discussion 

 

PERFORMANCE 

A performance test was run on a dataset of 20 elements, which gave a good indication that 

the homomorphic encryption system works efficiently and is scalable. In the test with 20 

elements, the setup phase was completed in 1043ms and the key generation phase in 1835ms, 

similar to the results in the test. The time spent in these phases, is significantly less than that 

of the overall time running on 4120ms. Encryption was completed in 22ms, and the 

decryption stage was very efficient at 10ms. Operations such as summation, multiplication, 

and rotations are considered as homomorphic evaluation phase that consumed 1161ms 

proportional to the smaller dataset. An average systolic blood pressure of 121.5, an average 

heart rate of 76.6 and a correlation coefficient of 0.077896 was obtained as the results 

produced from the encrypted computations. This show that the system’s performance in setup 

and key generation times is consistent and insensitive to dataset size. However, we can see 

that the increase in homomorphic evaluation time can be quite significant, which highlights 

the cost of working with larger datasets. Both rotations and re-linearizations form a 

significant part of this cost, and as datasets become larger, such operations become more 

cumbersome. Although the amount of computation is increased, the correlation coefficient 

was accurate and dependable, showing how the scheme handled the expanded dataset without 

any loss of computational correctness. The system appears to be able to securely and 

accurately scale to modestly larger datasets, and the increasingly expensive homomorphic 

evaluation time presents a worry regarding its scalability for much larger datasets or more 

complex operations. The positive aspects of a static runtime, with its consistent setup and key 

generation times, comes at the cost of having a high runtime contribution for reinitializations 

and dynamic updates of the application. As the cost of homomorphic evaluation of large 

datasets increases, scalability can be adversely affected for real world applications with 

hundreds of thousands of data points. Furthermore, the key generation time is high (though 

consistent) and hence a bottleneck, particularly for use scenarios where key changes have to 

occur dynamically. Optimizing costly operations like rotations and multiplications through 

advanced techniques, such as lazy relinearization or efficient rotation key management, could 

significantly reduce evaluation time. Exploring parallelization or GPU acceleration for 

evaluation operations may further enhance performance. Experimenting with alternative 

parameter configurations, such as adjusting plaintext moduli or coefficient moduli, could help 

balance precision and computational efficiency. 

 
(Fig. 2) Performance  
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ACCURACY 

The homomorphic encryption system proved to be very reliable and precise in producing the 

accuracy test. It tested the results of encrypted computations for a dataset of twenty readings, 

and compared them with the results of plaintext computations, in terms of average systolic 

blood pressure, average heart rate, and correlation coefficient. When the encrypted results 

were produced, the average systolic blood pressure was 130, the average heart rate was 84.2, 

and the correlation coefficient was 0.926703. Resulting from the results on the plaintext 

calculations being identical, the accuracy was extremely high. The test demonstrates that the 

system can do its computations accurately on encrypted data. The absence of any errors both 

absolute and relative for all metrics indicates that the encryption scheme -encoding, 

encryption, evaluation, decryption and decoding steps- is being implemented correctly. 

Secure operations for summations, multiplications and rotations which constitute operations 

required for computing the correlation coefficient were performed while not affecting the 

computational noise. The accuracy seen here indicates that the workload could be handled 

with sufficient precision, and the encryption parameters, including a polynomial modulus 

degree of 16,384 and a plaintext modulus of 65,537, were appropriate for further operation. 

Further datasets are required to fully characterize the ability of the system to scale and be 

precise under heavier computational loads. The first test was basic statistical computations. A 

more complete evaluation of the accuracy of the system could be had with more diverse or 

more complex operations. 

 
(Fig. 3) Accuracy test 

 

NOISE BUDGET 

To evaluate the behavior of encrypted computations and system capability to maintain 

sufficient noise levels across computations, a noise budget evaluation test was carried out. 

Initial encryption parameters were successfully initiated using a polynomial modulus degree 

of 16,384 and a plaintext modulus of 65,537, giving a large initial noise budget in which to 

conduct precise computations. Predefined systolic blood pressure and heart rate datasets were 

processed by the system and the noise budget was tracked throughout the computations at 

various steps, that is, encryption, squaring, multiplication, rotation and summation. The 

values of the initial capacities show the encryption scheme’s initial ability to handle 

computations. A slight difference in noise budget when systolic (365 bits) and heart rate (365 

bits) are encoded or encrypted is well within acceptable limits and this may be due to a slight 
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difference in what is encoded. The complexity of these operations is the expected squaring 

and multiplication, so the noise budget was reduced about 29–30 bits. Noise budget values at 

the final stage indicate only an insignificant reduction compared to earlier stages, indicating 

good noise management during additional operations such as rotations and summations. This 

guarantees that results are decryptable with good accuracy. The noise budget stayed within 

safe limits at all times and proved that the encryption parameters were robust and that 

techniques like relinearization and rotation were effective. This reduction in noise budget 

across operations is minor due to the encryption scheme’s complex computations with only 

marginal degradation in noise capacity. These results support the system's capacity for 

performing secure critical use of sensitive data and providing accurate and decryptable 

outcomes. The test was conducted on a small dataset relative to the system, thereby possibly 

limiting understanding of its behavior under larger workloads. The operations tested were 

mostly statistical. For some more complex computations, the impact on the noise budget may 

be different. 

 
(Fig. 4) noise Budget 

 

 

SCALABILITY 

The performance test was conducted with datasets of 8, 30, 60, 90, and 120 elements to 

evaluate the scalability of the homomorphic encryption system. The key metrics measured 

included setup time, key generation time, encryption time, homomorphic evaluation time, 

decryption time, and total execution time.  

 

Dataset 

Size 

Setup 

Time 

(ms) 

Key 

Generation 

Time (ms) 

Encryption 

Time (ms) 

Homomorphic 

Evaluation 

Time 

Decryption 

Time 

Total 

Execution 

Time 

Correlation 

Coefficient 

8 1053 1872 23 344 7 3309 0.998413 

30 1040 1857 21 1907 7 4838 0.277931 

60 1044 1790 21 4490 8 7363 0.0102929 

90 1021 1775 22 7120 7 9951 0.0596037 

120 1064 1831 23 10090 8 13023 0.0443802 
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(1. Performance Scalability) 

The lapsed times stayed relatively constant in setup and key generation, ranging from 1021ms 

to 1064ms and 1800ms respectively. One-time costs did not affect scalability. The encryption 

and decryption times were the same for all dataset sizes (roughly 21–22ms for encryption, 

and 7–8ms for decryption). This shows that these operations scale linearly with small element 

overheads. Homomorphic evaluation times experienced the greatest performance impact and 

grew sharply with data set size reflecting the disproportionate increase in evaluation 

complexity. This is attributed to operations such as rotations, summations, and 

multiplications, which are computationally intense. Total execution times increased linearly 

with data set size, with homomorphic evaluation times dominating at large scales. System 

performance for setup, key generation, encryption and decryption was measured and for the 

three dataset size showed efficient scaling. With increase in dataset size, homomorphic 

evaluation times increased, a symptom of scalability bottleneck. Rotations and summations 

appear to be disproportionate among operations contributing to this overhead. The accuracy 

of correlation coefficient was subject to some degradation with larger datasets, possibly due 

to noise accumulation or increased variability in the data. The figure below shows the 

difference in performance when datasets of 8 elements and 120 elements are used. 

 

 
(Fig. 5) Performance scalability Tests 

 

The noise budget tests were conducted with datasets of 8, 30, 60, 90, and 120 elements to 

analyze how noise levels are affected by dataset size and the complexity of homomorphic 

operations. Key metrics such as the initial and final noise budgets at various stages (e.g., 

encryption, squaring, multiplication, summation) were tracked to assess the system's 

scalability and noise efficiency. 

 

 

Dataset Size Initial Noise 

Budget (Bits) 

After 

Squaring and 

Multiplication 

(Bits) 

Final Noise 

Budget (Bits) 

Final Square 

Sum Noise 

Budget (Bits) 

Execution 

Time (s) 

8 365 335 359 333 3.58 

30 364 335 356 309 7.78 
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60 365 335 356 279 14.01 

90 365 335 355 249 20.65 

120 365 335 355 222 27.70 

(2. Noise Budget Scalability) 

The systolic and heart rate noise budgets were robust across all dataset sizes with an initial 

noise budget of 364–365 bits. Operations of squaring and multiplication consistently left the 

noise budget at about 29–30 bits, independent of size of the dataset. This shows predictable 

noise depletion during these computationally intense steps. Noise budget for systolic and 

heart rate sums stayed quite flat at ~355 bits for all dataset sizes leading to efficient noise 

management during rotations and summations. As dataset size increased, the decrease in 

constraint size on the noise budget for square sums was greater. It was observed that deeper 

computations with larger data sets have more noise, especially for square sum and cross 

product operations. Wider datasets exhibited more noise depletion in operations such as 

squaring and summation, most notably for square sums and cross products. However, it may 

restrict the computational depth available for more complex or extended workflows. 

Furthermore, the execution time increased dramatically as dataset size increased, and 

operations such as rotation and summation required optimization. The difference in noise 

budget after computing two datasets with 8 and 120 elements respectively are shown below. 

 

(Fig. 6)Noise budget scalability Tests 

 

 

 

 

 

7 Conclusion and Future Work 
 

The primary research question addressed in this study was: How can Fully Homomorphic 

Encryption be used in the healthcare industry. The study set out to design and implement a 

practical FHE framework for healthcare applications, which would be secure in protecting 
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Protected Health Information (PHI), and to support encrypted data analytics. This project 

successfully implemented a comprehensive FHE framework using the Microsoft SEAL 

library that satisfies the FHE architecture presented. Major contributions were to assess the 

BFV and CKKS encryption schemes, propose workflows for secure computation on 

encrypted healthcare data, and characterize performance, accuracy, noise budget, and 

scalability. The system proved robust at preserving data security and accuracy with very high 

fidelity in encrypted computations compared to plaintext benchmarks. The project also 

analysed performance evaluation to show consistent efficiency of encryption and decryption 

times, as well as homomorphic evaluation times that scale with dataset size. The system was 

subjected to noise budget testing, and it was found that noise levels were managed effectively 

across computations, so that complex operations did not produce results that could not be 

decrypted. The results of this research have key implications for the use of FHE for 

healthcare. This work shows that FHE is feasible as a means to support secure, end-to-end 

encrypted computations such as patient data aggregation, trend analysis, and anomaly 

detection while meeting strict privacy standards such as HIPAA. Nevertheless, scalability 

limitations were found such as homomorphic evaluation size limitations due to bottlenecks 

(and hence scalability limitation in homomorphic evaluation time for larger datasets). Noise 

depletion in deeper computations were also found to affect the system’s capabilities in 

performing the workflows that are more complex and beyond the current one.  

These challenges could be addressed in the future works by including principles from Multi 

Party Computation (MPC). In this approach the data can be stored in Virtual Shares to 

multiply the data in separate pools (buckets) and even parts (shares) and ensure that the entire 

dataset is never consolidated in one part of it. In this way it would cut down security risks by 

reducing keys in circulation, especially in cases where decryption is needed before 

application of the operation such as division. The absence of complete data at a single point 

enhances privacy and decreases the susceptibility. Since MPC can introduce substantial noise 

that would make final decryption results inaccurate, however, this project did not implement 

MPC. Addressing these accuracy challenges would be required to integrate virtual shares and 

to keep computations accurate and reliable. Hybrid models fusing FHE and MPC may greatly 

contribute to tackle the apparent conflict and to propose a secure and scalable solution for the 

analysis of healthcare data. Research into optimizing noise management techniques (e.g., 

advanced re-randomization and noise reduction strategies) to achieve acceptable accuracy 

while implementing virtual shares could be done in future. Additionally, the adaptive 

parameter configurations can be designed specific to certain healthcare workflow. It can also 

accommodate hardware acceleration such as GPUs to make system more efficient. This 

would make privacy preserving computation on a larger scale possible and thus open up the 

way for real world deployments of FHE in secure healthcare systems. 
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