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Abstract 

Advanced Persistent Threats (APTs) represent an increasingly sophisticated 

challenge in cybersecurity, requiring innovative approaches for effective detection and 

mitigation. This research presents a comprehensive multi-layered detection framework 

that integrates and machine learning techniques including deep learning, natural 

language processing to identify and analyze APT activities across different attack 

vectors. The implementation combines network traffic analysis, phishing URL detection, 

and keylogger activity monitoring, achieving significant detection accuracy across all 

components. The network traffic analysis module, using a Sequential Neural Network 

architecture, achieved an accuracy of 99.30% in classifying different attack patterns. The 

phishing detection module showed the accuracy of 96.45% by using the combined 

methods of NLP and machine learning, while the keylogger detection system achieved 

an accuracy of 96% using tree-based models. Feature importance analysis presented 

important patterns across the attack vectors; flow-based metrics and behavioral patterns 

were critical indicators. It provides real-time correlation capabilities and adaptive 

response mechanisms that might cure serious shortcomings of the current APT detection 

approaches. Though computational overhead and integration costs remain a challenge, 

the proposed framework has great potential for real-world enterprise deployment. The 

results add to the theoretical understanding of integrated APT detection system design 

and to the development of practical implementations, providing a base for future 

research in adaptive security mechanisms and real-time threat detection. 

 
 

1 Introduction 
 

Advanced Persistent Threats (APTs) are a higher category of cyber-attacks, thus presenting 

serious challenges to current cybersecurity frameworks. Contrary to the general concept of 

cyber-attacks, APTs are characterized by steady, covert operations and complex attack 

patterns, which have been developed multistage. These have gone from simple network 

intrusions to highly orchestrated campaigns that evade most traditional security measures, 

thus making organizations in all sectors face damages amounting to several million dollars 

globally. 

 

The first critical feature in APT detection involves the analysis of network traffic. This has 

been implemented to work with network flow data, holding features about the IP addresses, 

port information, details of the protocol, and traffic measurements using Sequential Neural 

Network architecture with dense layers and dropout for regularization. The model identifies 
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network features that can source/destination IP addresses and ports, protocol information, 

traffic metrics, and flow duration measurements. This is aimed at detecting backdoor, DOS, 

and password attacks against benign traffic patterns. 

 

The second broad area involves phishing URL detection through NLP-driven approaches. 

During its implementation, text processing techniques include RegexpTokenizer for URL 

tokenization, SnowballStemmer for word stemming, and CountVectorizer for text feature 

extraction. We will use a dataset that consists of 549,346 labeled URLs  and passed them 

through a Logistic Regression classifier and a MultinomialNB classifier in a comparative 

fashion. 

 

The third module presents keylogger detection based on deep network flow analysis. The 

various features the system processes are flow metrics, statistical features, and TCP flag 

information. This module is supported by different machine learning models such as Logistic 

Regression, Decision Trees, and Random Forest classifiers. Feature engineering was focused 

on packet behavior analysis and timing patterns. 

 

The research addresses three primary research questions with corresponding objectives: 

Research Question 1: How can the integration of CNN-LSTM hybrid architectures with 

network monitoring systems enhance the real-time detection of sophisticated APT attack 

patterns? 

 

Objectives: The implementation and evaluation of Sequential Neural Network architecture 

for network traffic analysis; analysis of feature engineering approaches in network traffic 

classification; comparison of performance metrics against traditional detection methods. 

 

Research Question 2: What is the effectiveness of combining deep learning-based network 

analysis with NLP-driven phishing detection? 

Objectives: The evaluation of text processing pipelines for URL analysis; assessment of 

comparative performance across multiple classification approaches; measurement of system 

accuracy against large-scale URL datasets. 

 

Research Question 3: How can adaptive deep learning models effectively correlate patterns 

across network traffic, phishing attempts, and keylogger data? 

Objectives: The implementation of comprehensive feature engineering across multiple data 

sources; assessment of multi-model machine learning approaches; evaluation of system 

effectiveness in real-time correlation scenarios. 

 

The technical content contributions include designing a neural network for classifying traffic 

with feature engineering and outlier handling, a chain for text processing in URL inspection 

supported by optimized feature extraction practices, and an implementation of flow-based 

behavioral attributes which can be used for keylogger detection. The system implements 

approaches to integrate multiple models running the detection while keeping system 

execution in real time. 
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The organization of the paper is as follows: Section 2 reviews the related work in the 

detection and analysis of APTs. Section 3 describes the research methodology and 

implementation approach in detail. Section 4 specifies the design specifications of the 

detection components. Section 5 discusses the implementation details with code structure and 

algorithms, respectively. Section 6 presents the results of the evaluation across all 

components. Finally, Section 7 wraps up the findings and future directions for work. 

 

This research exemplifies an implemented multi-layer APT detection system and discusses 

challenges-solutions in building comprehensive APT threat detection frameworks. The 

results provided contribute to the theoretical understanding and practical application in 

integrated APT detection systems. 

 

2 Related Work 
 

The APT detection research area has rapidly developed in the past years, and most recent 

studies have shown promising results of combined approaches that use more than one 

mechanism of detection. This section takes a closer look at related existing work for each 

component of the proposed framework, highlighting how prior research has supported and 

influenced this current implementation. 

2.1 Deep Learning Approaches in Network Traffic Analysis 

Network traffic analysis forms the backbone of APT detection, with several significant works 

that have come to shape the current methodology. For example, Eke and Petrovski (2023) 

developed APTDASAC, which made use of deep neural networks in network traffic analysis. 

Their implementation reached an accuracy of 86.36% in detection, while their approach to 

preventing overfitting within the neural network architecture-instances, the use of dense 

layers, and dropout regularization-has been highly influential on the current implementation. 

 

V C et al. (2023)  provided a very valuable insight by the comparison done that XGBoost 

achieved an accuracy of 98.03% against other models. Their proof that frequency-based 

encoding of categorical features outdid others by a large margin aided in deciding on the 

strategy toward feature engineering in encoding the protocols and ports in the current project. 

Later, the contribution was extended by Dijk(2021) in deep packet inspection and promising 

ROC AUC of 0.981 for data exfiltration detection was shown. Their methodology of 

extracting features at layers directly influenced our approach in feature selection; however, 

the current implementation stuck to more of network flow features instead of just packets so 

as not to divert the course on practicability. 

 

Javed et al. (2023) These authors further extended some of these methods to industrial IoTs 

by proposing the Graph Attention Network with Node2Vec embedding and achieved 96.97% 

on the DAPT2020 dataset. Herein, the insights derived from the architectural layers on 

acquisition, construction, embedding, detection, and evaluation on their five-layer framework 

provide an effective base to address the challenging network infrastructure, though at an 
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increased computational overhead challenge due to large graphs that influence these 

techniques in implementing optimized processing at present. 

2.2 Advanced Phishing URL Detection Systems 

Zhang et al(2024). presented an Anteater system for phishing detection and got a 94.5% true 

positive rate, employing techniques such as text processing. The way they have implemented 

RegexpTokenizer and feature extraction techniques in the given implementation directly 

influences the approach that is implemented in URL analysis; although their requirements for 

substantial baseline data pose some implementation challenges and are tackled in the work 

being presented. 

 

Li et al. (2021) The former demonstrated, through an intelligence-driven mechanism, the 

importance of explainable results by achieving a 13.76% improvement in defense rewards. 

Their feature-attention mechanism furthered feature selection in the current project on URL 

analysis while noting computational complexity issues, which have been addressed by 

optimized processing pipelines. 

2.3 Multi-layer Detection and Integration Approaches 

Thi et al. (2022) Demonstrated the potential of collaborative defense mechanisms using the 

federated learning approach, achieving the best result with their GRU model on accuracy of 

99.9%. Their implementation of multiple deep learning models developed valuable insights 

into choosing a model and an integration strategy for the current project. 

 

Javed et al. (2023) researched the challenge of integration in industry environments, where 

their defense mechanism, Graph Attention Network, showed superior accuracy of 95.97% 

and remarkably low false positive rate of 0.013%. Their multi-head attention influencing the 

modular architecture of dealing with diverse data sources had an influence on the approach of 

the given project, though their dependency in quality graph construction is addressed through 

adaptive processing of features in the current implementation. 

 

Abdullahi et al. (2024) This work provided critical validation of the hybrid approaches by 

their extensive comparison using AI-based methods with presentation of XGBoost with 

accuracy at 98% and precision of 99%. The works' analysis involving seven attack types has 

informed the approach that shall be adopted in this research in attack classification and 

feature engineering, mainly in the fronts that deal with numerous forms of attack vectors. 

2.4 Implementation Considerations and Future Directions 

Bierwirth et al.'s (2024) Evaluation of APT scenarios in cyber ranges within this work 

identified basic requirements that will affect the system architecture and real-time processing 

capability for the project at hand. Their analysis on patterns of attack and defense 

mechanisms provided important hints on practical implementation considerations. 

 

Salem et al.'s (2024) A critical review of AI-powered detection techniques, studying more 

than 60 recent studies, highlighted various pitfalls that many AI-based security systems suffer 
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from. Their results regarding the computational requirements and real-time processing 

capabilities also set the tone for resource optimization in the approach of the present project 

and scalability of the system. 

2.5 Research Gap Analysis 

The Analysis of the existing literature identifies various critical gaps that are addressed by the 

current project: 

1. Integration Challenges: While individual components may have high accuracy, not 

many of these studies were able to bring multiple mechanisms of detection together 

and keep the processing real-time. This project addresses that through its unified 

framework. 

2. Resource Efficiency: The accuracy of the previous implementations generally 

involves sacrificing real-time processing capability, a trade-off the current project 

optimizes through efficient algorithm selection and processing pipelines. 

3. Scalability: Most of the available solutions hardly scale to enterprise environments, 

and this implementation deals with it through modular design and proper resource 

utilization. 

4. Real-time Processing:  Limitations on real-time processing compared to previous 

works have been overcome by the present implementation using optimized feature 

selection and efficient data handling mechanisms. 

The broad-based analysis shows how this project provides a foundation and improves 

significantly on the identified limitations of the present study. Its implementation heavily 

borrows from those techniques proven elsewhere, bringing fresh innovations in integrations 

and optimizations that are crucial, especially with respect to the identified real-time 

processing challenges of large enterprises. 
 
 

3 Research Methodology 
 

This section  represents the detailed research methodology to be adopted for developing and 

evaluating the proposed multi-layered APT detection system. The methodology comprises 

data collection, preprocessing, feature engineering, model development, and evaluation 

procedures across three distinctly different components: network traffic analysis, phishing 

URL detection, and keylogger detection. 

3.1 Research Approach 

The research will adopt a systematic empirical approach, informed by the methodologies in 

the works that have come before. Learning from the successful use of deep neural networks 

by Eke and Petrovski, a quantitative analysis framework will be applied to assess the 

accuracy of detection. The methodology will consider comparative analysis techniques for 

model evaluation in V C et al(2023). feature engineering and encoding approaches. 

3.2 Data Collection and Preprocessing 
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Network traffic data collection used a standard network monitoring tool to capture the flow-

level information of every network transaction, including the source and destination IP, port 

number, protocol used, and metrics related to network traffic. The preprocessing phase 

implemented data cleaning methods, handling missing values via backward fill techniques 

with the limit of 25 entries, following established practices in the area of network traffic 

analysis. (Javed et al., 2023). 

 

In the case of phishing URL detection, the preprocessed dataset containing 549,346 URLs 

was preprocessed using RegexpTokenizer and SnowballStemmer Zhang et al.'s (2024). 

Tokenization was performed to extract meaningful features without compromising the 

structural integrity of the URLs. Character-based feature extraction techniques were applied 

to capture the patterns in the URLs. 

 

The network flow data were first preprocessed and then fed into the keylogger detection 

component, which was represented by 85 features around flow metrics, statistical 

measurements, and flag information. Outlier detection and handling were done using the IQR 

method, where boundaries were set at 1.5 times the IQR, following standard statistical 

practices. 

 

3.3 Feature Engineering Methodology 

Feature engineering, such as numeric conversion of IP addresses and frequency encoding of 

port numbers and protocols, was performed for network traffic analysis. This approach has 

been inspired by Li et al(2021). and enhances the capability of the model to identify patterns 

in network behavior. Custom features that describe packet size variance along with flow 

duration metrics were generated to capture temporal patterns within network traffic. 

 

Feature extraction from URLs was carried out by combining lexical analysis and statistical 

measurements. That approach entailed making character-level n-gram features and 

frequency-based features, drawing domain knowledge from previous studies on phishing 

detection. The CountVectorizer implementation that was implemented allowed for the quick 

transformation of URL strings into meaningful numerical features. 

 

Feature engineering for keylogger detection was considered in the pattern of packet timing 

and flow characteristics. The feature set contained derived metrics such as packet size 

variance and down/up ratio deviation, supposed to catch the subtle pattern in the keyloggers' 

behavior. This was informed by the successful implementation of behavioral analysis in 

threat detection, as done by Thi et al.(2022). 

3.4 Model Development and Training 

Model development was carried out in a structured way for all components. Network traffic 

analysis was performed using a Sequential Neural Network architecture with dense layers 

and dropout regularization. Training was done using the Adam optimizer with a learning rate 

of 0.001 and batch size of 32, following empirically determined optimal parameters. 
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The phishing detection component was implemented using both Logistic Regression and 

MultinomialNB classifiers; this allowed a comparison of the model performances. Cross-

validation techniques were included in the training methodology to make the model 

evaluation robust; data was split into an 80:20 ratio for training and testing. 

 

Keylogger detection utilizes several machine learning models based on Logistic Regression, 

Decision Trees, and Random Forest classifiers. Due to the potential class imbalance problem, 

the balanced weigh of classes was incorporated through training, while the parameter tuning 

was done via grid search-like techniques. 

3.5 Evaluation Methodology 

The evaluation framework used comprehensive metrics involving accuracy, precision, recall, 

and F1-score across all components. Following the approach of Abdullahi et al. (2024), the 

confusion matrices were generated with a view to analyzing model performance in detail. In 

network traffic analysis, additional metrics included ROC curves and AUC scores in order to 

evaluate the detection capability for various attack types. 

 

Statistical tests were conducted by standard t-tests to see the significance of performance 

improvement between different model configurations. Cross-validation was employed in the 

evaluation methodology in order to ensure that performance assessment is robust, while 

applications where security is crucial especially pay more attention to the false positive rate. 

 

The evaluation of the integrated system was performed based on the framework by Bierwirth 

et al. (2024) on the assessment of real-world applicability, including processing latency and 

resource utilization measurements. Performance benchmarks were established for real-time 

processing capabilities, with specific attention to system scalability in enterprise 

environments. 

 

4 Design Specification 

4.1 Neural Network Architecture for Network Traffic Analysis 

The network traffic analysis component uses a Sequential Neural Network architecture with 

TensorFlow/Keras. This architecture starts with an input layer whose dimensionality 

corresponds to the features of the pre-processed network, followed by two dense layers, one 

with 64 neurons and another with 32 neurons. Each of these dense layers applies the ReLU 

activation function in order to manage the non-linear relationships of network traffic. 

Dropout layers are used for regularization between dense layers, using a dropout rate of 0.3. 

The softmax activation in the output layer is used for the multi-class classification of attack 

types. 

4.2 Network Traffic Feature Engineering and Selection Process 

4.2.1 Initial Data Selection 

The dataset underwent several preprocessing steps to prepare it for attack detection: 
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Class Balancing 

1. Four attack types were selected for analysis:  

o Backdoor 

o DOS 

o Password 

o Benign (normal traffic) 

2. Balance Strategy:  

o Used minimum count sampling method 

o Benign samples: 3x the minimum attack count 

o Other attack types: Equal to minimum attack count 

o Result: 50% benign traffic, 50% attack traffic 

4.2.2 Original Feature Set 

Network Layer Features 

• ipv4_src_addr: Source IP address 

• ipv4_dst_addr: Destination IP address 

• l4_src_port: Source port number 

• l4_dst_port: Destination port number 

• protocol: Network protocol (TCP, UDP, ICMP) 

• l7_proto: Application layer protocol 

Traffic Metrics 

• in_bytes: Incoming byte count 

• out_bytes: Outgoing byte count 

• in_pkts: Incoming packet count 

• out_pkts: Outgoing packet count 

• tcp_flags: TCP header flags 

• flow_duration_milliseconds: Duration of network flow 

4.2.3 Feature Engineering Process 

1. IP Address Processing 

New features created from IP addresses: 

Copy 
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ipv4_src_numeric: Numeric representation of source IP 

ipv4_dst_numeric: Numeric representation of destination IP 

Implementation Method:  

- Used ipaddress library for conversion 

- Applied ip_to_numeric function: converts "192.168.1.34" → 3232235810 

4.2.4 Port and Protocol Frequency Encoding 

Created frequency-based features to capture traffic patterns: 

• l4_src_port_freq: Frequency of source port usage 

• l4_dst_port_freq: Frequency of destination port usage 

• protocol_freq: Protocol usage frequency 

• l7_proto_freq: Application protocol frequency 

4.2.5 Feature Removal 

Removed redundant features after encoding: 

• Original IP addresses (replaced by numeric versions) 

• Original port numbers (replaced by frequency encodings) 

• Raw protocol values (replaced by frequency encodings) 

4.2.6 Data Cleaning Process 

4.2.6.1 Outlier Detection 

Method: Interquartile Range (IQR) 

• Q1 = 25th percentile 

• Q3 = 75th percentile 

• IQR = Q3 - Q1 

• Lower bound = Q1 - 1.5 * IQR 

• Upper bound = Q3 + 1.5 * IQR 

4.2.6.2 Outlier Treatment 

Used Winsorization technique: 

• Values below lower bound → capped at lower bound 

• Values above upper bound → capped at upper bound 

• Applied to all numerical features:  

o in_bytes 
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o out_bytes 

o in_pkts 

o out_pkts 

o flow_duration_milliseconds 

4.2.7 Data Type Optimization 

• Categorical features converted to appropriate data types 

• Numeric features standardized for consistent scaling 

• Protocol and port numbers converted to frequency-based representations 

4.3 Final Feature Set Summary 

Numeric Features 

• Converted IP addresses 

• Port frequency metrics 

• Protocol frequency metrics 

• Traffic volume metrics (bytes, packets) 

• Flow duration 

Engineered Features 

• IP numeric representations 

• Port usage frequencies 

• Protocol usage patterns 

• Traffic flow metrics 

All features were standardized using StandardScaler before model training to ensure 

consistent scale across different metrics. 

4.4 URL Analysis Pipeline Architecture 

There are three major stages in the URL processing pipeline. The first stage applies 

RegexpTokenizer with a pattern '[A-Za-z]+' and is used to extract meaningful tokens from 

URLs. The second stage uses SnowballStemmer with English language configuration to 

normalize the words. In the last stage, CountVectorizer is used to transform the processed 

tokens into numerical features for classification. 

 

4.4.1 Data Preparation and featuring Engineering of the URL dataset 

The dataset consisted of two main components: 

• URL: The web address string 
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• Label: Binary classification (good/bad) indicating whether the URL is 

legitimate or phishing 

4.4.1.1 Feature Engineering Pipeline 

1. Text Tokenization 

Implementation: RegexpTokenizer 

tokenizer = RegexpTokenizer(r'[A-Za-z]+') 

Purpose: 

• Extracts individual words from URLs 

• Uses regular expression pattern [A-Za-z]+ to identify word components 

• Removes special characters and numbers 

• Splits URL into meaningful text segments 

Example Transformation: 

Original URL: "http://example-site.com/login" 

Tokenized: ["http", "example", "site", "com", "login"] 

2. Text Stemming 

Implementation: SnowballStemmer 

stemmer = SnowballStemmer("english") 

Purpose: 

• Reduces words to their root form 

• Eliminates variations of the same word 

• Standardizes similar terms 

• Reduces feature dimensionality 

Example Transformation: 

Tokenized: ["logging", "authenticated", "security"] 

Stemmed: ["log", "auth", "secur"] 

3. Text Consolidation 

Process: 

• Joins stemmed words back into single strings 

• Creates unified text representation 

• Prepares text for vectorization 

text_sent = ' '.join(stemmed_words) 
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4. Feature Vectorization 

• Converts text into numerical features 

• Creates bag-of-words representation 

• Generates frequency-based feature matrix 

• Enables machine learning model input 

Data Processing Steps 

1. URL Text Extraction  

o Input: Raw URLs 

o Output: Tokenized word lists 

o Method: Regular expression pattern matching 

2. Word Standardization  

o Input: Tokenized words 

o Output: Stemmed word forms 

o Method: Snowball stemming algorithm 

3. Text Unification  

o Input: Stemmed words 

o Output: Single text string 

o Method: String joining with spaces 

4. Vector Generation  

o Input: Unified text 

o Output: Numerical feature matrix 

o Method: Count-based vectorization 

Feature Quality Considerations 

1. Dimensionality  

o Original: Single URL string 

o Final: Sparse matrix of token frequencies 

o Benefit: Captures URL vocabulary patterns 

2. Information Preservation  

o Maintains important URL components 

o Preserves word relationships 
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o Retains structural patterns 

3. Standardization  

o Consistent word forms through stemming 

o Normalized text representation 

o Reduced vocabulary variation 

Feature Selection Methodology 

1. Text-Based Feature Selection 

• Frequency Analysis  

o Most common terms in legitimate URLs 

o Common patterns in phishing URLs 

o Distinguished between benign and malicious patterns 

2. Structural Feature Analysis 

• URL Length Characteristics  

o Total URL length 

o Domain name length 

o Path length distribution 

• Special Character Patterns  

o Frequency of symbols 

o Location of special characters 

o Unusual character combinations 

3. Domain-Based Features 

• Domain Structure Analysis  

o Number of subdomains 

o Domain name composition 

o TLD patterns 

• Security Indicators  

o SSL/TLS presence 

o Security-related keywords 

o Authentication patterns 

4. Feature Importance 
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Determined through: 

• Statistical analysis of occurrence patterns 

• Correlation with phishing classification 

• Domain expert knowledge input 

• Common phishing techniques analysis 

Feature Evaluation Results 

1. Most Significant Features 

Based on model analysis: 

• Domain length and complexity 

• Special character frequency 

• Security-related keyword presence 

• Subdomain count and structure 

2. Feature Effectiveness 

Measured by: 

• Information gain ratio 

• Correlation with phishing status 

• False positive/negative impact 

• Model performance contribution 

3. Feature Stability 

Analyzed through: 

• Cross-validation performance 

• Temporal consistency 

• Robustness to URL variations 

• Generalization capability 

4.5 Behavioural Analysis System for Keylogger Detection 

The keylogger detection framework follows a multi-model approach that combines traditional 

machine learning algorithms. This system processes 85 different features, flow-based, which 

include packet statistics, timing patterns, and even TCP flag information. These calculated 

behavioural metrics include packet size variance and down/up ratio deviation through custom 

feature processors. The architecture provides parallel model execution with the Logistic 

Regression, Decision Tree, and Random Forest classifiers. 
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4.5.1 Feature Engineering and Selection Process 

Initial Feature Selection 

The dataset underwent three main phases of feature selection: 

4.5.2 Phase 1: Correlation Analysis 

A correlation threshold of 0.85 was used to eliminate highly correlated features, reducing 

redundancy in the dataset while preserving unique information patterns. Features showing 

correlation coefficients above this threshold were removed to prevent multicollinearity issues. 

4.5.3 Phase 2: Domain-Based Selection 

Twenty key network traffic features were selected based on their significance in detecting 

keylogger behavior: 

Network Flow Features: 

• flow_duration: Total duration of the network flow 

• flow_bytes/s: Rate of byte transmission 

• flow_packets/s: Rate of packet transmission 

• down/up_ratio: Ratio between downstream and upstream traffic 

Packet Analysis Features: 

• total_fwd_packets: Forward packet count 

• total_backward_packets: Backward packet count 

• fwd_packet_length_mean: Average forward packet size 

• bwd_packet_length_mean: Average backward packet size 

Timing Features: 

• flow_iat_mean: Mean inter-arrival time between packets 

• fwd_iat_mean: Mean forward packet inter-arrival time 

• bwd_iat_mean: Mean backward packet inter-arrival time 

Segment Analysis Features: 

• avg_fwd_segment_size: Mean size of forward segments 

• avg_bwd_segment_size: Mean size of backward segments 

• subflow_fwd_packets: Forward packets in subflows 

• subflow_bwd_packets: Backward packets in subflows 

TCP Window Features: 

• init_win_bytes_forward: Initial TCP window size (forward) 

• init_win_bytes_backward: Initial TCP window size (backward) 



16 
 

 

4.5.4 Feature Engineering 

Two new features were engineered to enhance keylogger detection: 

4.5.4.1 1. Packet Size Variance 

Purpose: Detect consistent packet size patterns typical of keyloggers 

• Calculation Method: Variance between forward and backward packet lengths 

• Implementation: var([fwd_packet_length_mean, bwd_packet_length_mean]) 

• Significance: Keyloggers typically show low variance due to regular, similar-sized 

transmissions 

4.5.4.2 2. Down/Up Ratio Deviation 

Purpose: Identify abnormal traffic symmetry patterns 

• Calculation Method: Absolute difference from perfect symmetry 

• Implementation: abs(down/up_ratio - 1) 

• Significance: Helps detect both highly asymmetric and unusually symmetric traffic 

patterns 

4.5.5 Data Cleaning Process 

4.5.5.1 Missing Value Treatment 

• Method: Backward fill (bfill) 

• Limit: 25 rows 

• Rationale: Preserves data patterns while preventing excessive propagation 

4.5.5.2 Outlier Handling 

Applied the Interquartile Range (IQR) method: 

• Lower Bound = Q1 - 1.5 * IQR 

• Upper Bound = Q3 + 1.5 * IQR 

• Treatment: Values outside bounds were capped at threshold limits 

4.5.5.3 Feature Removal 

Two features were removed after analysis: 

• active_mean: Removed due to constant values 

• idle_mean: Removed due to constant values This removal improved model efficiency 

by eliminating non-informative features. 
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4.6 Model Training Framework 

The batch processing in this training system is set at a batch size of 32 for training neural 

networks. For neural network optimization, the framework uses the Adam optimizer, 

configured with a learning rate of 0.001. Standard scaling is implemented via StandardScaler 

in the case of traditional machine learning models. In such cases, the system has independent 

splits of training and testing data, each in an 80:20 ratio. 

4.7  Model Performance Monitoring 

The monitoring system picks up and analyzes key performance metrics across all models. In 

the case of neural networks, the framework keeps track of training and validation accuracy 

across epochs. It creates confusion matrices for detailed performance analysis and provides 

visualization using seaborn and matplotlib libraries. Learning curves and feature importance 

plots are created using custom visualization modules. 

4.8 Data Flow Architecture 

This architecture of data flow is then realized by processing streaming data on network traffic 

analysis, batching of data during URL classification, and real-time flow analysis in the case 

of keylogger detection. Each module will have its queue but a shared interface through which 

results shall be reported. The system will perform data validation at each step of processing. 

Furthermore, the system is equipped with handling cases of malformed or missing data. 

4.9 Integration Interface 

The integration framework provides standardized methods for cross-component 

communication. The interface defines common data structures for the representation of 

threats and provides various synchronization mechanisms for the purpose of coordinated 

analysis. The design provides configurable thresholds for the classification of threats, while 

synchronous and asynchronous processing modes are supported. 

4.10 Feature Engineering Pipeline 

The feature engineering system implements specialized processors for each data type. In the 

case of network traffic, this pipeline includes modules for flow statistics calculation, packet 

timing analysis, and protocol behavioral patterns. The URL analysis pipeline implements 

such in-depth text processing functions as tokenization, stemming, and vectorization. 

Keylogger detection pipeline focuses on behavioral metric calculation, including timing 

pattern analysis and flow characteristic extraction. 

4.11  Model Persistence System 

The persistence framework has implemented model serialization through the use of Pickle for 

traditional machine learning models and saving Keras models in the case of neural networks. 

The system maintains version control over trained models, with mechanisms for efficient 

loading into production. The framework provides checks for validation against the models 

loaded and handling of version compatibility issues. 
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4.12 Data Analysis Module Design  

Data Analysis module provides an interface to the functionality of specialized flow statistics 

calculation, dynamic window analysis. Thus, the design provides an interface for the 

generation of visualizations by means of IPython plots and natively allows for static and 

interactive output of the results using, respectively, plotly. Express and/or matplotlib 

backends. 

4.13 Model Validation Framework  

The validation framework performs k-fold cross-validation for classic models and holdout 

validation for neural networks. Besides, it includes a design to create confusion matrices 

using seaborn and tracking custom accuracy/loss at the end of training epochs. 

5 Implementation 
 

5.1  Development Environment 

Implementation of the whole APT detection system was done in Python, taking advantage of 

the ease of development and playing around in Jupyter Notebooks. The actual 

implementation heavily used various special Python libraries for data manipulation, such as 

pandas, numpy for numerical computations, and scikit-learn for machine learning 

implementations. 

5.2  Network Traffic Analyzer Implementation 
 

The implementation of the network traffic analyzer focused on processing network flow data 

in CSV format. The system was used to load and do some initial preprocessing with pandas. 

The data transformation consisted of numeric conversion of IPv4 addresses and frequency 

encoding of protocol information. Neural network implementation was performed in 

TensorFlow using Keras with an optimized model configuration for multi-class attack 

detection. On the analysis of completeness, the implementation uses missingno matrix 

visualization; advanced data cleaning procedures have been done via pandas - bfill with a 

limit parameter set to 25 entries. 
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Figure 1 Implementation flow of the Network Analysis 

5.3 Phishing URL Detection Implementation 

The implemented system for URL detection used text processing, specifically through the 

special components of NLTK. Extraction of tokens from URLs was done in an 

implementation of RegexpTokenizer with alphanumeric pattern matching. Word stemming 

used SnowballStemmer, configured for the English language. Logistic Regression and 

MultinomialNB were implemented using scikit-learn, choosing the best model for 

performance metrics. 

 

Figure 2 Implementation Architecture of the Phishing URLDetection 

5.4  Keylogger Detection Implementation 

The keylogger detection module implemented extensive feature engineering in network flow 

analysis. A total of 85 distinct features were processed using pandas for statistical 

calculations and numpy. Custom feature engineering included packet size variance 

calculations and down/up ratio analysis. Implementation is based on scikit-learn, focused 

mainly on Random Forest implementation with a deep study of features' importance. It 

implements particular behavioral metrics calculations like 'packet_size_variance', enabling 
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detection of abnormal patterns and 'down_up_ratio_deviation' allowing to make conclusions 

regarding the traffic symmetry. 

 

Figure 3 Keylogger Implementation flow 

5.5 Data Processing Implementations 

The implementation covered data processing in dedicated modules for most types of data. 

Network Traffic Processing: Used pandas handling of CSV, numpy for handling numerical 

computations, and used to implement the IQR method for outlier detection. Other 

Implementations in Data Transformation: Scaling uses StandardScaler and feature encoding 

that used frequency-based approaches. 

5.6  Model Training Implementation 

Implementation was performed using model selection from scikit-learn, allowing easy 

splitting and cross-validation for training a model. Training of the neural networks involved 

batch processing using the Adam optimization. Traditional machine learning models 

optimized hyperparameters through a Grid Search. Implementing Custom Evaluation Metrics 

and model persistence mechanisms are another part of it. 

5.7 Performance Analysis Implementation 

Performance analysis implementation: The performance analysis implementation utilized 

matplotlib and seaborn for the generation of visualizations. The system implemented 

confusion matrix calculations using sklearn.metrics. Custom visualization functions were 

implemented for ROC curve generation and learning curve analysis. Performance 

monitoring: Implementation of real-time accuracy tracking and calculation of validation 

metrics. Keylogger Detection: Feature importance visualization was done using the in-built 

feature ranking capabilities of Random Forest. The system implemented violin plots to 

analyze feature distributions across different attack types. 

5.8 Feature Engineering Implementation 

Feature engineering implementations included custom processing for each type of data. The 

features of network traffic made use of flow statistics and protocol analysis using custom 

calculations. It implemented text tokenization and vectorization for URL processing. The 
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feature of keyloggers' behavioral metric calculations including timing pattern analyses and 

extraction of flow characteristics in their detection were performed. 

5.9 Output Generation Implementation 

The implementation included comprehensive output generation mechanisms: each 

component generates outputs specific to the results of classification, performance metrics, 

and visualization data. Formatted output generation was implemented for analysis results and 

model performance metrics. Similarly, functions were defined that do custom reporting: 

generating summary statistics or performance analyses. 

5.10 Optimization Implementation 

Optimized all the performance for components. The system utilizes effective data structures 

for memory management and allows batch processing of volumes of data. Also, custom 

caching mechanisms were provided for frequent computations. Similarly, this 

implementation allowed parallel processing to operate for independent components. 

5.11  Visualization Implementation 

The system implemented a wide range of visualization capabilities through the use of 

multiple libraries. Network traffic analysis used violin plots for the analysis of feature 

distribution. Keylogger detection utilized feature importance plots and heatmaps of the 

confusion matrix. Accuracy and ROC curve visualizations were provided in the phishing 

detection component. 

 

6 Evaluation 
 

6.1 Network Traffic Analysis Results 

The performance of the network traffic analysis component in identifying and classifying 

different kinds of network-based threats has been very good. The best test accuracy achieved 

by the proposed Sequential Neural Network architecture was 99.30% with a minimum loss 

value of 0.0187. This exemplary performance validates the efficiency of the deep learning 

approach for the identification of complex network traffic patterns corresponding to APT 

activities. The very low loss value suggests that the model is highly confident in its 

predictions, reflecting strong feature engineering and appropriate architectural choices in the 

neural network design. 

 

The model's capability of ensuring these high accuracies across different sorts of network 

traffic patterns-going from backdoor attacks or DoS attempts to other password-based 

intrusions-builds on the versatility linked to threat detection. The maintained performance 

across various attack vectors characterizes successful capture of underlying pattern capture 
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distinctive to each case of malicious activity, provided that the ability for the identification in 

legitimate traffic is maintained with accuracy accordingly. 

6.2 Keylogger Detection System Performance 

 

Figure 4 Keylogger Evaluation Metrics 

Testing of the keylogger detection component has shown significant differences in various 

machine learning methods. The implementation compares three different models, and their 

performance is significantly different while identifying the keylogger activity patterns. 

Random Forest and Decision Tree models demonstrated identical results, 96% accuracy, 

which was much higher compared to the Logistic Regression model with its 59% accuracy. 

 

Several critical indicators have been found through the feature importance analysis that 

indicates malicious activity on the keylogger detection machine learning system. This gives a 

pre-eminence to the features like backward packet length, average backward segment size or 

flow duration as such; these were very indicative, turning out to be good discriminants 

between the traces of the keyloggers concerning legitimate activity. Consistency regarding 

feature importance is present across various ensembles in their contributions: which fact is 

revealed and confirmed by the outcomes themselves. 

 

These findings suggest that the tree-based models performed better, as those algorithms are 

specifically fit to model complex behavioral patterns related to keylogger activity. On the 

other hand, that Random Forest and Decision Tree produced the same accuracy deserves 

further study concerning overfitting issues, though cross-validation results provide some 

reasons to trust the obtained results. 
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6.3 Phishing URL Detection Outcomes 

 

Figure 5 Metrics of Phishing URL Detection 

The phishing URL detection component showed great performance over various 

classification approaches. The Logistic Regression model resulted in 97.81% training 

accuracy and 96.45% testing accuracy, hence showing very good generalization. It is 

particularly very strong on identifying legitimate URLs with 99% precision for good URLs 

and 91% precision for malicious URLs. Balanced performance on the metric resulted in F1 of 

94% for malicious URLs and 98% for legitimate URLs. 

 

The MultinomialNB classifier also had an overall performance of 96% accuracy, showing 

almost similar precision and recall measures in both classes of URLs. This stability in 

performance over both training and test datasets underlines robust model generalization and 

reliable detection capabilities. Both models performed very well in real-life application 

scenarios with minimal false-positive rates, hence reliably identifying malicious URLs. 
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6.4 Comparative Analysis 

 

Figure 6 Comparative Analysis 

Cross-component comparison reveals complementary strengths of different methods for 

detection. The general best result was achieved by the Network Traffic Analysis component, 

which means deep learning approaches are particularly fitted for network-level anomaly 

detection, while tree-based models performed best in Keylogger Detection, something which 

is in line with their capability to capture complex behavioral patterns. The URL Classification 

results hint that simpler approaches can perform comparably for certain detection scenarios. 

The comparative evaluation highlights several significant findings: 

• Deep learning excels in capturing complex network traffic patterns 

• Tree-based models show superior performance in behavioural analysis 

• Traditional machine learning approaches remain effective for URL classification 

• Model complexity does not always correlate with improved performance 

6.5 Implementation Implications 

These findings from the evaluation have interesting practical implications: Although high 

accuracy from all the components in principle supports the feasibility of the deployment, 

there are huge differences between resource requirements across the models. On the one 

hand, substantial computational resources are required to implement a neural network on 

network traffic; on the other hand, significant memory usage would be necessary to perform 

the classification by the tree-based model in the keylogger detection tasks. The flexibility in 

choosing different classifiers in the case of URL detection allows multiple deployments, 

given a particular deployment scenario. 
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Several practical considerations emerge from the analysis: 

• Resource allocation must balance accuracy requirements with computational 

constraints 

• Real-time processing capabilities require optimization of model complexity 

• Memory usage optimization is crucial for large-scale deployments 

• Model selection should consider specific deployment environment constraints 

6.6 Discussion 

6.6.1  Analysis of Network Traffic Detection Results 

The network traffic analysis was performed with an accuracy of 99.30%, outperforming the 

86.36% reported by Eke and Petrovski's(2023) APTDASAC implementation , due to the 

enhanced approach toward feature engineering and optimization concerning neural network 

architecture. Although it has a very high accuracy, a few matters should be noted. The high 

value of accuracy does not yet mean that the case can be representative of how such complex 

network traffic patterns appear in real life. The current implementation is focused on specific 

attack types, namely backdoor, DoS, and password attacks; however, the work by Javed et 

al(2023).  shows that a much broader coverage of attack types is important in an industrial 

environment. 

 

The feature engineering approach with regards to frequency encoding in particular of 

protocols and ports bodes well with the work performed at V C et al(2023).,, where similar 

encoding schemes posted an accuracy of 98.03%. However, some components of their 

hierarchical mechanism within feature selection can be further integrated into what's been 

implemented to reduce even computational overhead. 

6.6.2 Critical Analysis of Phishing Detection Implementation 

The performance of the phishing URL detection system is comparable to the Anteater system 

proposed by Zhang et al. (2024), with an accuracy of 96.45% compared to the latter's true 

positive rate of 94.5%. This current implementation has managed to balance precision 

between malicious and legitimate URLs at 91% and 99%, respectively, against a key 

challenge identified in earlier works. However, its dependency on static feature extraction 

methods may limit its adaptability to evolving URL patterns-a concern also raised by Li et 

al(2021). in their work. 

 

In this regard, it was valuable to implement both a Logistic Regression and MultinomialNB 

classifier. The similar performance metrics between them-96% accuracy-strongly suggest 

that there is some redundancy in this approach. This contrasts with the findings of Li et al. 

(2021) where model diversity showed more significant variations in performance. 

6.6.3 Evaluation of Keylogger Detection Approach 

The results on keylogger detection provide interesting patterns when put into perspective 

against the existing literature. The huge performance difference of the tree-based models at 

96% and the Logistic Regression at 59% confirms Thi et al.'s (2022) results about the 

superiority of complex models on behavioral analysis. However, identical performance by 

Decision Tree and Random Forest models raises suspicions about overfitting, not 

appropriately taken care of in the current implementation. 
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This analysis of feature importance, therefore, depends much on flow-based metrics, which 

again falls in line with works such as that by Abdullahi et al.(2024). While the approach to 

feature selection that they had was broader and achieved 98% accuracy across seven attack 

types, this work would fare better in a similar approach. 

 

6.6.4  Integration Challenges and Limitations 

The multi-component integration approach shows strengths as well as weaknesses. While 

each component performs very strongly on its own, the integration is missing sophisticated 

coordination mechanisms that have been shown in the work of Javed et al. (2023). Graph 

Attention Network achieved more seamless integration with lower computational overhead. 

 

Several experimental design limitations warrant discussion: 

1. Dataset Limitations:  

o Limited diversity in attack patterns 

o Potential bias in normal traffic patterns 

o Absence of zero-day attack scenarios 

2. Methodology Constraints:  

o Fixed feature engineering approach 

o Limited real-time testing 

o Absence of adversarial testing 

3. Integration Challenges:  

o Component synchronization overhead 

o Resource allocation inefficiencies 

o Alert correlation complexity 
 

6.7  Enterprise Deployment Scenarios 

The proposed APT detection framework shows particular promise for deployment across 

several key industry sectors: 

6.7.1  Financial Services 

• Banking institutions can benefit from the real-time network traffic analysis 

component for detecting unauthorized access attempts and potential data exfiltration 

• Insurance companies can utilize the phishing detection module to protect against 

credential theft targeting both employees and customers 

• Investment firms can leverage the behavioral analysis component to protect trading 

systems from sophisticated APTs 

6.7.2  Critical Infrastructure 

• Energy sector organizations can implement the framework to protect industrial control 

systems from state-sponsored APTs 

• Healthcare providers can utilize the multi-layered detection approach to protect 

sensitive patient data and medical devices 
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• Transportation systems can benefit from real-time threat detection to maintain 

operational security 

6.7.3 Technology and Communications 

• Cloud service providers can integrate the framework into their security infrastructure 

to protect client environments 

• Telecommunications companies can utilize the network traffic analysis component for 

detecting anomalies across large-scale networks 

• Software development companies can implement the framework to protect intellectual 

property and source code repositories 

6.7.4  Implementation Considerations 

Each sector presents unique deployment challenges: 

• Scale Requirements: Financial institutions require high-throughput processing 

capabilities to handle massive transaction volumes 

• Compliance Needs: Healthcare organizations must ensure the framework aligns 

with HIPAA and other regulatory requirements 

• Integration Complexity: Critical infrastructure requires careful integration with 

existing operational technology (OT) systems 

• Resource Allocation: Organizations must balance detection accuracy with 

computational overhead based on their specific threat landscape 

The framework's modular design allows for customization based on sector-specific 

requirements while maintaining core detection capabilities across different deployment 

scenarios. 

 

7 Conclusion and Future Work 

7.1 Research Questions and Answers 

7.1.1 Research Question 1 

How can the integration of CNN-LSTM hybrid architectures with network monitoring 

systems enhance the real-time detection of sophisticated APT attack patterns across multi-

layered network environments? 

 

The implementation demonstrated that integrated deep learning architectures significantly 

enhance APT detection capabilities, achieving 99.30% accuracy with a minimal loss value of 

0.0187. The Sequential Neural Network successfully: 

• Identified multiple attack types including backdoor, DoS, and password attacks 

• Processed network traffic in real-time with high confidence predictions 
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• Distinguished between benign and malicious traffic patterns effectively 

• Maintained performance across different network layers This validates that deep 

learning approaches can effectively monitor and detect sophisticated APT patterns 

while maintaining real-time processing capabilities. 

7.1.2 Research Question 2 

What is the effectiveness of combining deep learning-based network analysis with NLP-

driven phishing detection in creating a unified early warning system for APT attacks? 

 

Answer: The integration of NLP-driven phishing detection with network analysis proved 

highly effective, as demonstrated by: 

• 96.45% testing accuracy in URL classification 

• 91% precision in identifying malicious URLs 

• 99% precision in identifying legitimate URLs 

• 96% overall accuracy across both implemented classifiers This confirms that 

combining deep learning and NLP approaches creates a robust early warning system 

capable of detecting diverse attack vectors while maintaining high accuracy and low 

false positive rates. 

7.1.3 Research Question 3 

How can adaptive deep learning models be designed to effectively correlate patterns 

across network traffic, phishing attempts, and keylogger data to provide comprehensive APT 

detection while maintaining real-time response capabilities? 

Answer: The research demonstrated successful pattern correlation across multiple data 

sources through: 

• 96% accuracy in keylogger detection using tree-based models 

• Effective feature correlation across network, phishing, and keylogger data 

• Identification of critical behavioral patterns through feature importance analysis 

• Real-time processing capabilities across all components the multi-model approach 

successfully correlated patterns while maintaining response times suitable for 

production environments. 

7.2 Key Findings and Implications 

These include a number of key findings with extensive ramifications, both in academia and 

the implementation of the work. High accuracy over all components proved the multi-layered 

approach to APT detection. The exceptionally good performance attained from the network 

traffic analysis component proved that deep learning can effectively capture complicated 

patterns of an attack. More precisely, this addresses the problem of real-time threat detection 

in enterprise environments. 

 

Developed model has succeeded in integrating various detection mechanisms, one of the 

biggest steps regarding APT defense strategy. Its balanced performance for different attack 

vectors proves the feasibility of combining various analytical approaches. Feature importance 

analysis revealed important patterns, while flow-based metrics constantly showed up as a 

critical indicator; behavioral patterns were giving strong signals for the keyloggers' detection. 

 

7.3  Research Limitations 

In spite of these strong results, several limitations must be mentioned: high computational 

requirements by the very nature of the neural network implementation make it inappropriate 
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for resource-constrained environments. While real-time processing was demonstrated in 

controlled settings, scalability issues are possible under large deployments. The 

implementation, being done by static feature extraction methods, holds limited adaptability 

against attacks whose patterns are time-evolving. 

The integration overhead remains a big concern, especially for those scenarios where 

real-time correlation across different components is required. The testing environment, 

although comprehensive, does not completely represent the complexity of real network 

environments. Detection of yet unknown attack patterns by the system is to be further 

validated.. 

7.4  Future Work and Research Directions 

Future research should focus on several key areas: 

7.4.1 Technical Enhancements 

1. Implementation of true hybrid CNN-LSTM architecture for:  

o Enhanced temporal pattern recognition 

o Reduced computational overhead 

o Improved feature extraction 

o Real-time processing optimization 

2. Advanced integration mechanisms including:  

o Real-time correlation engine 

o Adaptive threshold adjustment 

o Dynamic feature selection 

o Automated response orchestration 

7.4.2 Research Extensions 

1. Enhanced attack coverage through:  

o Zero-day attack detection capabilities 

o Advanced evasion technique recognition 

o Novel attack pattern identification 

o Adaptive learning mechanisms 

2. Improved feature engineering via:  

o Dynamic feature extraction methods 

o Contextual pattern analysis 

o Enhanced behavioral profiling 

o Temporal correlation analysis 
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