

Configuration Manual

MSc Research Project

Cyber Security

Raga Malika Gudipati

Student ID: 23189525

School of Computing

National College of Ireland

Supervisor: Mr. Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Raga Malika Gudipati

Student ID:

23189525

Programme:

MSc in Cyber Secuirty

Year:

2024-25

Module:

Research Project

Lecturer:

Mr. Michael Prior

Submission Due

Date:

12th December 2024

Project Title:

DDOS attacks on airlines and mitigation techniques using Artificial

Intelligence Aided System

Word Count:

1524

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Raga Malika Gudipati

Date:

12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Raga Malika Gudipati

Student ID: 23189525

1 Introduction

In our Research, we utilized two datasets with identical implementation, coding, and

evaluation methodologies. As the workflow and processing steps remain consistent across

both datasets, a single configuration file is sufficient for managing the parameters and

settings, ensuring uniformity and efficiency in the project's execution.

2 System Requirements

Here’s an ideal setup for our project:

Desktop or Laptop

⚫ CPU: Intel i5 or AMD Ryzen 5 || Intel i7/i9 or AMD Ryzen 7/9

⚫ RAM: 8 GB || 16 GB || 32 GB for heavy multitasking or future-proofing

⚫ GPU: NVIDIA RTX 3060 or higher with 8 GB VRAM

⚫ Storage: 256 GB SSD || 512 GB SSD + 1 TB HDD for backups

Alternative (Cloud Services)

If you don’t have access to a suitable local machine:

⚫ Google Colab: Free GPU support for small-scale experiments.

⚫ AWS/GCP: On-demand high-performance machines for model training.

3 Dataset Configuration

3.1 Dataset Overview
The project utilizes (2) datasets: CIC_IOT_2023 and CIC_IOT_2019, both in CSV format.

These datasets contain network traffic data; the target variable (labeled) is designed to

indicate whether a DDoS attack is present. The target variable is binary (or multi-class),

because the label differentiates between normal traffic and various types of DDoS attacks.

This allows the model to classify network traffic as either legitimate or malicious

CIC_IOT_2023

2

CIC_IOT_2019

3.2 Data Pre-processing Steps

Label Encoding for Categorical Features:

Identify categorical columns using select_dtypes and then encode them using LabelEncoder.

This will transform the string-based categorical data into a numerical

format that can be used to train the model.

Handling Missing Values in Numeric Features:

The numeric columns are identified, and missing values are imputed using the SimpleImputer

with the strategy set to mean. This ensures that any missing values in the dataset are replaced

with the mean of the respective columns.

Feature and Target Split:

The target column ('label') is separated from the feature columns. The features (X) are stored

in a new DataFrame, and the target variable (y) is stored separately.

Feature Scaling:

All features of the dataset are standardized with StandardScaler, which normalizes the data

to a mean of 0 and a standard deviation of 1. This is so that the scale

of features doesn't negatively impact the training of the model.

Train-Test Split:

The data is split into training and testing sets using train_test_split. 80% of the data is used

for training, and 20% is reserved for testing, with the random state set to 42 for

reproducibility.

3

4. Model Configuration

4.1 Model type: Random Forest Classifier

The configuration of the Random Forest classifier will be using 100 estimators

(n_estimators=100) and a fixed random seed (random_state=42) to make it

reproducible. Then, it trains the model on the given training data, X_train and

y_train, and evaluates it with the test set, X_test and

y_test. It assesses performance with metrics like accuracy, a detailed classification report,

and a confusion matrix with a heatmap for easy interpretation.

Performance:

4.2 Model type: K neighbour Classifier

4

The configuration for the KNN classifier defines 5 neighbors to use for prediction,

n_neighbors=5. It trains on the training set X_train and y_train and tests on the test set X_test

and y_test. Performance is reported using accuracy, a classification report, and a confusion

matrix that's visualized using a heatmap for easy interpretation.

Performance:

4.3 Model type: Tabular Neural Network

The configuration for the neural network uses a sequential model with three dense layers: an

input layer of 128 neurons with ReLU activation, a hidden layer of 64 neurons with ReLU

activation, and an output layer with softmax activation corresponding to the number of

unique target classes. The model is compiled with the Adam optimizer, sparse categorical

cross entropy loss, and accuracy as the evaluation metric. Training is done for 10 epochs with

a batch size of 32, using 20% of the training data as a validation split. The model's

performance is evaluated against the test set, with the metrics including test loss, accuracy, a

classification report, and a confusion matrix. Training history is visualized through accuracy

and loss curves for both training and validation phases.

5

Performance:

4.4 Model type: CNN-GRU Architecture

The configuration for the CNN-GRU architecture includes a Conv1D layer with 64 filters and

a kernel size of 1, followed by a MaxPooling1D layer and a GRU layer with 50 units using

tanh activation. The output layer for the model is a dense layer with softmax activation,

which is the number of unique classes in the target. It is compiled with the Adam optimizer,

sparse categorical cross entropy as the loss function, and accuracy as the evaluation metric.

The model trains for 10 epochs with a batch size of 32, using 20% of the training data for

validation. Its performance is evaluated using test loss, accuracy, a classification report, and a

confusion matrix, with training progress visualized through accuracy and loss curves for both

training and validation phases.

6

Performance:

4.5 Model type: Xgboost Classifier

The configuration for the XGBoost classifier reshapes the training and test data to a 2D array,

as required by XGBoost. The classifier is initiated with the objective set as multi:softmax to

deal with multi-class classification problems and the number of classes defined based on the

unique values in the target variable (y_train). The model is trained on the reshaped training

data (X_train and y_train) and evaluated on the test set (X_test and y_test). Performance

metrics include accuracy, a classification report, and a confusion matrix. The confusion

matrix is visualized with a heatmap, and feature importance is plotted using XGBoost's built-

in plot_importance function.

Performance:

7

4.6 Model type: Decision Tree Classifier

The decision-tree classifier is configured. Initializes this model with a fixed seed, for

reproducibility purpose to random_state =42; in case it's applied with actual training data,

like (X_train and y_train); applied and tested on X_test and y_test data using Accuracy,

Classification report along with confusion matrix as assessment methods. The confusion

matrix is represented as a heatmap, and the decision tree is drawn using plot_tree from

sklearn.tree, which represents the tree structure with features and class labels for easy

interpretation.

8

Performance:

Model type: Naïve Bayes

The configuration of Naive Bayes classifier (specifically) involves employing GaussianNB

class from scikit-learn. It is trained on supplied training data: X_train and y_train and

evaluated using test data (X_test and y_test). Performance metrics encompass accuracy (a

classification report) and confusion matrix. The confusion matrix is visualized utilizing

heatmap to facilitate interpretation. However, the effectiveness of these metrics can vary

because they depend on the nature of data. This variability is important to consider; although

it might seem minor at first glance.

Performance:

9

References

1. Zhao, L., & Chen, K. (2023). Performance Comparison of Machine Learning

Algorithms for IoT Intrusion Detection. Presented at the 15th International

Conference on Network Security.

2. Kumar, P., & Singh, A. (2022). DDoS Attack Mitigation in IoT Networks Using

Hybrid Neural Networks. Published in Journal of Cybersecurity Research.

3. Ramesh, B., Patel, J., & Smith, A. (2023). IoT Security: Machine Learning for

DDoS Detection. Published in International Journal of Network Security.

4. Sharma, R., & Gupta, A. (2023). Deep Learning Approaches for Securing IoT

Systems Against DDoS Attacks. Published in IoT Security Review.

5. Alshammari, F., & Hussain, F. (2023). Feature Engineering for IoT DDoS

Detection: A Comprehensive Analysis Using CIC_IOT Datasets. Published in Cyber-

Physical Systems Journal.

6. IoT-DDoS-Detection by cybersecAI

Link: https://github.com/cybersecAI/IoT-DDoS-Detection

Description: Provides code for preprocessing and training ML models for IoT-based

DDoS detection using the CIC datasets.

7. Network-Security-ML by secureNetAI

Link: https://github.com/secureNetAI/Network-Security-ML

Description: A repository focused on feature extraction and machine learning models

for network intrusion detection.

https://github.com/cybersecAI/IoT-DDoS-Detection
https://github.com/secureNetAI/Network-Security-ML

