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1 Introduction 
 

In our Research, we utilized two datasets with identical implementation, coding, and 

evaluation methodologies. As the workflow and processing steps remain consistent across 

both datasets, a single configuration file is sufficient for managing the parameters and 

settings, ensuring uniformity and efficiency in the project's execution. 

 

2 System Requirements 
 

Here’s an ideal setup for our project: 

 

Desktop or Laptop 

⚫ CPU: Intel i5 or AMD Ryzen 5 ||  Intel i7/i9 or AMD Ryzen 7/9 

⚫ RAM: 8 GB || 16 GB || 32 GB for heavy multitasking or future-proofing 

⚫ GPU: NVIDIA RTX 3060 or higher with 8 GB VRAM 

⚫ Storage: 256 GB SSD || 512 GB SSD + 1 TB HDD for backups 

 

Alternative (Cloud Services) 

If you don’t have access to a suitable local machine: 

⚫ Google Colab: Free GPU support for small-scale experiments.  

⚫ AWS/GCP: On-demand high-performance machines for model training. 

 

3 Dataset Configuration 
 

3.1 Dataset Overview  
The project utilizes (2) datasets: CIC_IOT_2023 and CIC_IOT_2019, both in CSV format. 

These datasets contain network traffic data; the target variable (labeled) is designed to 

indicate whether a DDoS attack is present. The target variable is binary (or multi-class), 

because the label differentiates between normal traffic and various types of DDoS attacks. 

This allows the model to classify network traffic as either legitimate or malicious 

 
CIC_IOT_2023
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CIC_IOT_2019 

 

 

3.2 Data Pre-processing Steps 

 
  

Label Encoding for Categorical Features: 

Identify categorical columns using select_dtypes and then encode them using LabelEncoder. 

This will transform the string-based categorical data into a numerical 

format that can be used to train the model. 

 

Handling Missing Values in Numeric Features: 

The numeric columns are identified, and missing values are imputed using the SimpleImputer 

with the strategy set to mean. This ensures that any missing values in the dataset are replaced 

with the mean of the respective columns. 

 

Feature and Target Split: 

The target column ('label') is separated from the feature columns. The features (X) are stored 

in a new DataFrame, and the target variable (y) is stored separately. 

 

Feature Scaling: 

All features of the dataset are standardized with StandardScaler, which normalizes the data 

to a mean of 0 and a standard deviation of 1. This is so that the scale 

of features doesn't negatively impact the training of the model. 

 

Train-Test Split: 

The data is split into training and testing sets using train_test_split. 80% of the data is used 

for training, and 20% is reserved for testing, with the random state set to 42 for 

reproducibility. 
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4. Model Configuration 

 
4.1 Model type: Random Forest Classifier 
 

 
 

The configuration of the Random Forest classifier will be using 100 estimators 

(n_estimators=100) and a fixed random seed (random_state=42) to make it 

reproducible. Then, it trains the model on the given training data, X_train and 

y_train, and evaluates it with the test set, X_test and 

y_test. It assesses performance with metrics like accuracy, a detailed classification report, 

and a confusion matrix with a heatmap for easy interpretation. 
 

Performance: 

 
 

4.2 Model type: K neighbour Classifier  
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The configuration for the KNN classifier defines 5 neighbors to use for prediction, 

n_neighbors=5. It trains on the training set X_train and y_train and tests on the test set X_test 

and y_test. Performance is reported using accuracy, a classification report, and a confusion 

matrix that's visualized using a heatmap for easy interpretation. 
 

Performance: 

 
 

 

4.3 Model type: Tabular Neural Network  
 

 
 

The configuration for the neural network uses a sequential model with three dense layers: an 

input layer of 128 neurons with ReLU activation, a hidden layer of 64 neurons with ReLU 

activation, and an output layer with softmax activation corresponding to the number of 

unique target classes. The model is compiled with the Adam optimizer, sparse categorical 

cross entropy loss, and accuracy as the evaluation metric. Training is done for 10 epochs with 

a batch size of 32, using 20% of the training data as a validation split. The model's 

performance is evaluated against the test set, with the metrics including test loss, accuracy, a 

classification report, and a confusion matrix. Training history is visualized through accuracy 

and loss curves for both training and validation phases. 
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Performance: 

 

 
 

4.4 Model type: CNN-GRU Architecture 

 
 

The configuration for the CNN-GRU architecture includes a Conv1D layer with 64 filters and 

a kernel size of 1, followed by a MaxPooling1D layer and a GRU layer with 50 units using 

tanh activation. The output layer for the model is a dense layer with softmax activation, 

which is the number of unique classes in the target. It is compiled with the Adam optimizer, 

sparse categorical cross entropy as the loss function, and accuracy as the evaluation metric. 

The model trains for 10 epochs with a batch size of 32, using 20% of the training data for 

validation. Its performance is evaluated using test loss, accuracy, a classification report, and a 

confusion matrix, with training progress visualized through accuracy and loss curves for both 

training and validation phases. 
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Performance: 

 

 
 

4.5 Model type: Xgboost Classifier 
 

 
 

The configuration for the XGBoost classifier reshapes the training and test data to a 2D array, 

as required by XGBoost. The classifier is initiated with the objective set as multi:softmax to 

deal with multi-class classification problems and the number of classes defined based on the 

unique values in the target variable (y_train). The model is trained on the reshaped training 

data (X_train and y_train) and evaluated on the test set (X_test and y_test). Performance 

metrics include accuracy, a classification report, and a confusion matrix. The confusion 

matrix is visualized with a heatmap, and feature importance is plotted using XGBoost's built-

in plot_importance function. 
 

Performance: 



7 
 

 

 

 

 
 

 

4.6 Model type: Decision Tree Classifier 
 

 
 

The decision-tree classifier is configured. Initializes this model with a fixed seed, for 

reproducibility purpose to random_state =42; in case it's applied with actual training data, 

like (X_train and y_train); applied and tested on X_test and y_test data using Accuracy, 

Classification report along with confusion matrix as assessment methods. The confusion 

matrix is represented as a heatmap, and the decision tree is drawn using plot_tree from 

sklearn.tree, which represents the tree structure with features and class labels for easy 

interpretation. 
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Performance: 

 

  
 

Model type: Naïve Bayes 

 

 
 

The configuration of Naive Bayes classifier (specifically) involves employing GaussianNB 

class from scikit-learn. It is trained on supplied training data: X_train and y_train and 

evaluated using test data (X_test and y_test). Performance metrics encompass accuracy (a 

classification report) and confusion matrix. The confusion matrix is visualized utilizing 

heatmap to facilitate interpretation. However, the effectiveness of these metrics can vary 

because they depend on the nature of data. This variability is important to consider; although 

it might seem minor at first glance. 

 

Performance: 
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