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1 Introduction 

This configuration guide outlines the steps to build and execute a malware classification project from 

the ground up. The project employs convolutional neural network (CNN) architectures such as 

Xception, EfficientNetB0, and ResNet50 to categorize malware images into 25 different classes 

utilizing the MaleVis_split dataset. This manual addresses dataset preparation, environment 

configuration, model training, and performance evaluation. 

2 System Specifications 

2.1. Hardware 

• Google Colab Cloud Environment 

o RAM: 12.7 GB 

o GPU: NVIDIA Tesla T4 with 15.0 GB memory 

o Disk Space: 112.6 GB 

2.2. Software 

• Python Version: Python 3 (Google Compute Engine backend) 

• Libraries: 

o TensorFlow 2.x 

o NumPy 

o Matplotlib 

o Seaborn 

o Transformers 

o Scikit-learn 

Additional Tools: Google Drive (for dataset storage and model persistence). 

3. Step-by-Step Instructions to Build the Artifact 

3.1. Setting Up the Environment 

1. Access Google Colab: 

Open Google Colab. 

Create a new notebook. 

2. Enable GPU Acceleration: 

Navigate to Runtime > Change Runtime Type. 

Set Hardware Accelerator to GPU. 

3. Install Required Libraries: 

Run the following command to ensure all 

dependencies are installed 

!pip install tensorflow numpy matplotlib seaborn 
transformers scikit-learn 

https://colab.research.google.com/


Mount Google Drive to Colab: 
 

 
 

4. Machine Learning Pipeline 

4.1 Dataset Loading 

Download the MaleVis_split Dataset: 

Obtain the dataset from the official source or project repository. 

Upload the dataset to your Google Drive 

Ensure the dataset folders (train, test, and val) are organized in your Google Drive. 

Place them in a dedicated project folder,  

e.g:    /content/drive/MyDrive/Malware_Classification_Project/. 

Verify Dataset Structure: 

Ensure the dataset folders (train, test, and val) are stored in Google Drive and update paths 
in the script accordingly: 

 

 

 
 
 

4.2 Dataset Preprocessing steps 

The dataset used is the MaleVis_split dataset, containing malware images split into train, test, 

and validation folders. 

 

Organize dataset into respective directories: 

train_DATA_DIR: Contains training images. 
test_DATA_DIR: Contains testing images.  

val_DATA_DIR: Contains validation images. 
Balance Dataset ( Remove excess images from classes like Other to balance the dataset. It is optional 

according to the dataset). 

Resize images to a target size of 200x200 pixels for consistent input size. 

4.3 Data Loading and Augmentation 

• Use the ImageDataGenerator class from TensorFlow for data augmentation and 
preprocessing: 

 

To improve the dataset's diversity and reduce the risk of overfitting, we employ 
TensorFlow's ImageDataGenerator for data augmentation. The augmentations 
applied to the training dataset consist of rescaling, rotations, shifts in width and height, 
zooming, and horizontal flips. For evaluation, only rescaling is applied to the test and 
validation datasets. 

 

 



 

 

Steps: 

1. Apply Augmentation to Training Data: 

o Augmentations such as rotation, zoom, and flipping are applied to improve 
model robustness. 

2. Preprocess Testing and Validation Data: 

o Images are rescaled to normalize pixel values (range 0-1). 
 

 
     

4.4  Model Training and Execution steps 

 

To successfully classify malware images, we utilize three advanced CNN architectures: Xception, 
EfficientNetB0, and ResNet50. These models are refined for the MaleVis dataset by employing pre-
trained weights while retraining solely the top layers. 

` 

Steps: 

1. Create a Generic Model Builder Function: 

o This function takes the base architecture (Xception, EfficientNetB0, or ResNet50) and 
adds a global average pooling layer, a dense hidden layer, and a final softmax output 
layer for classification. 

2. Compile the Model: 

o The model is compiled with the Adam optimizer, categorical crossentropy loss, and 
accuracy as the evaluation metric. 

3. Train the Model: 

o The model is trained using the augmented training data and validated on the validation 
data for a specified number of epochs. 

 

Fine-tune each model by freezing the earlier layers and training only the top layers: 
 



 

 

  4.5 Model testing: 

To ensure the performance of the trained models is accurately measured, we evaluate them on the test 

dataset. This involves calculating the test accuracy, generating a classification report, and visualizing the 

confusion matrix for detailed insights into the predictions. 

 

Steps: 

Evaluate the Model on Test Data: 

o Use the model.evaluate() function to compute the loss and accuracy on the test dataset. 

Generate Predictions: 

o Obtain predictions for the test dataset using model.predict(). 

Generate Classification Report and Confusion Matrix: 

o Use Scikit-learn's tools to generate a classification report and visualize the confusion matrix. 

 

Explanation: 

Test Accuracy: 

o The model.evaluate() function provides the overall accuracy and loss on unseen test data, 

ensuring no data leakage from training or validation. 

Classification Report: 

o The classification report includes precision, recall, and F1-score for each class, offering 

detailed performance metrics. 

Confusion Matrix: 

o The confusion matrix provides a grid visualization of true versus predicted classes, helping 

identify where the model misclassifies data. 

 

 



4.5  Save and Reload Models 

We save the trained models to preserve them for future use or deployment. These saved 

models can be reloaded anytime to make predictions or resume training without 

retraining from scratch.  

Steps: 

1. Save the Trained Model: 

o Use TensorFlow's model.save() function to save the model in Google Drive 

or a specified location. 

2. Reload the Saved Model: 

o Use TensorFlow's load_model() function to load the previously saved model 

for inference or further training. 

   Model loading: 
 

  Model predicting: 

  Once the model is reloaded, it can be used to make predictions on new input data. 
 

 

 

5 Results 

 
Visualizing the results of the training process and evaluation metrics provides insights into the model's 

performance. It helps identify trends such as overfitting, underfitting, or areas where the model can be 

improved. 

Steps: 

1. Plot Training and Validation Accuracy: 

Compare training and validation accuracy across epochs to monitor learning progress. 

2. Plot Training and Validation Loss: 

Analyze how the model's loss evolves during training to identify convergence or 

overfitting. 

3. Visualize Performance Metrics: 

Use bar plots or tables to compare the accuracy, precision, recall, and F1-scores of 

different models. 

 

 

 



We evaluated the performance of three deep learning models: EfficientNet B0, ResNet50, and 

Xception. For each model, the following evaluation metrics were analysed. 

 

1. Classification Report: 

o Includes key performance metrics such as precision, recall, F1-score, and support for each 

class. 

o These metrics provide insights into the model's ability to correctly classify instances and 

handle imbalanced data. 

2. Confusion Matrix: 

o Visual representation of the classification performance, showing true positives, false 

positives, true negatives, and false negatives for each class. 

o It highlights the specific areas where the models performed well and where 

misclassifications occurred. 

 

5.2 Xception Model 
 

Figure 2: Classification report of 

Xception model Figure 1: Confusion matrix of Xception Model 

 

 

 

 

 

 

 

 

 



5.3 EfficientNetB0 Model 
 
 

Figure 4: Classification report of 

EfficientNetB0 Model 

 

Figure 3: Confusion Matrix of EfficientNetB0 

 

5.4 ResNet50 Model 
 

 
 

Figure 5: Classification report of 

ResNet50 model 

Figure 6: Confusion matrix of ResNet50 model 
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Figure 7: Compare training performance of 3 models 

 

 

 

These above graphs show how well three different models Xception, EfficientNetB0, and ResNet50 

performed on the task of classifying malware images. The key points to understand are: 

 

1. Validation Loss: How much the model's predictions are wrong. Lower and steady loss means better 

performance. 

2. Validation Accuracy: The percentage of correct predictions. Higher accuracy means better results. 

3. Validation AUC: How well the model can distinguish between different categories. Higher AUC 

means better classification. 

4. False Positives: How often the model incorrectly labels something as malware. Fewer false positives 

are better. 

 

 



                                         
      Figure 8: Evaluation metrics comparison of models 

 

The bar chart above presents the evaluation metrics Accuracy, F1-score, Recall, and Precision for different 

deep learning models (XceptionNet, EfficientNetB0, ResNet50) tested on the Malevis dataset.  
 

 

5. Precision & Recall: 

• Precision: How often the model's malware predictions are correct. 

• Recall: How good the model is at finding all the malware. 
6. F1-Score: 

• Balances Precision and Recall, giving a single measure of the model’s overall performance. 

• A higher F1-score indicates both good accuracy in predicting malware and good coverage in 

identifying all malware cases. 
7. Accuracy: 

• Measures how often the model’s predictions are correct overall. 

• A higher accuracy means the model correctly classified a large proportion of all images, both 

malware and non-malware. 
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