

Configuration Manual

Advancing Malware Detection: A Deep Learning Approach with

Transfer learning Techniques

MSC Cyber Security

Littletresa George
Student ID: X23233346

School of Computing

National College of Ireland

Supervisor: Khadijia Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Littletresa George

Student ID: X23233346……………………………………………………………………

Programme: MSC Cyber Security………………………… Year: 2024…………………………..

Module: MSC Research

Project………………………………………………………………………….…

Lecturer: Khadijia Hafeez……………………………………………………….…

Submission

Due Date: 12-12-2024…………………………………………………………………………………….……

Project Title: Advancing Malware Detection:A Deep Learning Approach With

Transfer Learning Techniques………………………………………………………

Word Count: ……………………………………… Page Count: ………………………………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

 ………………………………………………………………………………

Date: 12-12-
2024……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Littletresa George

X23233346

1 Introduction

This configuration guide outlines the steps to build and execute a malware classification project from

the ground up. The project employs convolutional neural network (CNN) architectures such as

Xception, EfficientNetB0, and ResNet50 to categorize malware images into 25 different classes

utilizing the MaleVis_split dataset. This manual addresses dataset preparation, environment

configuration, model training, and performance evaluation.

2 System Specifications

2.1. Hardware

• Google Colab Cloud Environment

o RAM: 12.7 GB

o GPU: NVIDIA Tesla T4 with 15.0 GB memory

o Disk Space: 112.6 GB

2.2. Software

• Python Version: Python 3 (Google Compute Engine backend)

• Libraries:

o TensorFlow 2.x

o NumPy

o Matplotlib

o Seaborn

o Transformers

o Scikit-learn

Additional Tools: Google Drive (for dataset storage and model persistence).

3. Step-by-Step Instructions to Build the Artifact

3.1. Setting Up the Environment

1. Access Google Colab:

Open Google Colab.

Create a new notebook.

2. Enable GPU Acceleration:

Navigate to Runtime > Change Runtime Type.

Set Hardware Accelerator to GPU.

3. Install Required Libraries:

Run the following command to ensure all

dependencies are installed

!pip install tensorflow numpy matplotlib seaborn
transformers scikit-learn

https://colab.research.google.com/

Mount Google Drive to Colab:

4. Machine Learning Pipeline

4.1 Dataset Loading

Download the MaleVis_split Dataset:

Obtain the dataset from the official source or project repository.

Upload the dataset to your Google Drive

Ensure the dataset folders (train, test, and val) are organized in your Google Drive.

Place them in a dedicated project folder,

e.g: /content/drive/MyDrive/Malware_Classification_Project/.

Verify Dataset Structure:

Ensure the dataset folders (train, test, and val) are stored in Google Drive and update paths
in the script accordingly:

4.2 Dataset Preprocessing steps

The dataset used is the MaleVis_split dataset, containing malware images split into train, test,

and validation folders.

Organize dataset into respective directories:

train_DATA_DIR: Contains training images.
test_DATA_DIR: Contains testing images.

val_DATA_DIR: Contains validation images.
Balance Dataset (Remove excess images from classes like Other to balance the dataset. It is optional

according to the dataset).

Resize images to a target size of 200x200 pixels for consistent input size.

4.3 Data Loading and Augmentation

• Use the ImageDataGenerator class from TensorFlow for data augmentation and
preprocessing:

To improve the dataset's diversity and reduce the risk of overfitting, we employ
TensorFlow's ImageDataGenerator for data augmentation. The augmentations
applied to the training dataset consist of rescaling, rotations, shifts in width and height,
zooming, and horizontal flips. For evaluation, only rescaling is applied to the test and
validation datasets.

Steps:

1. Apply Augmentation to Training Data:

o Augmentations such as rotation, zoom, and flipping are applied to improve
model robustness.

2. Preprocess Testing and Validation Data:

o Images are rescaled to normalize pixel values (range 0-1).

4.4 Model Training and Execution steps

To successfully classify malware images, we utilize three advanced CNN architectures: Xception,
EfficientNetB0, and ResNet50. These models are refined for the MaleVis dataset by employing pre-
trained weights while retraining solely the top layers.

`

Steps:

1. Create a Generic Model Builder Function:

o This function takes the base architecture (Xception, EfficientNetB0, or ResNet50) and
adds a global average pooling layer, a dense hidden layer, and a final softmax output
layer for classification.

2. Compile the Model:

o The model is compiled with the Adam optimizer, categorical crossentropy loss, and
accuracy as the evaluation metric.

3. Train the Model:

o The model is trained using the augmented training data and validated on the validation
data for a specified number of epochs.

Fine-tune each model by freezing the earlier layers and training only the top layers:

 4.5 Model testing:

To ensure the performance of the trained models is accurately measured, we evaluate them on the test

dataset. This involves calculating the test accuracy, generating a classification report, and visualizing the

confusion matrix for detailed insights into the predictions.

Steps:

Evaluate the Model on Test Data:

o Use the model.evaluate() function to compute the loss and accuracy on the test dataset.

Generate Predictions:

o Obtain predictions for the test dataset using model.predict().

Generate Classification Report and Confusion Matrix:

o Use Scikit-learn's tools to generate a classification report and visualize the confusion matrix.

Explanation:

Test Accuracy:

o The model.evaluate() function provides the overall accuracy and loss on unseen test data,

ensuring no data leakage from training or validation.

Classification Report:

o The classification report includes precision, recall, and F1-score for each class, offering

detailed performance metrics.

Confusion Matrix:

o The confusion matrix provides a grid visualization of true versus predicted classes, helping

identify where the model misclassifies data.

4.5 Save and Reload Models

We save the trained models to preserve them for future use or deployment. These saved

models can be reloaded anytime to make predictions or resume training without

retraining from scratch.

Steps:

1. Save the Trained Model:

o Use TensorFlow's model.save() function to save the model in Google Drive

or a specified location.

2. Reload the Saved Model:

o Use TensorFlow's load_model() function to load the previously saved model

for inference or further training.

 Model loading:

 Model predicting:

 Once the model is reloaded, it can be used to make predictions on new input data.

5 Results

Visualizing the results of the training process and evaluation metrics provides insights into the model's

performance. It helps identify trends such as overfitting, underfitting, or areas where the model can be

improved.

Steps:

1. Plot Training and Validation Accuracy:

Compare training and validation accuracy across epochs to monitor learning progress.

2. Plot Training and Validation Loss:

Analyze how the model's loss evolves during training to identify convergence or

overfitting.

3. Visualize Performance Metrics:

Use bar plots or tables to compare the accuracy, precision, recall, and F1-scores of

different models.

We evaluated the performance of three deep learning models: EfficientNet B0, ResNet50, and

Xception. For each model, the following evaluation metrics were analysed.

1. Classification Report:

o Includes key performance metrics such as precision, recall, F1-score, and support for each

class.

o These metrics provide insights into the model's ability to correctly classify instances and

handle imbalanced data.

2. Confusion Matrix:

o Visual representation of the classification performance, showing true positives, false

positives, true negatives, and false negatives for each class.

o It highlights the specific areas where the models performed well and where

misclassifications occurred.

5.2 Xception Model

Figure 2: Classification report of

Xception model Figure 1: Confusion matrix of Xception Model

5.3 EfficientNetB0 Model

Figure 4: Classification report of

EfficientNetB0 Model

Figure 3: Confusion Matrix of EfficientNetB0

5.4 ResNet50 Model

Figure 5: Classification report of

ResNet50 model

Figure 6: Confusion matrix of ResNet50 model

4

Figure 7: Compare training performance of 3 models

These above graphs show how well three different models Xception, EfficientNetB0, and ResNet50

performed on the task of classifying malware images. The key points to understand are:

1. Validation Loss: How much the model's predictions are wrong. Lower and steady loss means better

performance.

2. Validation Accuracy: The percentage of correct predictions. Higher accuracy means better results.

3. Validation AUC: How well the model can distinguish between different categories. Higher AUC

means better classification.

4. False Positives: How often the model incorrectly labels something as malware. Fewer false positives

are better.

 Figure 8: Evaluation metrics comparison of models

The bar chart above presents the evaluation metrics Accuracy, F1-score, Recall, and Precision for different

deep learning models (XceptionNet, EfficientNetB0, ResNet50) tested on the Malevis dataset.

5. Precision & Recall:

• Precision: How often the model's malware predictions are correct.

• Recall: How good the model is at finding all the malware.
6. F1-Score:

• Balances Precision and Recall, giving a single measure of the model’s overall performance.

• A higher F1-score indicates both good accuracy in predicting malware and good coverage in

identifying all malware cases.
7. Accuracy:

• Measures how often the model’s predictions are correct overall.

• A higher accuracy means the model correctly classified a large proportion of all images, both

malware and non-malware.

References

• TensorFlow Documentation: https://www.tensorflow.org/

• Google Colab: https://colab.research.google.com/

6

https://www.tensorflow.org/
https://colab.research.google.com/

