

Advancing Malware Detection: A Deep Learning

Approach with Transfer Learning Techniques

MSc Research Project

MSC Cyber Security

Littletresa George
Student ID: X23233346

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Littletresa George …………………………………

Student ID: X23233346……………………

Programme: MSC CYBER SECURITY……………… Year: 2024……………..

Module: MSC Research Project………………………………………………….…

Supervisor: Khadija Hafeez…………………………………….…

Submission Due

Date:

12-12-2024…………………………………………………………………….……

Project Title: Advancing Malware Detection:A Deep Learning Approach with

Transfer Learning Techniques……………………………………………

Word Count: ……………………………………… Page Count……20……….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Littletresa…………………………………………………………………………………

Date: 12-12-2024…………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Advancing Malware Detection: A Deep Learning

Approach with Transfer Learning Techniques

Littletresa George

X23233346

Abstract

In the progressing cyber world, malware creates a notable threat to data security,

underscoring the need for timely detection to mitigate its impact. Traditional detection

systems, such as signature-based methods, are becoming successful against highly

complicated attacks. This paper offers deep learning approaches to malware detection,

focusing on comparing the performance of advanced convolutional neural network

(CNN) architectures such as XceptionNet, EfficientNetB0, and ResNet50. By examining

various patterns from the image data, the system predicts the presence of malware. The

models show better accuracy compared to traditional methods. It successfully diminishes

the likelihood of misclassification, thus improving the precision of detection. The

proposed system's accuracy in detecting malware assists the cyber security department,

enabling better cyber-threat handling. EfficientNetB0 emerges as the most accurate

model, achieving 96% accuracy, outperforming both XceptionNet and ResNet50, which

recorded 95% accuracy. Overall, the research paper aims to present how well these deep

learning models can detect the presence of malware by identifying known and unknown

malware strains and considering challenges such as disproportionate datasets, adversarial

attacks, and the need for real-time detection in cybersecurity employment.

Keywords: Xception, EfficientNetB0, ResNet

1 Introduction

Today, the field of technology grows rapidly. Emerging fields like artificial intelligence,

cloud computing, etc., are essential in the real world. The modern world is very much

integrated with cyberspace in various dimensions. And so, it brings challenges such as cyber-

attacks, privacy issues, etc., which leads to the need for a cyber security department. One of

the major cyber-attacks is the malware threat. Malicious software, in short, malware, is any

program that can harm the security and functionality of devices, networks, or data. There are

many varieties of malware, such as viruses, worms, trojans, spyware, and more. The mode of

attack from each of them is different, which causes an unauthorized action on a device. For

example, a virus is attached to a program. It replicates other programs when they are

executed, whereas in the case of ransomware attacks, it will lock the user's data or

information and ask for ransom for its release.

According to the 'India Breach Report' by FalconFeeds, the first six-month period of 2024

witnessed 388 data breaches, 107 data leaks, 39 ransomware activities, and 59 cases of access

sales or leaks (INTERNATIONAL JOURNAL on CYBERSPACE LAW and POLICY

VOLUME 2 and ISSUE 1 of 2024 INSTITUTE of LEGAL EDUCATION, 2024). The

Telegram app was a hotbed for data breaches and scams. A hub of hackers, Telegram

coordinates attacks and shares information. According to India's Cyber Threat Report 2023,

trojans (41%) and Infectors (33%) are dominant threats in malware attacks (“THREATS in

2

CYBERSPACE,” 2023). The Automobile Industry has the highest number of detections,

followed by the Government and Education sector. Since online activities through the

internet have become a part of daily life, malware threats can disrupt not only an individual

device but also public sectors, industries, the education sector, the healthcare industry,

banking, and even the defense sector. Ransomware can access and lock commercial data, like

locking a company server, affecting the firm's productivity. Then, they demand huge amounts

of money to unlock the data, which leads to financial loss. Likewise, malware threat causes

privacy loss, data breaches, unauthorized tracking etc. These issues raise the need for robust

malware detection systems essential to cyber security. Detecting malware as soon as possible

is just as important as identifying it (Aslan & Samet, 2020).

Signature-based detection and behavior-based detection are the most traditional way of

finding malware. In the signature-based detection technique, the model tries to detect the

malware by analyzing known signature patterns. In the behaviour-oriented detection method,

the model monitors the application or files, and when an unusual behaviour appears, it is

tagged as malware. But nowadays, the malware is changing its pattern and behaviour to avoid

detection by signature-based systems. Also, these traditional models can’t detect zero- day-

attacks. Advanced deep learning architecture helps to overcome these problems (Prakash

Niraj & Tiwari, 2022).

Image-based malware detection offers a new approach to detecting malicious software by

turning malware binaries into grayscale images. It reveals unique visual patterns and textures

that are common to various malware families. This technique advances computer vision and

deep learning. In particular, convolutional neural networks (CNN) have distinct advantages

over traditional signature detection methods in analyzing these patterns and classifying

malware efficiently. Visual detection is more robust against obfuscation and kaleidoscope

malware. Since visual features are usually preserved even after changes in the underlying

code, it achieves high accuracy. It also takes advantage of the scalability and performance of

modern CNN architectures, making it a promising solution in terms of

precision(Venkatraman, Alazab, & Vinayakumar, 2019).

This project focuses on implementing a deep learning-based malware detection system using

three state-of-the-art architectures: XceptionNet, EfficientNet, and ResNet50. Our

modification of the approach leverages convolutional neural networks to extract complex

features that distinguish Malicious files from harmless files(Saxe & Berlin, 2015). The

dataset used is the Malevis_split dataset, which is a comprehensive collection of malware

samples. They are processed and analyzed using Python libraries such as Pandas and NumPy.

The models were trained and tested in Google Collab using GPU capabilities to speed up

computation. The performance of each model is evaluated using metrics such as precision,

precision, recall, and F1 score, allowing comparative analysis of their ability to detect

malware. This study aims to support the development of improved malware detection

techniques that can effectively identify different types of malwares. At the same time, it

addresses the limitations of traditional methods. This project provides insights to improve

cyber security defenses by exploring the application of deep learning architectures.

3

1.1 Research Problem

The research aims to answer how efficiently detect image-based malwares using deep

learning models to achieve high accuracy.

1.2 Objectives

1. Develop an image-based deep learning model to detect malwares.

Develop and train deep learning model capable of accurately identify the malwares.

Explore modern CNN architectures like XceptionNet, EfficientNetB0, and ResNet50

to identify malware patterns in grayscale images. Prepare the dataset and make it

suitable for training the model.

2. Enhance the early detection capabilities using CNN architectures.

Design a model which has the ability to detect malwares as soon as possible since the

malwares spreads rapidly that leads to the corruption of the system.

3. Optimize model performance.

Fine-tune the chosen deep learning models to improve their sensitivity, specificity,

and overall performance.

4. Compare the models to identify the best model for malware detection.

The architectures such as Xception, EfficientNetB0, and ResNet Models will be

evaluated for their efficiency in classifying malware.

1.3 Challenges

1. Quality and quantity of data

For deep learning architectures, the model performance is based on the quality and

quantity of the training dataset. The data should also be balanced. So, obtaining a

sufficient and efficient dataset is challenging.

2. Computational resource

The project tries to compare three CNN architectures, which are built using multiple

layers, which leads to a high computational cost.

3. Model Complexity

Deep learning models, specifically advanced architectures, are very complex in

structure and are difficult to interpret.

4. Model evaluation

Accurate evaluation of model performance with representative datasets to ensure

reliability and generalizability.

5. Scalability

Regularly updating the model with new data and evolving malware trends ensures it

remains relevant and accurate.

4

Figure 1: System Diagram

5

2 Related Work

2.1 Traditional Malware Detection Methods

Traditional malware detection techniques mainly include signature-based malware detection

mechanisms, behavior-based malware detection, and heuristic-based malware detection

techniques. (Tahir, 2018) detailly reviewed malware types and compared various malware

analysis and detection techniques. The research presented three major malware detection

techniques: signature-based, heuristics-based, and specification-based. While comparing

these techniques, it is noted that signature-based detection methods are good at detecting

known malware with fewer resources. At the same time, heuristic and specification-based

detection methods can also detect new and unknown malware. Still, with the heuristic-based

approach, false positives are high and need more resources. The issue with the specification-

based detection approach is developing the specification data of the legitimate program,

which is a time and space-consuming process. (Venugopal & Hu, 2008) described signature-

based malware detection, specifically the signature matching method, with less memory

usage and fast scanning speed. This approach could obtain stable virus features using many

virus samples, but it is not efficient in detecting unknown viruses. (Abiola & Marhusin, 2018)

developed a detection model by extracting the signatures of the Brontok worms and used an

n-gram technique to break down the signatures. This process makes removing redundancies

between the signatures of the different types of Brontok malware easier. Hence, it was used

in this study to accurately differentiate between the signatures of both malicious and normal

files. This method fails against zero-day attacks. (“Research Commons,” 2019) discussed

behavior-based approaches to ransomware detection. The research combined three Indicators

of Compromise (IoC): file changes, file entropy, and canary file. Compared to signature-

based detection techniques, this approach is less resource-intensive. However, the paper

addressed some difficulties in handling a special type of ransomware called Petya. Martina.

(Lindorfer, Kolbitsch, & Milani Comparetti, 2011) implemented a system called Disarm:

Detecting Sandbox-AwaRe Malware, which detects differences in behaviour regardless of

their cause. This allows us to discard specious differences in behaviour and identify

“environment-sensitive” samples that exhibit semantically different behaviour. Any

monitoring technology that can detect persistent changes to the system state at the operating

system level can take advantage of this technique.

2.2 Modern Malware Detection Techniques

This includes malware detection based on machine learning models and deep learning

models, which gave better results than traditional techniques. (Firdausi, lim, Erwin, &

Nugroho, 2010) analysed five machine learning techniques for malware detection. The

classifiers used in this research are k-Nearest Neighbors (kNN), Naïve Bayes, J48 Decision

Tree, Support Vector Machine (SVM), and Multilayer Perceptron Neural Network (MlP).

Their study showed that these classical machine learning methods could effectively classify

malware based on features extracted from system behaviour but accurate feature selection is

very important to ensure the model accuracy. In the paper prepared by (Narayanan &

Davuluru, 2020) three different approaches are studied to classify malware programs based

6

on different file formats including CNN-based approach for classifying malware

compiled files after visualizing them as images, a Recurrent Neural Network (RNN)-

based approach for classifying malware assembly files, and an ensemble approach of

combining the features extracted using CNN and RNN techniques and later classifying them

either using logistic regression or SVM. Representing malware programs both in terms of

compiled and assembly-level files helped overcome a lack of information present in either of

those file types. (Saxe & Berlin, 2015b) presented a malware detection system based on a

deep neural network. Here, they used a convolutional neural network to detect the binary

values by converting them into images. This approach achieves good accuracy with a low

false positive rate. However, it is noted that the model's performance depends upon the

quantity and quality of the training dataset. The model also wanted high computational

resources. (Jha, Prashar, Long, & Taniar, 2020) developed a Recurrent Neural network model

to detect malware. The research paper also measured the performance of RNN using three

feature vectors such as “hot encoding feature vector,” “random feature vector,” and

“Word2Vec feature vector”. They concluded that RNN with Word2Vec feature vector

performed well. However, this approach takes a comparatively long time to identify the

malware. (Mathew & M. A. Ajay Kumara, 2019) Proposed RNN- Long-Short-Term Memory

(LSTM) model to learn from the most informative of sequences from the API dataset based

on their relative ranking based on Term Frequency-Inverse Document Frequency (TF-IDF)

recommended features.

2.3 Advanced Malware Detection-Deep Neural Network Architecture

with Transfer-Learning Techniques
 (Haque, Jahin, Labiba Ifrit, Sheikh, Mahmud, & Tasnia, 2024b) presented six Convolutional

Neural Network (CNN) models that were utilized, with “InceptionResNetV2 exhibiting the most

promising performance. InceptionResNetV2 amalgamates the strengths of two established

models: Inception, which is focused on determining computational cost, and ResNet, which

prioritizes computational accuracy. Other CNN architectures used in this paper include Inception

ResNetV2, DenseNet, VGG16, ResNet50, EfficientNetB0, and XceptionNet. (Raman Kumar,
2022) proposed an IVMCT framework for the multi-class classification of malware using

transfer learning on the MalIimg dataset. In the IVMCT framework, 3 pre-trained models are

selected: ResNet, AlexNet, and DenseNet. The pre-trained models are trained in some domains,

and the models' weights are adjusted accordingly. These models are extended in other domains

as well with fewer number resources, and time is also consumed less. (Aslan & Yilmaz, 2021)
proposed a hybrid model by optimally combining two well-known pre-trained network models,

Alexnet and Resnet, and the method is evaluated on Malimg, Microsoft BIG 2015, and Malevis

datasets. Here, the suggested hybrid model is first compared with each individual model

separately. This method showed the best accuracy, but a minority of malware samples could not

be classified correctly because those malware variants used advanced code obfuscation

techniques, which is a limitation. (Naeem et al., 2020) designed an architecture that used a

methodology that integrates malware visualization into the DCNN model for detecting malicious

activities in the Industrial Internet of Things (IIoT) environment. After converting APK files to

colour images by malware visualization technique, DCNN model extracted the malware's

dynamic image features and classified them.

7

The model’s accuracy is higher than the previous machine learning techniques (Yadav,

Menon, Ravi, Vishvanathan, & Pham, 2022) Developed EfficientNet-B4, a CNN-based

architecture to detect Android malware using image-based malware representations of the

Android DEX file. EfficientNet-B4 extracts relevant features from the malware images.

These features are then passed through a global average pooling layer and fed into a softmax

classifier. The proposed method obtained an accuracy of 95.7% in the binary classification of

Android malware images, which shows the model’s robustness.

Table 1: Comparison of articles

Title Methodology Limitation

A study on malware and malware

detection techniques

Signature-based, Heuristic-

based, Specification-based
Prone to unknown malware

patterns, High false positive rate

Efficient signature-based malware

detection on mobile devices

Signature matching method Not efficient in detecting

unknown malware patterns

Signature-based malware detection

using sequences of N-grams

Signature-based, N-grams

techniques

Fails against zero-day

attacks

Behaviour-based ransomware

detection
Behaviour-based approach Faced difficulties in detecting

the special type of ransomware

called Petya

Detecting environment-sensitive

malware

Behaviour-based approach Need frequent monitoring

Analysis of machine learning

techniques used in behavior-based

malware detection

k-Nearest Neighbors (KNN),

Naïve Bayes, J48 Decision

Tree, Support Vector

Machine (SVM), and

Multilayer Perceptron

Neural Network (MLP)

Accurate feature selection is a

challenge

Ensemble malware classification

system using deep neural networks

CNN, RNN, Ensemble

learning

the computational resource is

needed

Deep neural network-based malware

detection using two-dimensional

binary program features

CNN Model performance depends on

the quantity and quality of

training data. The high

computational resource is

needed

Recurrent neural network for

detecting malware

RNN, hot encoding feature

vector, random feature

vector, and Word2Vec

feature vector

Take comparatively a long time

to identify those malwares.

8

API call-based malware detection

approach using a recurrent neural

network— LSTM

RNN-Long-Short-Term

Memory (LSTM)
The current feature selection is

only done using the TF-IDF

technique. Other feature

selection techniques, such as

Chi-square, Fisher’s score, and

combinations, are also noted.

MalFam: a comprehensive study

on malware families with state-of-

the-art CNN architectures with

classifications and XAI

Inception, ResNetV2,

DenseNet, VGG16,

ResNet50, EfficientNetB0

and XceptionNet

Mapping) or Integrated

Gradients can provide more

Detailed and accurate analysis

compared to LIME

IVMCT: Image visualization-

based multiclass malware

classification using transfer

learning

ResNet, Alexnet and

DenseNet

Incapable of detecting zero-

day malware or obfuscated

malware.

A new malware classification

framework based on deep

learning algorithms.

Alexnet and Resnet Prone to advanced code

obfuscation techniques

Malware detection in industrial

Internet of Things based on

hybrid image visualization and

deep learning model.

DCNN

EfficientNet convolutional neural

networks-based Android malware

detection

EfficientNet-B4

9

2.4 Identified Gap

The works related to this project topic can divided into three: Traditional malware detection

methods, modern methods to detect malware, and advanced malware detection using deep

learning architectures. These papers show the need of employing deep neural network

architectures for detecting malwares. The feature extraction process is done manually using

modern techniques, whereas these advanced architectures automatically identify and extract

features from the data. Advanced architectures like EfficientNet, ResNet, and XceptionNet

recognize hidden patterns in the data through hierarchical learning that helps to identify

newly born malware, but the former struggle to detect these newborn malwares. Since these

architectures are pre-trained on large datasets, the amount of the training data needed is less

compared to traditional machine learning models. Since Deep learning architecture

generalizes from training data, it makes it suitable for effective detection of zero-day attacks

where the traditional methods fail.

In case of accuracy, the three models- EfficientNet, ResNet, and XceptionNet- give the same

accuracy. If lightweight and speed are priorities, go with EfficientNetB0 or EfficientNetV2.

They offer a smaller model size and better inference speed, making them ideal for

deployment in environments with limited resources. If you prioritize robustness and don't

mind a larger model, ResNet50 is a solid, well-established choice.

2.5 Why this project Approach

Image-based malware detection techniques have shown superior capabilities in analyzing and

classifying malicious software by transforming binaries into visual representations. This

allows leveraging advanced deep learning methods such as CNNs and transformers to detect

sophisticated evasion tactics like obfuscation and polymorphism (Basak & Han, 2024). The

effectiveness of deep learning models such as ResNet, EfficientNet, and Xception in image

classification has been widely recognized in the literature. These architectures are good at

recognizing complex patterns in images. This makes it suitable for malware detection tasks.

In addition, the image-based method allows for scalability; once it is trained. Studies utilizing

CNNs with architectures like ResNet-152 or Vision Transformers (ViT) report high accuracy

(up to 99.62%) in classifying malware using features derived from pixel intensities, further

validating the robustness of this method (Ashawa, Nsikak Owoh, Hosseinzadeh, & Osamor,

2024). The availability of datasets such as Malevis_split increases the feasibility of this

approach. The dataset provides structured, high-quality data for training and validation. This

facilitates experimentation with modern architecture. These points highlight why image-

based malware detection is an advanced, reliable, and forward-looking solution for malware

research. And why was it chosen for this project.

To create a detailed guide for developing a malware detection model from the ground up, the

following steps are outlined, the first step is crucially preparing the dataset. This process starts

with gathering an appropriate dataset, such as the Malevis_split dataset, which includes various

labeled malware and benign samples. These binaries are then converted into grayscale or color

images for further examination. Image normalization and resizing (for example, 224x224 pixels

10

for models like ResNet50 or EfficientNetB0) ensure that they are compatible with the chosen

architectures. Finally, the dataset is partitioned into training, validation, and test subsets to

allow for a thorough evaluation process. The next phase involves choosing a suitable model

architecture. Pre-trained models, such as ResNet50, EfficientNetB0, and XceptionNet, are

particularly well-suited for image-based malware detection. These architectures make use of

transfer learning, taking advantage of the features, they have learned from large datasets to

identify significant patterns in malware images. The third phase centers on the model training.

Training begins by locking the base layers of the pre-trained models to preserve their learned

features, after which custom layers designed for malware classification are appended. Loss

functions such as categorical cross-entropy or binary cross-entropy, combined with optimizers

like Adam, enable effective model training. Performance metrics, including accuracy,

precision, recall, and AUC, are tracked to ensure steady improvement. In the subsequent

evaluation and deployment phases, the model's effectiveness is assessed and readied for real-

world use. During testing, metrics like false positives and false negatives are analyzed in detail,

while the model is optimized for use in resource-limited settings through methods such as

pruning or converting to lighter formats like TensorFlow Lite. Lastly, continuous enhancement

is essential to this strategy. Regular retraining with the latest malware samples and frequent

error analysis is crucial for preserving the model's effectiveness against changing malware

behaviors, particularly for zero-day threats.

3 Research Methodology

Figure 2: Proposed dataflow diagram

11

3.1 Dataset Overview

This research uses a standard dataset named Malevis_split, which is taken from Kaggle, a

publicly available platform for downloading various datasets. It consists of grayscale images
of various malware, and the dataset contains 26 types of malwares.

Why image-based dataset

Converting malware binaries to grayscale images helps to identify unique patterns and
textures for different malware families. This binary visualization method improves detection

by exploiting confusingly flexible image features. Although malware authors attempt to
change the binary to avoid traditional detection, the visual patterns often remain. This makes

the image-based method more robust and advances in computer vision and deep learning
architectures such as ResNet, EfficientNet, and Xception offer powerful tools for images

classification that can be used for highly accurate malware detection. Once the models are

trained It provides scalability by efficiently classifying malware without the need for real-
time binary analysis.

3.2 Data Preprocessing

Data preprocessing includes balancing and shaping image data. Data imbalanced means some
categories have a large number of data points. It is necessary to balance data for better

performance. So here, the category with a large number of data points is removed. The
dimension of all images in the dataset is (224, 224, 3). To make the input of CNN

architectures, pass the shape as (200, 200, 3).

3.3 Evaluation Metrics

It is very important to assess the results of a work. There is different evaluation metrics are

there to measure the performance of machine learning models. Accuracy, Precision, F1
Score, Recall are some popularly used techniques (GeeksForGeeks, 2018)

Confusion matrix:

A confusion matrix sums up the performance of a model on a set of test data. It displays the
model's prediction performance by showing the count of correct and incorrect predictions. It

contains the values called true positive, true negative, false positive and false negative.[18]

 Figure 3: Confusion Matrix

12

• True Positive (TP): It is the number of correctly predicted positive outcome. That is the

predicted value and the actual value is positive (GeeksForGeeks, 2018).

• True Negative (TN): It is the number of correctly predicted negative outcome. That is

the predicted value and actual value is negative (GeeksForGeeks, 2018).

• False Positive (FP): It shows the number of incorrectly predicted positive outcomes.

That is the model predicted the value as positive but actually it is negative.it is also

known as a Type I error (GeeksForGeeks, 2018).

• False Negative (FN): It shows the number of incorrectly predicted negative outcomes.

That is the model predicted the output as negative but actually it is positive.it is also

known as a Type II error (GeeksForGeeks, 2018).

Accuracy

It is a fundamental metric to measure the potential of a model which helps to understand how

the model performs in terms of correct predictions. This is a calculation of the ratio between

correct number of predictions and total number of input data (GeeksForGeeks, 2018).

• Equation 1

Precision

Precision is another metric that measures model’s performance in terms of how many of the
positive predictions made by the model are actually correct. It is the ratio of the number of

true positive predictions to the sum of true positive and false positive
predictions(GeeksForGeeks, 2018).

• Equation 2

Recall

Recall measures the model's sensitivity by determining the percentage of actual positive cases

that were accurately predicted as positive. Dividing the number of true positives by the
number of positive instances calculates recall (GeeksForGeeks, 2018).

• Equation 3

F1 Score

F1-score is helpful to measure the overall performance of a classification model. It is the

harmonic mean of precision and recall (GeeksForGeeks, 2018).

13

• Equation 4

4 Design Specification

The CNN architectures used here are Xception, EfficientNetB0 and ResNet50. These are

pretrained CNN models- where a model is trained on large dataset- which are used in image

classification tasks. The learning using pretrained model to new task is called transfer

learning.

4.1 XceptionNet

Xception, developed by Francois Chollet in 2017, is a deep convolutional neural network

known for its novel feature learning. It uses depth-separable convolutions, which decompose

standard convolutions into depth and pointwise convolutions. In particular, a spatial

convolution is performed independently on each channel of an input, followed by a pointwise

convolution (1x1 convolution) that projects the channels output by the depth convolution to a

new channel space. This unique design reduces the number of parameters while maintaining

significant performance. It consisted of 36 convolutional layers organized into 14 modules.

All modules except the first and last have linear residual connections around them (Chollet,

2017).

4.2 ResNet50

ResNet50 is a powerful deep convolutional neural network architecture (Rezende, Ruppert,

Carvalho, Ramos, & de Geus, 2017). It is the short form of Residual Networks. learn residual

functions with reference to the layer inputs, instead of learning unreferenced functions.

Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual

nets let these layers fit a residual mapping (Rezende, Ruppert, Carvalho, Ramos, & de Geus,

2017). ResNet50 consists of 50 layers and features an innovative use of residual blocks,

which allows the network to skip connections and mitigate the vanishing gradient problem

during training. This design facilitates the training of very deep networks, enabling better

performance in various computer vision tasks. The ResNet family includes several versions

like ResNet-50, ResNet-101, and ResNet-152, with increasing depth. The "50," "101," etc.,

indicate the number of layers, allowing researchers to select models based on their

computational constraints.

14

4.3 EfficientNet

EfficientNet is a family of neural network architectures that were introduced by Google AI

researchers in 2019. EfficientNet aimed to create a highly accurate and efficient model in

terms of computational resources. Efficient Net achieves this Balance by using a

Combination of three Main Techniques - Compound Scaling, Efficient Channel Attention,

Neural Architecture Search. Efficient Net uses a compound scaling method, which scales the

neural network in a uniform manner in all three dimensions - depth, width, and resolution.

This approach involves using a compound coefficient that uniformly scales the neural

network's depth, width, and resolution. This allows for much more efficient use of

computational resources, leading to higher accuracy with less computing power

(“EfficientNet: A Breakthrough in Machine Learning Model Architecture - Javatpoint,”

2024-b). Width scaling involves increasing the number of channels in each convolutional

layer of the network. This increases the capacity of the network to learn more complex

patterns in the input data. Depth scaling involves adding more convolutional layers to the

network. This allows the network to learn more abstract and complex features from the input

data. Resolution scaling involves increasing the size of the input images. This allows the

network to capture more fine-grained details in the input data, which can be particularly

important for object detection and segmentation tasks. This approach involves using a

compound coefficient that uniformly scales the neural network's depth, width, and resolution.

This allows for much more efficient use of computational resources, leading to higher

accuracy with less computing power.

4.4 Fine-tuning

Fine-tuning is the process of taking a pre-trained language model and adapting it to perform a

particular task or set of tasks. It bridges the gap between a general-purpose language model

and a specialized AI solution. Fine-tuning addresses the issue of adaptability.

Fine-tuning is the process of taking a pre-trained model and training it using a similar dataset.

This method is used to adopt an already created model for solving another similar problem.

Without beginning the training process over, the objective is to maximize the model's

performance on a novel, related task. During the process, the architecture of the model will

not be affected. The objective is to use the model's valuable characteristics and

representations gained from the large dataset on which it was initially trained and adapt them

to a narrower job. It bridges the gap between a general-purpose language model and a

specialized AI solution. Fine-tuning addresses the issue of adaptability (IBM, 2024b). Fine-

tuning can be done through modifying different types of model parameters. Modifying layers

of pre-trained models, unfreezing layers of pre-trained models, modifying parameters like

learning rate, batch size are some techniques that are used in fine-tuning process.

15

A pre-trained model can be fine-tuned to perform better with little further training by

adapting it to a particular job or domain. Because the model doesn't have to learn from start,

fine-tuning saves time and computational resources by utilizing the model's current

knowledge. In specialized domains, such as modifying a language model to comprehend

medical writings, assessing sentiment in financial papers, or categorizing images in

disciplines like radiology, it improves performance. Because the model may build on its

general, previously learned understanding and concentrate exclusively on fine-tuning details

pertinent to the new task, fine-tuning is particularly helpful when we have little task-specific

data. With this approach, we can produce specialized, extremely accurate models quickly and

adaptably for a wide range of uses. It can be quite costly and time-consuming to train a deep

learning model from start. Contrarily, fine-tuning enables us to improve upon a model that

has already been trained, thus cutting down on the time and resources needed to provide

quality results.

In this project the fine-tuning process starts with initialization, where the pre-trained model,

training data, validation data, and other parameters are set. The pre-trained model's layers are

divided into two parts: the initial layers, which are frozen, and the later layers, which are

trainable. The frozen layers retain the general features learned from the large dataset, while

the trainable layers adapt to the new malware classification task. Additional layers are added

to the pre-trained model to improve its representation and classification capabilities. These

layers include a flatten layer, fully connected layers with dropout (if regularization is

applied), and a final dense layer with a softmax activation function. The updated model is

compiled with an optimizer (Adam), a loss function (categorical cross-entropy), and

evaluation metrics (accuracy, AUC, false positives, precision, and recall). The model is

trained on the training data with validation on the validation data. Early stopping is applied to

prevent overfitting, and the best weights are restored to ensure optimal performance.

The fine-tuning process leverages the pre-trained model's general features and adapts the later

layers to learn task-specific patterns for malware classification. The regularization option

helps avoid overfitting, especially with small datasets. This approach efficiently adapts the

pre-trained model for malware image classification while maintaining generalization and

avoiding overfitting.

5 Implementation

5.1 System Specification

The current experiment was conducted using Google Colab, which provided enhanced

computational resources for model training.

The three CNN architectures – Xception, EfficientNetB0 and ResNet50 – have been

implemented and their respective confusion matrix and classification reports were obtained.

The classification report contains evaluation metrics such as accuracy, precision, recall and

f1-score which helps to analyse the performance of the model. Finally, a comparison study of

three models have been performed in the basis of efficiency, model size and computational

resources.

16

5.2 Dataset description

The dataset is taken from Kaggle which is a publicly available platform to download various

datasets. It consists of grayscale images of malware classes in PNG format. There are 26 type

malwares namely “Adposhel, Agent, Allaple, Amonetize, Androm, Autorun, BrowseFox,

Dinwod, Elex, Expiro, Fasong, HackKMS, Hlux, Injector, InstallCore, MultiPlub,

Neoreklami, Neshta, Other, Regrun, Sality, Snarasite, Stantinko, VBA, VBKrypt, Vilsel”.

Figure 4: Sample of Malware types

5.3 Package Installation

A small number of libraries that are used in this project

are:

• OS: Module used to interact with file systems.

• TensorFlow: Module used for model training and

transfer learning

• Sklearn: Module used for model evaluation and

selection

• Matplotlib, Seaborn: Modules used for data

visualization

•
 Figure 5: Malware class frequency

17

5.4 Training Stage

Data Preprocessing

Figure 5 shows image counts that belongs to each malware classes. It is obvious that the class

named ‘other’ have large amount of data compared to other classes. It results an imbalance

dataset. It should have to remove this imbalance to make good and accurate model’s results.

So here, the class named ‘other’ was removed to make a balanced dataset. In figure 6 the

dataset is balanced.

 Figure 6: Balanced dataset - class frequency

6. Evaluation

This section comprehensively assesses three CNN-based models—XceptionNet, EfficientNetB0, and

ResNet50 used for malware detection. The analysis centers on their classification performance among

24 malware types and incorporates essential metrics such as accuracy, precision, recall, and F1-score.

Furthermore, the confusion matrices shed light on each model's ability to differentiate between various

malware families, showcasing strengths and identifying areas for improvement. Lastly, the models are

evaluated regarding efficiency, computational resource demands, and robustness, providing

recommendations.

6.1 Case Study 1: Model evaluation - ‘XceptionNet’

XceptionNet recorded an impressive overall accuracy rate of 96%, showcasing its capability

in malware detection. The classification report indicates consistently strong performance

across the majority of malware categories, with macro-averaged precision, recall, and F1-

scores standing at 0.96, 0.95, and 0.95, respectively. These figures suggest a well-balanced

model that can provide dependable results with minimal false positives and false negatives.

Certain categories, including Adposhel, HackKMS, and Regrun, display near-perfect

precision and recall values of 1.00, underscoring the model's robustness and dependability in

identifying these malware families.

18

However, some classes, such as Neshta and Sality, show lower recall values of 0.85 and 0.75,

respectively. These decreased scores imply that the model struggles to accurately identify all

samples from these families, leading to false negatives. The confusion matrix illustrates these

challenges, revealing that some samples of Neshta were misclassified as belonging to other

families. Similarly, Sality has a higher incidence of misclassification, with off-diagonal

elements highlighting confusion with other malware types. These difficulties may arise from

overlapping feature distributions between Sality, Neshta, and other families or inadequate

representation of these categories in the training set.

A significant finding from the confusion matrix is the prevalence of diagonal elements, with

most categories achieving correct classifications approaching 100. For example, family 1

achieved 99 correct classifications, while family 10 reached 100 correct classifications,

reflecting the model's strong capability to differentiate between malware families.

Nevertheless, off-diagonal elements for certain families, such as family 2, reveal

misclassifications into families 3, 4, or 5, indicating potential areas for enhancing feature

differentiation. Future improvements, such as more advanced feature extraction methods or

class-specific data augmentation, could help mitigate these challenges.

Figure 7: Classification report of xception model Figure 8: Confusion matrix of Xception model

19

6.2 Case Study 2: Model evaluation – ‘EfficientNetB0’

EfficientNetB0 emerged as the leading model, achieving the highest overall accuracy of 96%

among the three architectures tested. The macro-averaged precision, recall, and F1-scores closely

match those of XceptionNet, demonstrating consistent and reliable performance across all malware

types. Importantly, the model shows exceptional performance in detecting difficult malware

families, attaining perfect scores for categories like Adposhel and Neorekclami, with both precision

and recall at 1.00. These findings highlight the model's robustness and its capability to effectively

handle well-represented categories.

However, EfficientNetB0 does display slightly lower precision and recall for specific families, such

as Injector. The metrics for this category reflect some level of misclassification, likely due to

overlapping features with other families. The confusion matrix also shows that while most

predictions align along the diagonal, a few off-diagonal entries point to misclassifications. For

example, Injector sometimes overlaps with Automation and other categories, resulting in lower

precision and recall scores relative to the best-performing classes.

The lightweight design and computational efficiency of EfficientNetB0 make it especially well-

suited for use in real-time malware detection systems or scenarios with limited resources. Its

capability to sustain high recall scores across most categories, particularly challenging ones,

emphasizes its usefulness for applications where reducing false negatives is crucial.

Figure 9: Classification report of

 EfficientNetB0 model Figure10: Confusion matrix of EfficientNetB0 model

20

6.3 Case Study 3: Model evaluation – ‘ResNet50’

The classification report in figure11 shows an overall accuracy of 95% across 2485 samples.

Most classes have high precision, recall, and F1-scores, indicating balanced performance.

However, classes like "Sality" (F1-score: 0.79) and "Injector" (F1-score: 0.89) have slightly

lower scores, indicating some room for improvement. Macro and weighted averages for

precision, recall, and F1-score are consistent at 0.95, reflecting strong overall model

performance. The model demonstrates reliable predictions with minor misclassifications in a

few specific classes. The confusion matrix in figure12 indicates accurate predictions with

most values concentrated along the diagonal. Diagonal elements are close to 100, confirming

strong performance for individual classes. Non-diagonal elements are sparse, highlighting

minimal misclassifications. Classes like 1 and 20 show slightly higher misclassifications

compared to others. Overall, the model demonstrates consistent and reliable classification.

Figure 11: Classification report

of ResNet50 model Figure 12: Confusion matrix of ResNet50 model

21

6.4 Case Study 4: Model Comparison

Figure 13: Evaluation metrics comparison

Figure 13 compares various classification metrics accuracy, precision, recall, and F1-score

across three CNN models: XceptionNet, EfficientNetB0, and ResNet50, evaluated using the

Malevis dataset. Each bar indicates the value of the corresponding metric for a specific model,

offering a concise summary of its performance.

• XceptionNet: This model records an accuracy of 95%, precision of 95%, recall of 95%,

and an F1-score of 95%, illustrating steady and balanced performance in all metrics.

• EfficientNetB0: This model slightly surpasses XceptionNet with an accuracy of 96%,

precision of 96%, recall of 96%, and an F1-score of 96%. These outcomes emphasize

EfficientNetB0's strength and capability to classify malware effectively with minimal

errors.

• ResNet50: Like XceptionNet, ResNet50 achieves an accuracy of 95%, precision of

95%, recall of 95%, and an F1-score of 95%, indicating competitive performance but

falling slightly behind EfficientNetB0 in overall metrics.

EfficientNetB0 is the top-performing model, obtaining the highest scores across all metrics.

This comparison illustrates that while all models perform strongly in malware classification

tasks, EfficientNetB0 offers a slight edge in accuracy, precision, recall, and F1-score.

22

Figure 14: Comparison of training performance of models

The graphs present a comparison of the performance of three models — XceptionNet, EfficientNetB0,

and ResNet50 based on various metrics using the validation set from the Malevis dataset. The metrics

displayed are as follows:

1. Validation Loss: Initially, XceptionNet shows a validation loss that is significantly higher

than that of EfficientNetB0 and ResNet50 but stabilizes after several epochs. ResNet50

consistently exhibits the lowest loss throughout the entire training process.

2. Validation Accuracy: ResNet50 reliably achieves the highest accuracy, closely followed by

EfficientNetB0. XceptionNet starts with lower accuracy but shows improvement as the epochs

progress.

3. Validation AUC: Each of the three models attains a high AUC, with ResNet50 marginally

surpassing the others, which indicates strong discrimination ability.

23

4. Validation False Positives: In the early stages, XceptionNet experiences a rise in false

positives, whereas ResNet50 maintains the lowest rate of false positives, demonstrating greater

robustness in this area.

5. Validation Precision: ResNet50 consistently achieves the highest precision rate, trailed by

EfficientNetB0, while XceptionNet shows gradual improvement after the initial epochs.

6. Validation Recall: Both ResNet50 and EfficientNetB0 display high recall values, whereas

XceptionNet starts with a lower recall but progressively improves over time.

6.5 Discussion

The classification results of XceptionNet, EfficientNetB0 and ResNet50 in the malware

detection task provide detailed insights into their strengths and weaknesses based on metrics
such as accuracy, precision, recall, and F1 score. EfficientNetB0 achieved a maximum

accuracy of 96%, outperforming both Xception and ResNet50, which also achieved 95%

accuracy. This slight advantage gives EfficientNetB0 the most balanced model for malware
classification tasks especially for imbalanced data sets.

Xception performs well, with balanced precision and recall between classes. This makes it

ideal for consistent classification tasks. Its strengths lie in high precision for specific malware

types. This ensured fewer false positives. However, it had difficulty remembering
challenging categories such as Nesta and Sality, where its performance was slightly lower.

EfficientNetB0, with an optimized architecture, exhibits best-in-class recall in most classes.

This makes it highly reliable in detecting hard-to-classify malware. F1 scores are consistently

high, especially for difficult classes. This proves suitable for unbalanced datasets; however, it
shows slightly reduced accuracy for classes such as injectors and automation. This indicates a

susceptibility to false positives in some cases.

ResNet50 has excellent accuracy. This is especially true for important, high-risk malware

classes such as Amonetize and HackKMS, making it ideal for applications where reducing
false positives is important. However, recall is low for some classes, such as Sality and

Autorun. This may limit its usefulness in situations where recall is emphasized. In terms of
performance, EfficientNetB0 has become the most lightweight computationally efficient

model.

24

7 Conclusion and Future Work

This project investigates malware detection using three advanced deep learning architectures:
XceptionNet, EfficientNetB0, and ResNet50. The primary goal is to identify the most

effective model for malware classification. Research objectives Include Evaluating these
models on the malware dataset, analysing precision, recall, F1 score, etc., and determining

the suitability of models for various use cases. These objectives were successfully achieved,

with EfficientNetB0 emerging as the most efficient and balanced model overall.

EfficientNetB0 Demonstrated the highest accuracy (96%) and superior recall. This makes it

ideal for situations involving imbalanced datasets. Xception demonstrates consistent
performance with balanced precision and recall, ideal for detecting general malware.

ResNet50 has excellent precision for critical high-risk malware categories, minimizing false
positives. However, both Xception and ResNet50 struggle with challenging classes such as

"Sality" and "Neshta", highlighting several issues for further optimization

These findings have important implications for cyber security especially for designing
efficient, accurate, and adaptive malware detection systems. The model's strengths and

limitations highlight the need for tailored solutions. It depends on whether precision, recall,
or computational efficiency is prioritized. Study's reliance on malware datasets. Although it is

strong, but it shows limitations as a single dataset may not fully reflect the reality - the
diversity of malware around the world.

7.1 Future work

This research lays a solid foundation for the benefits of deep learning in malware detection.

Future work could focus on expanding the dataset to include a variety of real-world

examples. This will improve the durability and general appearance of the model. Developing

an ensemble method that combines the strengths of Xception, EfficientNetB0, and ResNet50
can also increase overall performance which is especially good for challenging

classifications. Real-time planning is another important area for exploration, which is
research into optimizing these models for real-time malware detection systems. Especially in

resource-constrained environments, such as mobile or edge devices, it may greatly increase

its practical utility.

Finally, the commercial potential is also significant. A lightweight and powerful framework

that uses EfficientNetB0 could be developed for industries that need a scalable malware
detection solution. This work, therefore, lays a strong foundation for improving the future of

malware detection, highlighting practical applications and opportunities for further academic
exploration.

25

References
[1] Tahir, R. (2018). A Study on Malware and Malware Detection Techniques. International Journal of Education and

Management Engineering, 8(2), 20–30. Available at https://doi.org/10.5815/ijeme.2018.02.03

[2] Venugopal, D., & Hu, G. (2008). Efficient Signature Based Malware Detection on Mobile Devices. Mobile

Information Systems, 4(1), 33–49. Available at https://doi.org/10.1155/2008/712353

[3] Abiola, A. M., & Marhusin, M. F. (2018). Signature-based malware detection using sequences of N-grams. Int. J.

Eng. Technol, 7(4), 120-125.

[4] Chew, C. J., & Kumar, V. (2019). Behaviour based ransomware detection.

[5] Lindorfer, M., Kolbitsch, C., & Milani Comparetti, P. (2011). Detecting Environment-Sensitive Malware. Lecture

Notes in Computer Science, 338–357. Available at https://doi.org/10.1007/978-3-642-23644-0_18

[6] Firdausi, I., Lim, C., Erwin, A., & Nugroho, A. S. (2010, December 1). Analysis of Machine Learning Techniques

Used in Behavior-Based Malware Detection. Available at https://doi.org/10.1109/ACT.2010.33

[7] Narayanan, B. N., & Davuluru, V. S. P. (2020). Ensemble Malware Classification System Using Deep Neural

Networks. Electronics, 9(5), 721. Available at https://doi.org/10.3390/electronics9050721

[8] Saxe, J., & Berlin, K. (2015b). Deep neural network-based malware detection using two dimensional binary

program features. 2015 10th International Conference on Malicious and Unwanted Software (MALWARE). Available

at https://doi.org/10.1109/malware.2015.7413680

[9] Jha, S., Prashar, D., Long, H. V., & Taniar, D. (2020). Recurrent Neural Network for Detecting Malware.

Computers & Security, 102037. Available at https://doi.org/10.1016/j.cose.2020.102037

[10] Mathew, J., & M. A. Ajay Kumara. (2019). API Call Based Malware Detection Approach Using Recurrent Neural

Network—LSTM. Advances in Intelligent Systems and Computing, 87–99. Available at https://doi.org/10.1007/978-3-

030-16657-1_9

[11] Haque, A. H., Jahin, Labiba Ifrit, Sheikh, K., Mahmud, T. S., & Tasnia, M. (2024). MalFam: a comprehensive

study on malware families with state-of-the-art CNN architectures with classifications and XAI. Bracu.ac.bd. id:

20101453

[12] Raman Kumar, M. G. (2022). IVMCT: Image Visualization based Multiclass Malware Classification using

Transfer Learning. Mathematical Statistician and Engineering Applications, 71(2). Available at

https://doi.org/10.17762/msea.v71i2.65

[13] Aslan, O., & Yilmaz, A. A. (2021). A New Malware Classification Framework Based on Deep Learning

Algorithms. IEEE Access, 9, 87936–87951. Available at https://doi.org/10.1109/access.2021.3089586

[14] Naeem, H., Ullah, F., Naeem, M. R., Khalid, S., Vasan, D., Jabbar, S., & Saeed, S. (2020). Malware detection in

industrial internet of things based on hybrid image visualization and deep learning model. Ad Hoc Networks, 105,

102154. Available at https://doi.org/10.1016/j.adhoc.2020.102154

[15] Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., & Pham, T. D. (2022). EfficientNet convolutional neural

networks-based Android malware detection. Computers & Security, 115, 102622. Available at

https://doi.org/10.1016/j.cose.2022.102622

[16] Basak, M., & Han, M.-M. (2024). CyberSentinel: A Transparent Defense Framework for Malware Detection in

High-Stakes Operational Environments. Sensors, 24(11), 3406–3406. Available at https://doi.org/10.3390/s24113406

[17] Ashawa, M., Nsikak Owoh, Hosseinzadeh, S., & Osamor, J. (2024). Enhanced Image-Based Malware

Classification Using Transformer-Based Convolutional Neural Networks (CNNs). Electronics, 13(20), 4081–4081.

Available at https://doi.org/10.3390/electronics13204081

https://doi.org/10.5815/ijeme.2018.02.03
https://doi.org/10.1155/2008/712353
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1109/ACT.2010.33
https://doi.org/10.3390/electronics9050721
https://doi.org/10.1109/malware.2015.7413680
https://doi.org/10.1016/j.cose.2020.102037
https://doi.org/10.1007/978-3-030-16657-1_9
https://doi.org/10.1007/978-3-030-16657-1_9
https://doi.org/10.17762/msea.v71i2.65
https://doi.org/10.1109/access.2021.3089586
https://doi.org/10.1016/j.adhoc.2020.102154
https://doi.org/10.1016/j.cose.2022.102622
https://doi.org/10.3390/s24113406
https://doi.org/10.3390/electronics13204081

26

[18] GeeksforGeeks, "Confusion Matrix in Machine Learning," GeeksforGeeks. Available at

https://www.geeksforgeeks.org/confusion-matrix-machine-learning

[19] Chollet, F. (2017). Xception: Deep Learning With Depthwise Separable Convolutions. Retrieved from

openaccess.thecvf.com website. Available at

https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html

[20] Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., & de Geus, P. (2017). Malicious Software Classification Using

Transfer Learning of ResNet-50 Deep Neural Network. 2017 16th IEEE International Conference on Machine Learning

and Applications (ICMLA). Available at https://doi.org/10.1109/icmla.2017.00-19

[21] “EfficientNet: A Breakthrough in Machine Learning Model Architecture - Javatpoint,” www.javatpoint.com.

Available at https://www.javatpoint.com/efficientnet-a-breakthrough-in-machine-learning-model-architecture

[22] IBM, “Fine Tuning,” Ibm.com, Mar. 15, 2024. Available at https://www.ibm.com/think/topics/fine-tuning

[23] THREATS IN CYBERSPACE. (2023). Retrieved January 25, 2025, from Google Books website. Available at

https://books.google.co.in/books?hl=en&lr=&id=EuzaEAAAQBAJ&oi=fnd&pg=PA2&dq=According+to+India%27s+

Cyber+Threat+Report+2023

[24] Aslan, Ö. A., & Samet, R. (2020). A Comprehensive Review on Malware Detection Approaches. IEEE Access,

8(1), 6249–6271. Available at https://doi.org/10.1109/ACCESS.2019.2963724

[25] Prakash Niraj, S., & Tiwari, A. (2022). Research Journal of Engineering Technology and Medical Sciences,

05(04), 2582–6212. Available at

http://www.rjetm.in/RJETM/Vol05_Issue04/Performance%20Analysis%20of%20Signature%20Based%20and%20Beh

avior%20Based%20Malware%20Detection.pdf

[26] Venkatraman, S., Alazab, M., & Vinayakumar, R. (2019). A hybrid deep learning image-based analysis for

effective malware detection. Journal of Information Security and Applications, 47, 377–389. Available at

https://doi.org/10.1016/j.jisa.2019.06.006

https://www.geeksforgeeks.org/confusion-matrix-machine-learning
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://doi.org/10.1109/icmla.2017.00-19
https://www.javatpoint.com/efficientnet-a-breakthrough-in-machine-learning-model-architecture
https://www.ibm.com/think/topics/fine-tuning
https://doi.org/10.1109/ACCESS.2019.2963724
http://www.rjetm.in/RJETM/Vol05_Issue04/Performance%20Analysis%20of%20Signature%20Based%20and%20Behavior%20Based%20Malware%20Detection.pdf
http://www.rjetm.in/RJETM/Vol05_Issue04/Performance%20Analysis%20of%20Signature%20Based%20and%20Behavior%20Based%20Malware%20Detection.pdf
https://doi.org/10.1016/j.jisa.2019.06.006

