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Advancing Malware Detection: A Deep Learning 

Approach with Transfer Learning Techniques 

Littletresa George 

X23233346 

 
Abstract 

In the progressing cyber world, malware creates a notable threat to data security, 

underscoring the need for timely detection to mitigate its impact. Traditional detection 

systems, such as signature-based methods, are becoming successful against highly 

complicated attacks. This paper offers deep learning approaches to malware detection, 

focusing on comparing the performance of advanced convolutional neural network 

(CNN) architectures such as XceptionNet, EfficientNetB0, and ResNet50. By examining 

various patterns from the image data, the system predicts the presence of malware. The 

models show better accuracy compared to traditional methods. It successfully diminishes 

the likelihood of misclassification, thus improving the precision of detection. The 

proposed system's accuracy in detecting malware assists the cyber security department, 

enabling better cyber-threat handling. EfficientNetB0 emerges as the most accurate 

model, achieving 96% accuracy, outperforming both XceptionNet and ResNet50, which 

recorded 95% accuracy. Overall, the research paper aims to present how well these deep 

learning models can detect the presence of malware by identifying known and unknown 

malware strains and considering challenges such as disproportionate datasets, adversarial 

attacks, and the need for real-time detection in cybersecurity employment. 

Keywords: Xception, EfficientNetB0, ResNet 

1 Introduction 

Today, the field of technology grows rapidly. Emerging fields like artificial intelligence, 

cloud computing, etc., are essential in the real world. The modern world is very much 

integrated with cyberspace in various dimensions. And so, it brings challenges such as cyber-

attacks, privacy issues, etc., which leads to the need for a cyber security department. One of 

the major cyber-attacks is the malware threat. Malicious software, in short, malware, is any 

program that can harm the security and functionality of devices, networks, or data. There are 

many varieties of malware, such as viruses, worms, trojans, spyware, and more. The mode of 

attack from each of them is different, which causes an unauthorized action on a device. For 

example, a virus is attached to a program. It replicates other programs when they are 

executed, whereas in the case of ransomware attacks, it will lock the user's data or 

information and ask for ransom for its release. 

According to the 'India Breach Report' by FalconFeeds, the first six-month period of 2024 

witnessed 388 data breaches, 107 data leaks, 39 ransomware activities, and 59 cases of access 

sales or leaks (INTERNATIONAL JOURNAL on CYBERSPACE LAW and POLICY 

VOLUME 2 and ISSUE 1 of 2024 INSTITUTE of LEGAL EDUCATION, 2024). The 

Telegram app was a hotbed for data breaches and scams. A hub of hackers, Telegram 

coordinates attacks and shares information. According to India's Cyber Threat Report 2023, 

trojans (41%) and Infectors (33%) are dominant threats in malware attacks (“THREATS in 
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CYBERSPACE,” 2023). The Automobile Industry has the highest number of detections, 

followed by the Government and Education sector. Since online activities through the 

internet have become a part of daily life, malware threats can disrupt not only an individual 

device but also public sectors, industries, the education sector, the healthcare industry, 

banking, and even the defense sector. Ransomware can access and lock commercial data, like 

locking a company server, affecting the firm's productivity. Then, they demand huge amounts 

of money to unlock the data, which leads to financial loss. Likewise, malware threat causes 

privacy loss, data breaches, unauthorized tracking etc. These issues raise the need for robust 

malware detection systems essential to cyber security. Detecting malware as soon as possible 

is just as important as identifying it (Aslan & Samet, 2020). 

Signature-based detection and behavior-based detection are the most traditional way of 

finding malware. In the signature-based detection technique, the model tries to detect the 

malware by analyzing known signature patterns. In the behaviour-oriented detection method, 

the model monitors the application or files, and when an unusual behaviour appears, it is 

tagged as malware. But nowadays, the malware is changing its pattern and behaviour to avoid 

detection by signature-based systems. Also, these traditional models can’t detect zero- day-

attacks. Advanced deep learning architecture helps to overcome these problems (Prakash 

Niraj & Tiwari, 2022). 

Image-based malware detection offers a new approach to detecting malicious software by 

turning malware binaries into grayscale images. It reveals unique visual patterns and textures 

that are common to various malware families. This technique advances computer vision and 

deep learning. In particular, convolutional neural networks (CNN) have distinct advantages 

over traditional signature detection methods in analyzing these patterns and classifying 

malware efficiently. Visual detection is more robust against obfuscation and kaleidoscope 

malware. Since visual features are usually preserved even after changes in the underlying 

code, it achieves high accuracy. It also takes advantage of the scalability and performance of 

modern CNN architectures, making it a promising solution in terms of 

precision(Venkatraman, Alazab, & Vinayakumar, 2019). 

This project focuses on implementing a deep learning-based malware detection system using 

three state-of-the-art architectures: XceptionNet, EfficientNet, and ResNet50. Our 

modification of the approach leverages convolutional neural networks to extract complex 

features that distinguish Malicious files from harmless files(Saxe & Berlin, 2015). The 

dataset used is the Malevis_split dataset, which is a comprehensive collection of malware 

samples. They are processed and analyzed using Python libraries such as Pandas and NumPy. 

The models were trained and tested in Google Collab using GPU capabilities to speed up 

computation. The performance of each model is evaluated using metrics such as precision, 

precision, recall, and F1 score, allowing comparative analysis of their ability to detect 

malware. This study aims to support the development of improved malware detection 

techniques that can effectively identify different types of malwares. At the same time, it 

addresses the limitations of traditional methods. This project provides insights to improve 

cyber security defenses by exploring the application of deep learning architectures. 
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1.1 Research Problem 

The research aims to answer how efficiently detect image-based malwares using deep 

learning models to achieve high accuracy. 

 

 

1.2 Objectives 

1. Develop an image-based deep learning model to detect malwares. 

Develop and train deep learning model capable of accurately identify the malwares. 

Explore modern CNN architectures like XceptionNet, EfficientNetB0, and ResNet50 

to identify malware patterns in grayscale images. Prepare the dataset and make it 

suitable for training the model. 

2. Enhance the early detection capabilities using CNN architectures. 

Design a model which has the ability to detect malwares as soon as possible since the 

malwares spreads rapidly that leads to the corruption of the system. 

3. Optimize model performance. 

Fine-tune the chosen deep learning models to improve their sensitivity, specificity, 

and overall performance. 

4. Compare the models to identify the best model for malware detection. 

The architectures such as Xception, EfficientNetB0, and ResNet Models will be 

evaluated for their efficiency in classifying malware. 

 

 

1.3  Challenges 

 
1. Quality and quantity of data 

For deep learning architectures, the model performance is based on the quality and 

quantity of the training dataset. The data should also be balanced. So, obtaining a 

sufficient and efficient dataset is challenging. 

2. Computational resource 

The project tries to compare three CNN architectures, which are built using multiple 

layers, which leads to a high computational cost. 

3. Model Complexity 

Deep learning models, specifically advanced architectures, are very complex in 

structure and are difficult to interpret. 

4. Model evaluation 

Accurate evaluation of model performance with representative datasets to ensure 

reliability and generalizability. 

5. Scalability 

Regularly updating the model with new data and evolving malware trends ensures it 

remains relevant and accurate. 
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Figure 1: System Diagram 
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2 Related Work 

2.1 Traditional Malware Detection Methods 

Traditional malware detection techniques mainly include signature-based malware detection 

mechanisms, behavior-based malware detection, and heuristic-based malware detection 

techniques. (Tahir, 2018) detailly reviewed malware types and compared various malware 

analysis and detection techniques. The research presented three major malware detection 

techniques: signature-based, heuristics-based, and specification-based. While comparing 

these techniques, it is noted that signature-based detection methods are good at detecting 

known malware with fewer resources. At the same time, heuristic and specification-based 

detection methods can also detect new and unknown malware. Still, with the heuristic-based 

approach, false positives are high and need more resources. The issue with the specification-

based detection approach is developing the specification data of the legitimate program, 

which is a time and space-consuming process. (Venugopal & Hu, 2008)  described signature-

based malware detection, specifically the signature matching method, with less memory 

usage and fast scanning speed. This approach could obtain stable virus features using many 

virus samples, but it is not efficient in detecting unknown viruses. (Abiola & Marhusin, 2018) 

developed a detection model by extracting the signatures of the Brontok worms and used an 

n-gram technique to break down the signatures. This process makes removing redundancies 

between the signatures of the different types of Brontok malware easier. Hence, it was used 

in this study to accurately differentiate between the signatures of both malicious and normal 

files. This method fails against zero-day attacks. (“Research Commons,” 2019) discussed 

behavior-based approaches to ransomware detection. The research combined three Indicators 

of Compromise (IoC): file changes, file entropy, and canary file. Compared to signature-

based detection techniques, this approach is less resource-intensive. However, the paper 

addressed some difficulties in handling a special type of ransomware called Petya. Martina. 

(Lindorfer, Kolbitsch, & Milani Comparetti, 2011) implemented a system called Disarm: 

Detecting Sandbox-AwaRe Malware, which detects differences in behaviour regardless of 

their cause. This allows us to discard specious differences in behaviour and identify 

“environment-sensitive” samples that exhibit semantically different behaviour. Any 

monitoring technology that can detect persistent changes to the system state at the operating 

system level can take advantage of this technique. 

 

2.2 Modern Malware Detection Techniques 

This includes malware detection based on machine learning models and deep learning 

models, which gave better results than traditional techniques. (Firdausi, lim, Erwin, & 

Nugroho, 2010) analysed five machine learning techniques for malware detection. The 

classifiers used in this research are k-Nearest Neighbors (kNN), Naïve Bayes, J48 Decision 

Tree, Support Vector Machine (SVM), and Multilayer Perceptron Neural Network (MlP). 

Their study showed that these classical machine learning methods could effectively classify 

malware based on features extracted from system behaviour but accurate feature selection is 

very important to ensure the model accuracy. In the paper prepared by (Narayanan & 

Davuluru, 2020) three different approaches are studied to classify malware programs based 
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on different file formats including CNN-based approach for classifying malware 

compiled files after visualizing them as images, a Recurrent Neural Network (RNN)-

based approach for classifying malware assembly files, and an ensemble approach of 

combining the features extracted using CNN and RNN techniques and later classifying them 

either using logistic regression or SVM. Representing malware programs both in terms of 

compiled and assembly-level files helped overcome a lack of information present in either of 

those file types. (Saxe & Berlin, 2015b) presented a malware detection system based on a 

deep neural network. Here, they used a convolutional neural network to detect the binary 

values by converting them into images. This approach achieves good accuracy with a low 

false positive rate. However, it is noted that the model's performance depends upon the 

quantity and quality of the training dataset. The model also wanted high computational 

resources. (Jha, Prashar, Long, & Taniar, 2020) developed a Recurrent Neural network model 

to detect malware. The research paper also measured the performance of RNN using three 

feature vectors such as “hot encoding feature vector,” “random feature vector,” and 

“Word2Vec feature vector”. They concluded that RNN with Word2Vec feature vector 

performed well. However, this approach takes a comparatively long time to identify the 

malware. (Mathew & M. A. Ajay Kumara, 2019) Proposed RNN- Long-Short-Term Memory 

(LSTM) model to learn from the most informative of sequences from the API dataset based 

on their relative ranking based on Term Frequency-Inverse Document Frequency (TF-IDF) 

recommended features. 

 

2.3 Advanced Malware Detection-Deep Neural Network Architecture 

with Transfer-Learning Techniques 
      (Haque, Jahin, Labiba Ifrit, Sheikh, Mahmud, & Tasnia, 2024b) presented six Convolutional 

Neural Network (CNN) models that were utilized, with “InceptionResNetV2 exhibiting the most 

promising performance. InceptionResNetV2 amalgamates the strengths of two established 

models: Inception, which is focused on determining computational cost, and ResNet, which 

prioritizes computational accuracy. Other CNN architectures used in this paper include Inception 

ResNetV2, DenseNet, VGG16, ResNet50, EfficientNetB0, and XceptionNet. (Raman Kumar, 
2022) proposed an IVMCT framework for the multi-class classification of malware using 

transfer learning on the MalIimg dataset. In the IVMCT framework, 3 pre-trained models are 

selected: ResNet, AlexNet, and DenseNet. The pre-trained models are trained in some domains, 

and the models' weights are adjusted accordingly. These models are extended in other domains 

as well with fewer number resources, and time is also consumed less. (Aslan & Yilmaz, 2021) 
proposed a hybrid model by optimally combining two well-known pre-trained network models, 

Alexnet and Resnet, and the method is evaluated on Malimg, Microsoft BIG 2015, and Malevis 

datasets. Here, the suggested hybrid model is first compared with each individual model 

separately. This method showed the best accuracy, but a minority of malware samples could not 

be classified correctly because those malware variants used advanced code obfuscation 

techniques, which is a limitation. (Naeem et al., 2020) designed an architecture that used a 

methodology that integrates malware visualization into the DCNN model for detecting malicious 

activities in the Industrial Internet of Things (IIoT) environment. After converting APK files to 

colour images by malware visualization technique, DCNN model extracted the malware's 

dynamic image features and classified them.  
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The model’s accuracy is higher than the previous machine learning techniques (Yadav, 

Menon, Ravi, Vishvanathan, & Pham, 2022) Developed EfficientNet-B4, a CNN-based 

architecture to detect Android malware using image-based malware representations of the 

Android DEX file. EfficientNet-B4 extracts relevant features from the malware images. 

These features are then passed through a global average pooling layer and fed into a softmax 

classifier. The proposed method obtained an accuracy of 95.7% in the binary classification of 

Android malware images, which shows the model’s robustness. 

 

 

Table 1: Comparison of articles 
 

Title Methodology Limitation 

A study on malware and malware 

detection techniques 

Signature-based, Heuristic-

based, Specification-based 
Prone to unknown malware 

patterns, High false positive rate 

Efficient signature-based malware 

detection on mobile devices 

Signature matching method Not efficient in detecting 

unknown malware patterns 

Signature-based malware detection 

using sequences of N-grams 

Signature-based, N-grams 

techniques 

Fails against zero-day 

attacks 

Behaviour-based ransomware 

detection 
Behaviour-based approach Faced difficulties in detecting 

the special type of ransomware 

called Petya 

Detecting environment-sensitive 

malware 

Behaviour-based approach Need frequent monitoring 

Analysis of machine learning 

techniques used in behavior-based 

malware detection 

k-Nearest Neighbors (KNN), 

Naïve Bayes, J48 Decision 

Tree, Support Vector 

Machine (SVM), and 

Multilayer Perceptron 

Neural Network (MLP) 

Accurate feature selection is a 

challenge 

Ensemble malware classification 

system using deep neural networks 

CNN, RNN, Ensemble 

learning 

the computational resource is 

needed 

Deep neural network-based malware 

detection using two-dimensional 

binary program features 

CNN Model performance depends on 

the quantity and quality of 

training data. The high 

computational resource is 

needed 

Recurrent neural network for 

detecting malware 

RNN, hot encoding feature 

vector, random feature 

vector, and Word2Vec 

feature vector 

Take comparatively a long time 

to identify those malwares. 
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API call-based malware detection 

approach using a recurrent neural 

network— LSTM 

RNN-Long-Short-Term 

Memory (LSTM) 
The current feature selection is 

only done using the TF-IDF 

technique. Other feature 

selection techniques, such as 

Chi-square, Fisher’s score, and 

combinations, are also noted. 

MalFam: a comprehensive study 

on malware families with state-of-

the-art CNN architectures with 

classifications and XAI 

Inception, ResNetV2, 

DenseNet, VGG16, 

ResNet50, EfficientNetB0 

and XceptionNet 

Mapping) or Integrated 

Gradients can provide more 

Detailed and accurate analysis 

compared to LIME 

IVMCT: Image visualization-

based multiclass malware 

classification using transfer 

learning 

ResNet, Alexnet and 

DenseNet 

Incapable of detecting zero- 

day malware or obfuscated 

malware. 

A new malware classification 

framework based on deep 

learning algorithms. 

Alexnet and Resnet Prone to advanced code 

obfuscation techniques 

Malware detection in industrial 

Internet of Things based on 

hybrid image visualization and 

deep learning model. 

DCNN  

EfficientNet convolutional neural 

networks-based Android malware 

detection 

EfficientNet-B4  
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2.4 Identified Gap 

The works related to this project topic can divided into three: Traditional malware detection 

methods, modern methods to detect malware, and advanced malware detection using deep 

learning architectures. These papers show the need of employing deep neural network 

architectures for detecting malwares. The feature extraction process is done manually using 

modern techniques, whereas these advanced architectures automatically identify and extract 

features from the data. Advanced architectures like EfficientNet, ResNet, and XceptionNet 

recognize hidden patterns in the data through hierarchical learning that helps to identify 

newly born malware, but the former struggle to detect these newborn malwares. Since these 

architectures are pre-trained on large datasets, the amount of the training data needed is less 

compared to traditional machine learning models. Since Deep learning architecture 

generalizes from training data, it makes it suitable for effective detection of zero-day attacks 

where the traditional methods fail. 

In case of accuracy, the three models- EfficientNet, ResNet, and XceptionNet- give the same 

accuracy. If lightweight and speed are priorities, go with EfficientNetB0 or EfficientNetV2. 

They offer a smaller model size and better inference speed, making them ideal for 

deployment in environments with limited resources. If you prioritize robustness and don't 

mind a larger model, ResNet50 is a solid, well-established choice. 

 

2.5 Why this project Approach 

Image-based malware detection techniques have shown superior capabilities in analyzing and 

classifying malicious software by transforming binaries into visual representations. This 

allows leveraging advanced deep learning methods such as CNNs and transformers to detect 

sophisticated evasion tactics like obfuscation and polymorphism (Basak & Han, 2024). The 

effectiveness of deep learning models such as ResNet, EfficientNet, and Xception in image 

classification has been widely recognized in the literature. These architectures are good at 

recognizing complex patterns in images. This makes it suitable for malware detection tasks. 

In addition, the image-based method allows for scalability; once it is trained. Studies utilizing 

CNNs with architectures like ResNet-152 or Vision Transformers (ViT) report high accuracy 

(up to 99.62%) in classifying malware using features derived from pixel intensities, further 

validating the robustness of this method (Ashawa, Nsikak Owoh, Hosseinzadeh, & Osamor, 

2024). The availability of datasets such as Malevis_split increases the feasibility of this 

approach. The dataset provides structured, high-quality data for training and validation. This 

facilitates experimentation with modern architecture. These points highlight why image-

based malware detection is an advanced, reliable, and forward-looking solution for malware 

research. And why was it chosen for this project. 

To create a detailed guide for developing a malware detection model from the ground up, the 

following steps are outlined, the first step is crucially preparing the dataset. This process starts 

with gathering an appropriate dataset, such as the Malevis_split dataset, which includes various 

labeled malware and benign samples. These binaries are then converted into grayscale or color 

images for further examination. Image normalization and resizing (for example, 224x224 pixels 
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for models like ResNet50 or EfficientNetB0) ensure that they are compatible with the chosen 

architectures. Finally, the dataset is partitioned into training, validation, and test subsets to 

allow for a thorough evaluation process. The next phase involves choosing a suitable model 

architecture. Pre-trained models, such as ResNet50, EfficientNetB0, and XceptionNet, are 

particularly well-suited for image-based malware detection. These architectures make use of 

transfer learning, taking advantage of the features, they have learned from large datasets to 

identify significant patterns in malware images. The third phase centers on the model training. 

Training begins by locking the base layers of the pre-trained models to preserve their learned 

features, after which custom layers designed for malware classification are appended. Loss 

functions such as categorical cross-entropy or binary cross-entropy, combined with optimizers 

like Adam, enable effective model training. Performance metrics, including accuracy, 

precision, recall, and AUC, are tracked to ensure steady improvement. In the subsequent 

evaluation and deployment phases, the model's effectiveness is assessed and readied for real-

world use. During testing, metrics like false positives and false negatives are analyzed in detail, 

while the model is optimized for use in resource-limited settings through methods such as 

pruning or converting to lighter formats like TensorFlow Lite. Lastly, continuous enhancement 

is essential to this strategy. Regular retraining with the latest malware samples and frequent 

error analysis is crucial for preserving the model's effectiveness against changing malware 

behaviors, particularly for zero-day threats. 

 

 

3 Research Methodology 
 

Figure 2: Proposed dataflow diagram 
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3.1 Dataset Overview 

This research uses a standard dataset named Malevis_split, which is taken from Kaggle, a 

publicly available platform for downloading various datasets. It consists of grayscale images 
of various malware, and the dataset contains 26 types of malwares. 

Why image-based dataset 

Converting malware binaries to grayscale images helps to identify unique patterns and 
textures for different malware families. This binary visualization method improves detection 

by exploiting confusingly flexible image features. Although malware authors attempt to 
change the binary to avoid traditional detection, the visual patterns often remain. This makes 

the image-based method more robust and advances in computer vision and deep learning 
architectures such as ResNet, EfficientNet, and Xception offer powerful tools for images 

classification that can be used for highly accurate malware detection. Once the models are 

trained It provides scalability by efficiently classifying malware without the need for real- 
time binary analysis. 

 

3.2 Data Preprocessing 

Data preprocessing includes balancing and shaping image data. Data imbalanced means some 
categories have a large number of data points. It is necessary to balance data for better 

performance. So here, the category with a large number of data points is removed. The 
dimension of all images in the dataset is ( 224, 224, 3). To make the input of CNN 

architectures, pass the shape as (200, 200, 3). 

3.3 Evaluation Metrics 

It is very important to assess the results of a work. There is different evaluation metrics are 

there to measure the performance of machine learning models. Accuracy, Precision, F1 
Score, Recall are some popularly used techniques (GeeksForGeeks, 2018) 

 
Confusion matrix: 

 

A confusion matrix sums up the performance of a model on a set of test data. It displays the 
model's prediction performance by showing the count of correct and incorrect predictions. It 

contains the values called true positive, true negative, false positive and false negative.[18] 

 

 

      Figure 3: Confusion Matrix 
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• True Positive (TP): It is the number of correctly predicted positive outcome. That is the 

predicted value and the actual value is positive (GeeksForGeeks, 2018). 

• True Negative (TN): It is the number of correctly predicted negative outcome. That is 

the predicted value and actual value is negative (GeeksForGeeks, 2018). 

• False Positive (FP): It shows the number of incorrectly predicted positive outcomes. 

That is the model predicted the value as positive but actually it is negative.it is also 

known as a Type I error (GeeksForGeeks, 2018). 

• False Negative (FN): It shows the number of incorrectly predicted negative outcomes. 

That is the model predicted the output as negative but actually it is positive.it is also 

known as a Type II error (GeeksForGeeks, 2018). 

 

 

Accuracy 

It is a fundamental metric to measure the potential of a model which helps to understand how 

the model performs in terms of correct predictions. This is a calculation of the ratio between  

correct number of predictions and total number of input data (GeeksForGeeks, 2018). 

 

• Equation 1 
 

 

Precision 

Precision is another metric that measures model’s performance in terms of how many of the 
positive predictions made by the model are actually correct. It is the ratio of the number of 

true positive predictions to the sum of true positive and false positive 
predictions(GeeksForGeeks, 2018). 

 

• Equation 2 
 

Recall 

Recall measures the model's sensitivity by determining the percentage of actual positive cases 

that were accurately predicted as positive. Dividing the number of true positives by the 
number of positive instances calculates recall (GeeksForGeeks, 2018). 

 

 

• Equation 3 
 

 

F1 Score 

F1-score is helpful to measure the overall performance of a classification model. It is the 

harmonic mean of precision and recall (GeeksForGeeks, 2018). 
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• Equation 4 
 

 

 

4 Design Specification 

The CNN architectures used here are Xception, EfficientNetB0 and ResNet50. These are 

pretrained CNN models- where a model is trained on large dataset- which are used in image 

classification tasks. The learning using pretrained model to new task is called transfer 

learning. 

4.1 XceptionNet 

Xception, developed by Francois Chollet in 2017, is a deep convolutional neural network 

known for its novel feature learning. It uses depth-separable convolutions, which decompose 

standard convolutions into depth and pointwise convolutions. In particular, a spatial 

convolution is performed independently on each channel of an input, followed by a pointwise 

convolution (1x1 convolution) that projects the channels output by the depth convolution to a 

new channel space. This unique design reduces the number of parameters while maintaining 

significant performance. It consisted of 36 convolutional layers organized into 14 modules. 

All modules except the first and last have linear residual connections around them (Chollet, 

2017). 

 

4.2 ResNet50 

ResNet50 is a powerful deep convolutional neural network architecture (Rezende, Ruppert, 

Carvalho, Ramos, & de Geus, 2017). It is the short form of Residual Networks. learn residual 

functions with reference to the layer inputs, instead of learning unreferenced functions. 

Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual 

nets let these layers fit a residual mapping (Rezende, Ruppert, Carvalho, Ramos, & de Geus, 

2017). ResNet50 consists of 50 layers and features an innovative use of residual blocks, 

which allows the network to skip connections and mitigate the vanishing gradient problem 

during training. This design facilitates the training of very deep networks, enabling better 

performance in various computer vision tasks. The ResNet family includes several versions 

like ResNet-50, ResNet-101, and ResNet-152, with increasing depth. The "50," "101," etc., 

indicate the number of layers, allowing researchers to select models based on their 

computational constraints. 
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4.3 EfficientNet 

EfficientNet is a family of neural network architectures that were introduced by Google AI 

researchers in 2019. EfficientNet aimed to create a highly accurate and efficient model in 

terms of computational resources. Efficient Net achieves this Balance by using a 

Combination of three Main Techniques - Compound Scaling, Efficient Channel Attention, 

Neural Architecture Search. Efficient Net uses a compound scaling method, which scales the 

neural network in a uniform manner in all three dimensions - depth, width, and resolution. 

This approach involves using a compound coefficient that uniformly scales the neural 

network's depth, width, and resolution. This allows for much more efficient use of 

computational resources, leading to higher accuracy with less computing power 

(“EfficientNet: A Breakthrough in Machine Learning Model Architecture - Javatpoint,” 

2024-b). Width scaling involves increasing the number of channels in each convolutional 

layer of the network. This increases the capacity of the network to learn more complex 

patterns in the input data. Depth scaling involves adding more convolutional layers to the 

network. This allows the network to learn more abstract and complex features from the input 

data. Resolution scaling involves increasing the size of the input images. This allows the 

network to capture more fine-grained details in the input data, which can be particularly 

important for object detection and segmentation tasks. This approach involves using a 

compound coefficient that uniformly scales the neural network's depth, width, and resolution. 

This allows for much more efficient use of computational resources, leading to higher 

accuracy with less computing power. 

4.4 Fine-tuning 

Fine-tuning is the process of taking a pre-trained language model and adapting it to perform a 

particular task or set of tasks. It bridges the gap between a general-purpose language model 

and a specialized AI solution. Fine-tuning addresses the issue of adaptability. 

Fine-tuning is the process of taking a pre-trained model and training it using a similar dataset. 

This method is used to adopt an already created model for solving another similar problem. 

Without beginning the training process over, the objective is to maximize the model's 

performance on a novel, related task. During the process, the architecture of the model will 

not be affected. The objective is to use the model's valuable characteristics and 

representations gained from the large dataset on which it was initially trained and adapt them 

to a narrower job. It bridges the gap between a general-purpose language model and a 

specialized AI solution. Fine-tuning addresses the issue of adaptability (IBM, 2024b). Fine-

tuning can be done through modifying different types of model parameters. Modifying layers 

of pre-trained models, unfreezing layers of pre-trained models, modifying parameters like 

learning rate, batch size are some techniques that are used in fine-tuning process. 
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A pre-trained model can be fine-tuned to perform better with little further training by 

adapting it to a particular job or domain. Because the model doesn't have to learn from start, 

fine-tuning saves time and computational resources by utilizing the model's current 

knowledge. In specialized domains, such as modifying a language model to comprehend 

medical writings, assessing sentiment in financial papers, or categorizing images in 

disciplines like radiology, it improves performance. Because the model may build on its 

general, previously learned understanding and concentrate exclusively on fine-tuning details 

pertinent to the new task, fine-tuning is particularly helpful when we have little task-specific 

data. With this approach, we can produce specialized, extremely accurate models quickly and 

adaptably for a wide range of uses. It can be quite costly and time-consuming to train a deep 

learning model from start. Contrarily, fine-tuning enables us to improve upon a model that 

has already been trained, thus cutting down on the time and resources needed to provide 

quality results. 

In this project the fine-tuning process starts with initialization, where the pre-trained model, 

training data, validation data, and other parameters are set. The pre-trained model's layers are 

divided into two parts: the initial layers, which are frozen, and the later layers, which are 

trainable. The frozen layers retain the general features learned from the large dataset, while 

the trainable layers adapt to the new malware classification task. Additional layers are added 

to the pre-trained model to improve its representation and classification capabilities. These 

layers include a flatten layer, fully connected layers with dropout (if regularization is 

applied), and a final dense layer with a softmax activation function. The updated model is 

compiled with an optimizer (Adam), a loss function (categorical cross-entropy), and 

evaluation metrics (accuracy, AUC, false positives, precision, and recall). The model is 

trained on the training data with validation on the validation data. Early stopping is applied to 

prevent overfitting, and the best weights are restored to ensure optimal performance. 

The fine-tuning process leverages the pre-trained model's general features and adapts the later 

layers to learn task-specific patterns for malware classification. The regularization option 

helps avoid overfitting, especially with small datasets. This approach efficiently adapts the 

pre-trained model for malware image classification while maintaining generalization and 

avoiding overfitting. 

5 Implementation 

5.1 System Specification 

The current experiment was conducted using Google Colab, which provided enhanced 

computational resources for model training. 

The three CNN architectures – Xception, EfficientNetB0 and ResNet50 – have been 

implemented and their respective confusion matrix and classification reports were obtained. 

The classification report contains evaluation metrics such as accuracy, precision, recall and 

f1-score which helps to analyse the performance of the model. Finally, a comparison study of 

three models have been performed in the basis of efficiency, model size and computational 

resources. 
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5.2 Dataset description 

The dataset is taken from Kaggle which is a publicly available platform to download various 

datasets. It consists of grayscale images of malware classes in PNG format. There are 26 type 

malwares namely “Adposhel, Agent, Allaple, Amonetize, Androm, Autorun, BrowseFox, 

Dinwod, Elex, Expiro, Fasong, HackKMS, Hlux, Injector, InstallCore, MultiPlub, 

Neoreklami, Neshta, Other, Regrun, Sality, Snarasite, Stantinko, VBA, VBKrypt, Vilsel”. 

 

 
Figure 4: Sample of Malware types 

 

5.3 Package Installation 

 

A small number of libraries that are used in this project 

are: 

• OS: Module used to interact with file systems. 

• TensorFlow: Module used for model training and 

transfer learning 

• Sklearn: Module used for model evaluation and 

selection 

• Matplotlib, Seaborn: Modules used for data 

visualization 

•  
         Figure 5: Malware class frequency 
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5.4 Training Stage 

Data Preprocessing 

 

Figure 5 shows image counts that belongs to each malware classes. It is obvious that the class 

named ‘other’ have large amount of data compared to other classes. It results an imbalance 

dataset. It should have to remove this imbalance to make good and accurate model’s results. 

So here, the class named ‘other’ was removed to make a balanced dataset. In figure 6 the 

dataset is balanced. 

 

 

        Figure 6: Balanced dataset - class frequency 

6. Evaluation 

 
This section comprehensively assesses three CNN-based models—XceptionNet, EfficientNetB0, and 

ResNet50 used for malware detection. The analysis centers on their classification performance among 

24 malware types and incorporates essential metrics such as accuracy, precision, recall, and F1-score. 

Furthermore, the confusion matrices shed light on each model's ability to differentiate between various 

malware families, showcasing strengths and identifying areas for improvement. Lastly, the models are 

evaluated regarding efficiency, computational resource demands, and robustness, providing 

recommendations. 

6.1  Case Study 1: Model evaluation - ‘XceptionNet’ 

XceptionNet recorded an impressive overall accuracy rate of 96%, showcasing its capability 

in malware detection. The classification report indicates consistently strong performance 

across the majority of malware categories, with macro-averaged precision, recall, and F1-

scores standing at 0.96, 0.95, and 0.95, respectively. These figures suggest a well-balanced 

model that can provide dependable results with minimal false positives and false negatives. 

Certain categories, including Adposhel, HackKMS, and Regrun, display near-perfect 

precision and recall values of 1.00, underscoring the model's robustness and dependability in 

identifying these malware families. 
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However, some classes, such as Neshta and Sality, show lower recall values of 0.85 and 0.75, 

respectively. These decreased scores imply that the model struggles to accurately identify all 

samples from these families, leading to false negatives. The confusion matrix illustrates these 

challenges, revealing that some samples of Neshta were misclassified as belonging to other 

families. Similarly, Sality has a higher incidence of misclassification, with off-diagonal 

elements highlighting confusion with other malware types. These difficulties may arise from 

overlapping feature distributions between Sality, Neshta, and other families or inadequate 

representation of these categories in the training set. 

A significant finding from the confusion matrix is the prevalence of diagonal elements, with 

most categories achieving correct classifications approaching 100. For example, family 1 

achieved 99 correct classifications, while family 10 reached 100 correct classifications, 

reflecting the model's strong capability to differentiate between malware families. 

Nevertheless, off-diagonal elements for certain families, such as family 2, reveal 

misclassifications into families 3, 4, or 5, indicating potential areas for enhancing feature 

differentiation. Future improvements, such as more advanced feature extraction methods or 

class-specific data augmentation, could help mitigate these challenges. 

Figure 7: Classification report of xception model     Figure 8: Confusion matrix of Xception model 
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6.2  Case Study 2: Model evaluation – ‘EfficientNetB0’ 

 
EfficientNetB0 emerged as the leading model, achieving the highest overall accuracy of 96% 

among the three architectures tested. The macro-averaged precision, recall, and F1-scores closely 

match those of XceptionNet, demonstrating consistent and reliable performance across all malware 

types. Importantly, the model shows exceptional performance in detecting difficult malware 

families, attaining perfect scores for categories like Adposhel and Neorekclami, with both precision 

and recall at 1.00. These findings highlight the model's robustness and its capability to effectively 

handle well-represented categories. 

 

However, EfficientNetB0 does display slightly lower precision and recall for specific families, such 

as Injector. The metrics for this category reflect some level of misclassification, likely due to 

overlapping features with other families. The confusion matrix also shows that while most 

predictions align along the diagonal, a few off-diagonal entries point to misclassifications. For 

example, Injector sometimes overlaps with Automation and other categories, resulting in lower 

precision and recall scores relative to the best-performing classes. 

 

The lightweight design and computational efficiency of EfficientNetB0 make it especially well-

suited for use in real-time malware detection systems or scenarios with limited resources. Its 

capability to sustain high recall scores across most categories, particularly challenging ones, 

emphasizes its usefulness for applications where reducing false negatives is crucial. 

 

          
 

 

Figure 9: Classification report of  

 EfficientNetB0 model                                                     Figure10: Confusion matrix of EfficientNetB0 model 
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6.3  Case Study 3: Model evaluation – ‘ResNet50’ 

The classification report in figure11 shows an overall accuracy of 95% across 2485 samples. 

Most classes have high precision, recall, and F1-scores, indicating balanced performance. 

However, classes like "Sality" (F1-score: 0.79) and "Injector" (F1-score: 0.89) have slightly 

lower scores, indicating some room for improvement. Macro and weighted averages for 

precision, recall, and F1-score are consistent at 0.95, reflecting strong overall model 

performance. The model demonstrates reliable predictions with minor misclassifications in a 

few specific classes. The confusion matrix in figure12 indicates accurate predictions with 

most values concentrated along the diagonal. Diagonal elements are close to 100, confirming 

strong performance for individual classes. Non-diagonal elements are sparse, highlighting 

minimal misclassifications. Classes like 1 and 20 show slightly higher misclassifications 

compared to others. Overall, the model demonstrates consistent and reliable classification. 

 
 

Figure 11: Classification report 

of ResNet50 model Figure 12: Confusion matrix of ResNet50 model 
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6.4 Case Study 4: Model Comparison 
 

Figure 13: Evaluation metrics comparison 

 

 

Figure 13 compares various classification metrics accuracy, precision, recall, and F1-score 

across three CNN models: XceptionNet, EfficientNetB0, and ResNet50, evaluated using the 

Malevis dataset. Each bar indicates the value of the corresponding metric for a specific model, 

offering a concise summary of its performance. 

 

• XceptionNet: This model records an accuracy of 95%, precision of 95%, recall of 95%, 

and an F1-score of 95%, illustrating steady and balanced performance in all metrics. 

• EfficientNetB0: This model slightly surpasses XceptionNet with an accuracy of 96%, 

precision of 96%, recall of 96%, and an F1-score of 96%. These outcomes emphasize 

EfficientNetB0's strength and capability to classify malware effectively with minimal 

errors.  

• ResNet50: Like XceptionNet, ResNet50 achieves an accuracy of 95%, precision of 

95%, recall of 95%, and an F1-score of 95%, indicating competitive performance but 

falling slightly behind EfficientNetB0 in overall metrics. 

 

EfficientNetB0 is the top-performing model, obtaining the highest scores across all metrics. 

This comparison illustrates that while all models perform strongly in malware classification 

tasks, EfficientNetB0 offers a slight edge in accuracy, precision, recall, and F1-score. 
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Figure 14: Comparison of training performance of models 

 

 

The graphs present a comparison of the performance of three models — XceptionNet, EfficientNetB0, 

and ResNet50 based on various metrics using the validation set from the Malevis dataset. The metrics 

displayed are as follows:   

 

1. Validation Loss: Initially, XceptionNet shows a validation loss that is significantly higher 

than that of EfficientNetB0 and ResNet50 but stabilizes after several epochs. ResNet50 

consistently exhibits the lowest loss throughout the entire training process.   

 

2. Validation Accuracy: ResNet50 reliably achieves the highest accuracy, closely followed by 

EfficientNetB0. XceptionNet starts with lower accuracy but shows improvement as the epochs 

progress.   

 

3. Validation AUC: Each of the three models attains a high AUC, with ResNet50 marginally 

surpassing the others, which indicates strong discrimination ability.   
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4. Validation False Positives: In the early stages, XceptionNet experiences a rise in false 

positives, whereas ResNet50 maintains the lowest rate of false positives, demonstrating greater 

robustness in this area.   

5. Validation Precision: ResNet50 consistently achieves the highest precision rate, trailed by 

EfficientNetB0, while XceptionNet shows gradual improvement after the initial epochs.   

 

6. Validation Recall: Both ResNet50 and EfficientNetB0 display high recall values, whereas 

XceptionNet starts with a lower recall but progressively improves over time. 

 

 

6.5  Discussion 

The classification results of XceptionNet, EfficientNetB0 and ResNet50 in the malware 

detection task provide detailed insights into their strengths and weaknesses based on metrics 
such as accuracy, precision, recall, and F1 score. EfficientNetB0 achieved a maximum 

accuracy of 96%, outperforming both Xception and ResNet50, which also achieved 95% 

accuracy. This slight advantage gives EfficientNetB0 the most balanced model for malware 
classification tasks especially for imbalanced data sets. 

Xception performs well, with balanced precision and recall between classes. This makes it 

ideal for consistent classification tasks. Its strengths lie in high precision for specific malware 

types. This ensured fewer false positives. However, it had difficulty remembering 
challenging categories such as Nesta and Sality, where its performance was slightly lower. 

EfficientNetB0, with an optimized architecture, exhibits best-in-class recall in most classes. 

This makes it highly reliable in detecting hard-to-classify malware. F1 scores are consistently 

high, especially for difficult classes. This proves suitable for unbalanced datasets; however, it 
shows slightly reduced accuracy for classes such as injectors and automation. This indicates a 

susceptibility to false positives in some cases. 

ResNet50 has excellent accuracy. This is especially true for important, high-risk malware 

classes such as Amonetize and HackKMS, making it ideal for applications where reducing 
false positives is important. However, recall is low for some classes, such as Sality and 

Autorun. This may limit its usefulness in situations where recall is emphasized. In terms of 
performance, EfficientNetB0 has become the most lightweight computationally efficient 

model. 
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7 Conclusion and Future Work 

This project investigates malware detection using three advanced deep learning architectures: 
XceptionNet, EfficientNetB0, and ResNet50. The primary goal is to identify the most 

effective model for malware classification. Research objectives Include Evaluating these 
models on the malware dataset, analysing precision, recall, F1 score, etc., and determining 

the suitability of models for various use cases. These objectives were successfully achieved, 

with EfficientNetB0 emerging as the most efficient and balanced model overall. 

 

EfficientNetB0 Demonstrated the highest accuracy (96%) and superior recall. This makes it 

ideal for situations involving imbalanced datasets. Xception demonstrates consistent 
performance with balanced precision and recall, ideal for detecting general malware. 

ResNet50 has excellent precision for critical high-risk malware categories, minimizing false 
positives. However, both Xception and ResNet50 struggle with challenging classes such as 

"Sality" and "Neshta", highlighting several issues for further optimization 

 

These findings have important implications for cyber security especially for designing 
efficient, accurate, and adaptive malware detection systems. The model's strengths and 

limitations highlight the need for tailored solutions. It depends on whether precision, recall, 
or computational efficiency is prioritized. Study's reliance on malware datasets. Although it is 

strong, but it shows limitations as a single dataset may not fully reflect the reality - the 
diversity of malware around the world. 

 

 
 

 

7.1 Future work 

This research lays a solid foundation for the benefits of deep learning in malware detection. 

Future work could focus on expanding the dataset to include a variety of real-world 

examples. This will improve the durability and general appearance of the model. Developing 

an ensemble method that combines the strengths of Xception, EfficientNetB0, and ResNet50 
can also increase overall performance which is especially good for challenging 

classifications. Real-time planning is another important area for exploration, which is 
research into optimizing these models for real-time malware detection systems. Especially in 

resource-constrained environments, such as mobile or edge devices, it may greatly increase 

its practical utility. 

Finally, the commercial potential is also significant. A lightweight and powerful framework 

that uses EfficientNetB0 could be developed for industries that need a scalable malware 
detection solution. This work, therefore, lays a strong foundation for improving the future of 

malware detection, highlighting practical applications and opportunities for further academic 
exploration. 
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