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1 Introduction 
This configuration manual offers cognitive solution that explains how to implement and 
deploy a Network Intrusion Detection System (IDS) based on machine learning (ML) 
algorithms. This project aims to identify the ability to detect anomalies in NSL-KDD and 
UNSW-NB15 datasets which consist of normal and abnormal network profiles. This manual 
describes how to prepare the datasets for analysis, how to create feature vectors, to choose 
relevant features, how to train a machine learning model, and how to assess its performance. 
Majority of the concepts that has been studied under this project are Random Forest, 
XGBoost, Support Vector Machine and other classifiers like K- Nearest Neighbors and Decision 
Trees.Another important part of this work is to improve the feature selection step for the 
machine learning models by using Pearson Correlation Coefficient and Recursive Feature 
Elimination (RFE) for the purpose of increasing the accuracy of final model and reducing 
computational expense. They help filter in models only the most pertinent characteristics 
which increases the models’ learning efficiency and predictive accuracy of the model.The 
manual is suitable for beginner and advanced users; it guides the users through executing the 
solution in local environments as well as Google Colab. At the end of this guide, the reader 
will be well equipped with knowledge and understanding of how to filter network traffic data 
for machine learning, train and have insights in the performance of machine learning to detect 
network intrusions effectively. 

2 System Requirements 
Architecture hierarchy of the Network Intrusion Detection System (IDS) is discussed below: 
These consist of normal and attacks, including network traffics, which were tested using NSL-
KADD and UNSW-NB15 datasets found in the Data Layer. This data can be store either into 
local storage or to cloud storage systems The Preprocessing layer relates to how the data is 
cleaned, transformed, encoded for categorical features, normalized and how different 
features are chosen using methods like Pearson correlation or Recursive feature elimination 



 
 

and so on. This prepares the data to be used in the different developing machine learning 
models.This makes the Model Training Layer contain the development of the machine 
learning models such as; Random Forest, XGBoost, SVM, KNN, Decision Trees among others. 
These models are trained through the prepared data to recognize network anomalies and 
attacks.The Evaluation and Testing Layer adopts Accurate, precisely, Recall value, F1 Score & 
Confusion Matrix to test the models. This makes the models do well in unseen data.To be 
precise, the last layer, the Visualization Layer, seeks to present performance metrics in heat 
map, confusion matrix, and pie chart to justify the effectiveness of the models. 

2.1 System Architecture 

 

Figure 2.1 Code snippet Dataset Loading  

2.2 Hardware Requirements 
To run the IDS efficiently with machine learning models, some basic and general requirements 
of hardware are needed. The minimum recommended Processor (CPU) should be an Intel i5 
and of course an Intel i7 or higher is desirable especially if you will be dealing with large files. 
The RAM users should allocate is of the minimum 8 GB, but 16 GB or more is preferable to 
speed up data computation and processing of big data such as NSL-KDD and UNSW-NB15 
datasets. Storage is another component where at least 50GB of free disk space is needed for 
storing the datasets and model results. If more data or another model is desired, the 
recommended storage space is 100 GB or higher. Although, GPU is not compulsory in general 
machine learning algorithms like Random Forest, XGBoost, SVM etc., but a GPU say NVIDIA 
GTX series is useful in Neural Network or larger data set. 



 
 

 

2.3 Software Requirements 
The following software components are required as the necessary components of the IDS 
system that will be implemented and run. Local: OS could be Windows 10/11 or Linux>Ubuntu 
18.04 or later except macOS, or Google Colab running on the cloud could be used. Google 
Colab will be most ideal for the users that may not have excess local hardware resources to 
code with.The Programming Language to be used must be Python 3. x with preference being 
given to Python 3.8 and above. In achieving the machine learning tasks, many libraries that 
will be needed include Pandas for data manipulation, numpy for computations, specifically 
for the numerical calculations scikit-learn for the Models in Machine learning and its 
preprocessing, feature selection and evaluation, XGBoost for the implementation of XGBoost 
model, Data visualization and Structural graphics are done by using Matplotlib and seaborn 
Scikit-plot is mainly used advanced visualization including Confusion Matrix. Other useful 
libraries are itertools and os which help in working with iterators and managing file 
paths.Respoinsible: Others include itertools and os which assist in operating iterators and file 
paths.For the Development Environment, tools like Jupyter Notebook or Google Colab is is 
suitable in introducing interactivity into coding offline development can be done using 
integrated development environment like Pycharm, visual studio code or spyder among 
others. 

 

Component Minimum Requirement Recommended Requirement

Processor (CPU) Intel i5 or equivalent Intel i7 or equivalent for better performance

RAM 8 GB 16 GB or more for faster data processing

Storage 50 GB of free disk space
100 GB or more if saving additional data or 

models

Graphics 

Processing Unit 

(GPU)

Not necessary for 

traditional ML models

Dedicated GPU (NVIDIA GTX series or 

equivalent) for neural networks

Software Component Requirement

Operating System
Windows 10/11, Linux (Ubuntu 18.04 or later), 

macOS, or Google Colab

Programming Language Python 3.x (Recommended: Python 3.8 or higher)

Libraries/Frameworks
pandas, numpy, scikit-learn, xgboost, matplotlib, 

seaborn, scikit-plot, itertools, os

Development Environment

Jupyter Notebook, Google Colab (Recommended 

for cloud-based execution), or IDE like PyCharm, 

Visual Studio Code, Spyder



 
 

 

Figure 2.3 Code snippet Used Libraries  

2.4 Network and Internet Requirements 
A constant network connection is important for downloading real datasets from archives such 
as UNSW and NSL-KDD or from previous papers. To my knowledge, Google Colab needs this 
ongoing internet connection for loading data sets and for terminal running the cloud code. 
You may also require additional access to third-party datasources/APIs in particular if utilising 
external threat intelligence is relevant. 

3 Installation and Setup 
The process of implementing the Network Intrusion Detection System (IDS) USING Machine 
Learning ranges from different steps whether it is by Google Colab or through the local 
environment. In Google Colab, you start with creating a new notebook, piping necessary 
libraries, and, if needed, to mount the Google Drive to work with datasets. Else, in a local 
setting, Windows/Linux/macOS environment, one requires to install Python itself along with 
necessary libraries such as pandas, scikit-learn, XGBoost and pip to install necessary libraries 
and datasets like NSL-KDD, UNSW-NB15 to download and store them. In setup phase Once 
this is done the data is preprocessed by handling missing values, encoding categorical 
variables, and normalizing the features. Afterwards, a number of machine learning algorithms 
are built and tested using accuracy and recall as the performance metrics and the output is 
viewed in the form of confusion matrix with the corresponding values for random forest, 
XGBoost and SVM. For cloud setups Google Colab is convenient if you need an environment, 



 
 

for more computational power you can use AWS or GCP. This setup thus permits effective 
recognition and identification of intended network irregularities and attack using machine 
learning. 

3.1 Development Environment Setup: 
training process for both Google Colab and local environments follows a well-defined 
pipeline, beginning with dataset collection and ending with model selection and 
optimization.foundation of the training process is laid with the collection of two widely 
recognized datasets: The datasets used in the experiments within this paper are the NSL-KDD 
and UNSW-NB15 datasets. These datasets are employed for analyzing and monitoring the 
network traffic and to detect intrusion. The NSL-KDD dataset is derived from the raw KDD Cup 
1999 dataset comprising of instances of normal traffic and attacks. UNSW-NB15 is a relatively 
newer dataset obtained from real life network traffic and includes different types attack 
categor 

 

 



 
 

Figure 3.1 Features  

Once the datasets are collected, they are read from the source in the working environment 
using pandas whether in Google Colab or any other local environment. Then the datasets are 
loaded and follow preprocessing to get the data in the right format to be used in training. 
These preprocessing transformations applicable to missing values are Replace Numeric 
feature mean or median Replace Categorical feature mode The value imputation for missing 
observations is done numerically or categorically to use the average for the feature 
(numerically) or the most frequent value or category (categorically). The subsequent variables 
like protocol_type, service, and flag are categorical variables hence we can easily encode 
these categorical variables using Label Encoding or One-Hot Encoding. In addition, the 
features duration, src_bytes, and dst_bytes are scaled by either MinMaxScaler or 
StandardScaler in order to confine its values to one or zero. Last but not the least, the data 
has been divided into training set and testing set Usually 70 & 80 percent data has been used 
for training the model and the remaining 20 & 30 percent has been used to test how the 
model performs in front of the unseen data. 

3.2 Defining Attack Class 

 

Figure 3.2 Code snippet Attack Class  



 
 

3.3 Feature Selection UNSW 

 

Figure 3.3 Code snippet Features Selection of UNSW dataset  

 

Figure 3.3 Code snippet Features Selection of UNSW dataset  

 



 
 

3.4 Heatmap for the Attributes 

 

Figure 3.4 Code snippet Features Heatmap of UNSW dataset  

3.5 Integer Attributes NSL-KDD 

 

Figure 3.5 Code snippet Attributs  



 
 

 

Figure 3.5 Code snippet Attributes distribution 

3.6 Attacks ratio in Training And Testing Data 

 

Figure 3.6 Code snippet Attack Ratios for single dataset  

 



 
 

 

Figure 3.6 Code snippet Attack Ratios for single dataset 

3.7 Attacks and Non-Attacks Ratio 

 



 
 

Figure 3.7 Diagram Attack Ratios for single dataset 

3.8 Attacks  

 

Figure 3.8 Code snippet Attack Classes 
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Figure 3.8 Diagram for Attack Classes 
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Figure 3.8 Diagram for Attack Classes 

 

Figure 3.8 Diagram for Attack Classes 

 

 

Figure 3.8 Diagram for Features representation for Attack Classes 



 
 

 

 

Figure 3.8 Diagram for Features representation for Attack Classes 

3.9 Feature Selection  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 3.9 Code Snippet for feature selection 

 

 

Figure 3.9 Code Snippet for feature selection 

3.10 Heat Map of Features 

 

Figure 3.10 Diagram for Heatmap of KDD 



 
 

 

 Since the data has been preprocessed, the next process is model selection. In this task, 
three machine learning models namely Random Forest, XGBoost, and Support Vector 
Machine (SVM) is selected. These models are chosen as a result of their ability to 
process a significant amount of information and high performance at detecting subtle 
features of network traffic. Random Forest is another type of classifier that uses the 
result of n decision trees in order to classify the data and it is also free of overfitting. 
XGBoost is a gradient boosting that works through building the model iteratively with 
a new model trained to minimize the error of the previous model, thereby making it 
perfect for training imbalanced datasets such as network traffic. The basic concept of 
SVM is particularly suitable for binary classification problems and it does not limit itself 
by the linearity or non-linearity of data. 

 After the models have been selected, training follows.lection. For this task, three 
machine learning models—Random Forest, XGBoost, and Support Vector Machine 
(SVM)—are chosen. These models are selected due to their ability to handle large, 
complex datasets and their proficiency in capturing intricate patterns in network 
traffic. Random Forest is an ensemble method that combines multiple decision trees 
to make predictions and is known for avoiding overfitting. XGBoost is a gradient 
boosting framework that builds models sequentially, with each new model correcting 
the errors of the previous one, making it highly efficient for imbalanced datasets like 
network traffic. SVM is effective for binary classification problems and can handle both 
linear and non-linear data. 

 As for the selection of the models, the training phase follows. During the training 
process of the model, this model identifies the preprocessed data and transfers the 
parameters through the features together with the corresponding attack class label. 
For instance, the Random Forest model creates n numbers of decision trees, and the 
XG Boost model develops the decision tree as well and builds the models to correct 
the previous model’s errors. The other type of regularization though less common is 
done also in the selection of hyperparameters with a view of enhancing the existing 
models. Some goes to factors such as number of trees in Random Forest, learning rate 
in XGBoost, type of kernel in SVM. The parameters of the above models are mu, alpha, 
and lambda for the Original GMM; k and m) for the EM GMM; and c and gamma for 
the K-means GMM resp Libertarians defend utilitarianism on the basis of rights: 
Analyzing the parameters of the above models, mu, alpha and lambda are the 
parameters of the original GMM; k and m are that for the EM-GMM; c as well• In 
Google Colab, the training process has advantages in terms of using external resources 
of the cloud, including such important resources as GPUs, which make it possible to 
carry out training much faster, especially in critical situations that require the use of 
large amounts of data.ck class label. For instance, the Random Forest model generates 
n numbers of decision trees, and the XGBoost model develops the decision trees also 
and builds the models to rectify the mistakes of the previous models. Regularization 
is done also in the selection of hyperparameters with the intention of improving on 
the models. It extends to parameters like the number of decision trees in Random 
Forest, the rate of learning in XGBoost, kernel type in SVM. The parameters associated 
with the above models include mu, alpha, and lambda for the original GMM; k and m 



 
 

for the EM GMM; and c and gamma for the K-means GMM models respectively 
Hyperparameters include items such as grid search or random search. 

 In Google Colab, the training process benefits from the platform’s cloud-based 
resources, including access to GPUs, which significantly accelerates the training 
process, especially when dealing with large datasets. After models are generated, the 
very next action is to assess the models, which we shall discuss below. The evaluation 
process is to check how well the trained models performed on a test set of data which 
the models had not seen at all. The multiple indices used to compare the results are 
accuracy, precisions, recollect rates, F1-scores, and confusion tables. Accuracy sums 
up the per cent of correct classification of all the records, while precision and recall 
see how a model does the right thing right in classifying positive records and avoiding 
both false Positive and false negative records. From the F1-score, it is clear that for 
getting the single value for the performance evaluation of the model, we use the 
harmonic mean of precision and recall. A confusion matrix is also utilised visually to 
examine if a model can differentiate between normal and distorted traffic. 

 • The best model is that chosen from the evaluated models according to the 
measurements made during the evaluation process. Additionally, the choice is based 
on such a balance between accuracy, precision, recall, and F1-score as possible. For 
instance, if the number of false positives must be kept to a minimum, then a high 
precision model (e.g XGBoost) can be used. In case high recall is a goal, that is, when 
the main objective is to identify as many attacks as possible, then SVM might be 
chosen. The final assessment for the best models for the system guarantees the 
intricacies of the intrusion detection in consideration with the task. 

 Apart from model selection, both hyperparameter optimization and cross-validation 
are essential steps in deriving the best out of models.the trade-offs between accuracy, 
precision, recall, and F1-score. For example, if minimizing false positives is crucial, a 
model with high precision (such as XGBoost) may be preferred. If detecting as many 
attacks as possible is the priority, a model with high recall (such as SVM) might be 
chosen. The final model selection ensures that the system meets the specific needs of 
the intrusion detection task. 

 In addition to evaluating and selecting models, hyperparameter tuning and cross-
validation play crucial roles in optimizing model performance. The second step is fine-
tuning where different hyperparameters are tuned in a bid to get a better model; the 
methods applied here are the Grid Search and Random Search. Cross-validation is 
used to avoid overfitting, that is tester performance is checked and then compared 
with train data so that to ensure that the model performs perfectly on data that it has 
not seen before. Cross-validation divides the set of values into several folders, while 
several subsets are used for training sets and others for the validation sets. This makes 
it easier to give a better estimate of the performance of a given model and also 
minimizes chances of overfitting. 

 

4 Final Testing and Validation 
This paper examined the network intrusion detection system and checked the results with 
the models to see how well they fared on new data. During this phase, the test datasets that 
had not been used in any of the model training were invoked to check the capability of the 



 
 

same models in identifying anomalies. The evaluation measures applied included, Accuracy, 
Precision, Recall, F1 score, and the confusion matrix. These metrics gave clear picture about 
the nature of model both strengths and weaknesses which exist in each of them. 

For instance, there was high accuracy and precision regarding the XGBoost model, a clear 
show of how its feature was capable of categorizing instances in the most efficient manner 
without watering down its true positive rate. Random forest focusing on big datasets yielded 
good performance and low Variance, whereas SVM model showed good recall and identify 
rare type of attack. A confusion matrix assisted in the depiction of the spread of the predicted 
results in an attempt to identify the regions that the models were accurate in their predictions 
as well as the regions that they were inclined to make errors. Comparing these results for all 
models was done and it revealed that image different algorithms possess certain strengths 
and relies on the selection of the model that typically suits the IDS. 

The validation and testing phase asserted that the models selected were able to discern both 
known and previously undetected threats in the network traffic. The preprocessing 
techniques used in this study; feature selection and normalization, enhanced models’ 
performance. All in all, the testing phase proved that the proposed concept of using the 
machine learning-based approach to address the problem of network intrusions is feasible. 

4.1 Classification 

 

Figure 4.1 Code Snippet for Decision tree Classifier 

 



 
 

 

Figure 4.1 Results Console 

 

Figure 4.1 Code Snippet Results console 

 



 
 

 

Figure 4.1 Code Snippet for DecisionTree Classifier 

 



 
 

Figure 4.1 Code Snippet for KNN Classifier 

 

Figure 4.1 Code Snippet for LR Classifier 

 



 
 

 

Figure 4.1 Diagram for Confusion Metrix 

 



 
 

Figure 4.1 Diagram for Confusion Metrix 

4.2 Evaluation Of NSL-KDD 

 

Figure 4.2 Evaluation for DecisionTree Classifier for NSL-KDD 

 

 

Figure 4.2 Evaluation for DecisionTree Classifier for NSL-KDD 

 



 
 

 

Figure 4.2 Evaluation for RandomForest Classifier for NSL-KDD 

 



 
 

 

 

 
 

Figure 4.2 Evaluation for XGBoost for NSL-KDD 

5 Conclusion and Future Work 
This research work has shown how machine learning models such as XGBoost, Random Forest 
as well as SVM can be used to identify network intrusions using existing datasets such as NSL-
KDD and UNSW-NB15. The findings revealed that these models should work well on large 
scale data, detect patterns in networks, and classify anomaly patterns with reasonable 
precision. It is worth to note that the processes of feature encoding, selection and 
normalization were crucial for improving the performances of the models. Hyper parameter 
optimization and validation also improved the generalization capabilities of the models from 



 
 

various input domains.• This system is one of the few that should emphasize the need for the 
use of machine learning when performing network intrusion detection.in detecting network 
intrusions using datasets like NSL-KDD and UNSW-NB15. The results showed that these 
models could handle large, complex datasets, identify patterns in network traffic, and classify 
anomalies with high accuracy. The preprocessing steps, including feature encoding, selection, 
and normalization, played a vital role in enhancing the models' efficiency. Hyperparameter 
tuning and cross-validation further ensured that the models performed reliably across diverse 
data distributions. 

 The success of this system highlights the importance of employing machine learning 
for network intrusion detection. It also offers a solution to cyber threats that can help 
to identify a problem before it becomes a major issue in the network. There are also 
affordability issues; sometimes it might produce false positives; and it struggles to 
identify mutating patterns. 

 As a future work, comparative analysis can be performed by incorporating higher level 
algorithms such as deep learning algorithms for better detection rates.s using datasets 
like NSL-KDD and UNSW-NB15. The results showed that these models could handle 
large, complex datasets, identify patterns in network traffic, and classify anomalies 
with high accuracy. The preprocessing steps, including feature encoding, selection, 
and normalization, played a vital role in enhancing the models' efficiency. 
Hyperparameter tuning and cross-validation further ensured that the models 
performed reliably across diverse data distributions. 

 The success of this system highlights the importance of employing machine learning 
for network intrusion detection. It provides a proactive approach to cybersecurity, 
enabling early detection of threats and reducing the risk of network breaches. 
However, there are limitations, such as the potential for false positives in some 
scenarios and the challenges posed by evolving attack patterns. 

 In the future, this work can be extended by exploring more advanced algorithms, such 
as deep learning models, to improve detection rates further. The appending of 
realtime data streams to the system can also assist to make the system more fluid and 
flexible in nature to new threats. Further, the incorporation of this system with cloud 
platforms could possibly take advantage of further flexibility compared to current 
applications and expand the areas of utilization. Further work on minimizing the 
number of false positives and enhancing the ability to better explain underlying 
machine learning algorithms will also be important to ensure that the implementation 
of IDSs becomes even more feasible and beneficial for detecting intrusions in realistic 
settings. 

 

6 Glossary 
• False Positive (FP): while the model provides an indication of an assault when traffic is 

normal. 
• Feature encoding is basically conversion of non- quantitative (qualitative) data string 

or categories that are textual or categorical into a form that CAN be tackled by the 
machine learning algorithm. 

• Feature Selection is the process by which only the relevant data points (features) are 
chosen from a dataset so as to enhance both the efficiency and performance of the 



 
 

model.r data point that deviates from regular behaviour and frequently indicates a 
potential threat or attack in network traffic.  

• assault Class: A number allocated to a certain sort of assault, such as DoS or Probe, to 
help machine learning models detect and describe it.  

• A confusion matrix is a table that displays a model's performance by stating the 
number of correct and wrong predictions in each category.  

• Cross-validation is a technique for determining how well a machine learning model 
works by dividing the dataset into smaller chunks and training and testing on each. 

• A dataset is a collection of data used for training and testing machine learning models. 
The datasets utilised in this experiment are NSL-KDD and UNSW-NB15. 

• False Positive (FP): while the model incorrectly predicts an assault while traffic is 
normal. 

• Feature encoding is the process of transforming non-numerical (categorical) data, 
such as text or categories, into numerical values that the machine learning model can 
use. 

• Feature Selection is the process of selecting only the most significant data points 
(features) from a dataset to improve the model's efficiency and accuracy. 

• Tuning is the act of tweaking a machine learning model and its environment by 
changing the hyperparameters so as to give the best results 

• An intrusion detection system (IDS) is a tool or system that detects and alerts to 
unauthorised network access or activity. 

• Machine Learning (ML) is a sort of artificial intelligence in which computers learn from 
data to make decisions or predictions rather than being manually programmed for 
each task. 

• Normalisation is a method of scaling data so that all values fall within a similar range, 
making it easier for the model to handle. 

• Precision is a measure of how often the model's predictions of an assault are accurate. 
Consequently, high definition leads to reduction of false alarms. 

• Accuracy is a measure of how many of the actual attacking events the learning model 
identifies.settings to improve its performance. 

• An intrusion detection system (IDS) is a tool or system that detects and alerts to 
unauthorised network access or activity. 

• Recall is a measure of how many actual attacks the model correctly identifies. Less 
missed attacks are noticed if the recall is high. 

• SVM (Support Vector Machine): One of the machine learning approaches that are used 
in classifying data especially difficult and large data set. 

• Confusion Matrix Metrics: Parameters that indicate the effectiveness of the model, 
these are the true positive which are the attacks identified as such, false positive which 
are the normal traffic that is labeled as an attack, the true negative is the normal traffic 
correctly identified and the false negative which are the attacks that were not 
detected. 

• Overfitting: When a model learns the training data too well, and thus it becomes an 
overfitting model that does badly when tested on other data. 

7 Acronyms 
IDS: Intrusion Detection System 
ML: Machine Learning 



 
 

FP: False Positive 
FN: False Negative 
TP: True Positive 
TN: True Negative 
SVM: Support Vector Machine 
NSL-KDD: Network Security Lab - Knowledge Discovery in Databases 
UNSW-NB15: University of New South Wales - Network-Based 15 Dataset 
ROC: Receiver Operating Characteristic 
F1-Score: F1 Measure or Harmonic Mean of Precision and Recall 
GPU: Graphics Processing Unit 
CSV: Comma-Separated Values 
API: Application Programming Interface 
RF: Random Forest 
XGBoost: Extreme Gradient Boosting 
CSV: Comma-Separated Values 
RFE: Recursive Feature Elimination 
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