Configuration Manual

MSc Research Project
Cyber Security

Loudu Mary Gade
Student 1D: 23188189

School of Computing
National College of Ireland

Supervisor: Khadija Hafeez

""""
\ National

College o
Ireland

‘——
\ National
College

[reland

Configuration Manual

Loudu Mary Gade
Student ID: 23188189

1 Introduction

This configuration manual offers cognitive solution that explains how to implement and
deploy a Network Intrusion Detection System (IDS) based on machine learning (ML)
algorithms. This project aims to identify the ability to detect anomalies in NSL-KDD and
UNSW-NB15 datasets which consist of normal and abnormal network profiles. This manual
describes how to prepare the datasets for analysis, how to create feature vectors, to choose
relevant features, how to train a machine learning model, and how to assess its performance.
Majority of the concepts that has been studied under this project are Random Forest,
XGBoost, Support Vector Machine and other classifiers like K- Nearest Neighbors and Decision
Trees.Another important part of this work is to improve the feature selection step for the
machine learning models by using Pearson Correlation Coefficient and Recursive Feature
Elimination (RFE) for the purpose of increasing the accuracy of final model and reducing
computational expense. They help filter in models only the most pertinent characteristics
which increases the models’ learning efficiency and predictive accuracy of the model.The
manual is suitable for beginner and advanced users; it guides the users through executing the
solution in local environments as well as Google Colab. At the end of this guide, the reader
will be well equipped with knowledge and understanding of how to filter network traffic data
for machine learning, train and have insights in the performance of machine learning to detect
network intrusions effectively.

2 System Requirements

Architecture hierarchy of the Network Intrusion Detection System (IDS) is discussed below:
These consist of normal and attacks, including network traffics, which were tested using NSL-
KADD and UNSW-NB15 datasets found in the Data Layer. This data can be store either into
local storage or to cloud storage systems The Preprocessing layer relates to how the data is
cleaned, transformed, encoded for categorical features, normalized and how different
features are chosen using methods like Pearson correlation or Recursive feature elimination

and so on. This prepares the data to be used in the different developing machine learning
models.This makes the Model Training Layer contain the development of the machine
learning models such as; Random Forest, XGBoost, SVM, KNN, Decision Trees among others.
These models are trained through the prepared data to recognize network anomalies and
attacks.The Evaluation and Testing Layer adopts Accurate, precisely, Recall value, F1 Score &
Confusion Matrix to test the models. This makes the models do well in unseen data.To be
precise, the last layer, the Visualization Layer, seeks to present performance metrics in heat
map, confusion matrix, and pie chart to justify the effectiveness of the models.

2.1 System Architecture

pd.read csv{path)
= pd.read csv({path_test)

file path test = 'KDDTest+.txt

df = pd.read csv(file_path full training set)
test df = pd.read csv(file path test)

Figure 2.1 Code snippet Dataset Loading

2.2 Hardware Requirements

To run the IDS efficiently with machine learning models, some basic and general requirements
of hardware are needed. The minimum recommended Processor (CPU) should be an Intel i5
and of course an Intel i7 or higher is desirable especially if you will be dealing with large files.
The RAM users should allocate is of the minimum 8 GB, but 16 GB or more is preferable to
speed up data computation and processing of big data such as NSL-KDD and UNSW-NB15
datasets. Storage is another component where at least 50GB of free disk space is needed for
storing the datasets and model results. If more data or another model is desired, the
recommended storage space is 100 GB or higher. Although, GPU is not compulsory in general
machine learning algorithms like Random Forest, XGBoost, SVM etc., but a GPU say NVIDIA
GTX series is useful in Neural Network or larger data set.

Component Minimum Requirement Recommended Requirement

Processor (CPU) |Intel i5 or equivalent Intel i7 or equivalent for better performance
RAM 8GB 16 GB or more for faster data processing
. 100 GB or more if saving additional data or
Storage 50 GB of free disk space
models
Graphics . .
.) Not necessary for Dedicated GPU (NVIDIA GTX series or
Processing Unit

traditional ML models equivalent) for neural networks

(GPU)

2.3 Software Requirements

The following software components are required as the necessary components of the IDS
system that will be implemented and run. Local: OS could be Windows 10/11 or Linux>Ubuntu
18.04 or later except macOS, or Google Colab running on the cloud could be used. Google
Colab will be most ideal for the users that may not have excess local hardware resources to
code with.The Programming Language to be used must be Python 3. x with preference being
given to Python 3.8 and above. In achieving the machine learning tasks, many libraries that
will be needed include Pandas for data manipulation, numpy for computations, specifically
for the numerical calculations scikit-learn for the Models in Machine learning and its
preprocessing, feature selection and evaluation, XGBoost for the implementation of XGBoost
model, Data visualization and Structural graphics are done by using Matplotlib and seaborn
Scikit-plot is mainly used advanced visualization including Confusion Matrix. Other useful
libraries are itertools and os which help in working with iterators and managing file
paths.Respoinsible: Others include itertools and os which assist in operating iterators and file
paths.For the Development Environment, tools like Jupyter Notebook or Google Colab is is
suitable in introducing interactivity into coding offline development can be done using
integrated development environment like Pycharm, visual studio code or spyder among
others.

Software Component Requirement

Windows 10/11, Linux (Ubuntu 18.04 or later),

Operating System
P Ll macOS, or Google Colab

Programming Language Python 3.x (Recommended: Python 3.8 or higher)

pandas, numpy, scikit-learn, xgboost, matplotlib,

Libraries/Frameworks o .
seaborn, scikit-plot, itertools, os

Jupyter Notebook, Google Colab (Recommended
Development Environment [for cloud-based execution), or IDE like PyCharm,
Visual Studio Code, Spyder

T numpy as np

t os
klearn.metrics i

rt pandas as pd

t matplotlib.pyplot as plt
"t seaborn as sns

ort itertools
t random

ort matplotlib.gridspec as gridspec

m sklearn.preprocessing import LabelEncoder

train_test split

t cross_val_score

T accuracy_sco
t confusion_matrix

.preprocessing import StandardScaler

= import classification_report
t scikitplot.metrics as splt

Figure 2.3 Code snippet Used Libraries

2.4 Network and Internet Requirements

A constant network connection is important for downloading real datasets from archives such
as UNSW and NSL-KDD or from previous papers. To my knowledge, Google Colab needs this
ongoing internet connection for loading data sets and for terminal running the cloud code.
You may also require additional access to third-party datasources/APIs in particular if utilising
external threat intelligence is relevant.

3 Installation and Setup

The process of implementing the Network Intrusion Detection System (IDS) USING Machine
Learning ranges from different steps whether it is by Google Colab or through the local
environment. In Google Colab, you start with creating a new notebook, piping necessary
libraries, and, if needed, to mount the Google Drive to work with datasets. Else, in a local
setting, Windows/Linux/macQOS environment, one requires to install Python itself along with
necessary libraries such as pandas, scikit-learn, XGBoost and pip to install necessary libraries
and datasets like NSL-KDD, UNSW-NB15 to download and store them. In setup phase Once
this is done the data is preprocessed by handling missing values, encoding categorical
variables, and normalizing the features. Afterwards, a number of machine learning algorithms
are built and tested using accuracy and recall as the performance metrics and the output is
viewed in the form of confusion matrix with the corresponding values for random forest,
XGBoost and SVM. For cloud setups Google Colab is convenient if you need an environment,

for more computational power you can use AWS or GCP. This setup thus permits effective
recognition and identification of intended network irregularities and attack using machine
learning.

3.1 Development Environment Setup:

training process for both Google Colab and local environments follows a well-defined
pipeline, beginning with dataset collection and ending with model selection and
optimization.foundation of the training process is laid with the collection of two widely
recognized datasets: The datasets used in the experiments within this paper are the NSL-KDD
and UNSW-NB15 datasets. These datasets are employed for analyzing and monitoring the
network traffic and to detect intrusion. The NSL-KDD dataset is derived from the raw KDD Cup
1999 dataset comprising of instances of normal traffic and attacks. UNSW-NB15 is a relatively
newer dataset obtained from real life network traffic and includes different types attack
categor

df.info()

<class ‘pandas.core.frame.DataFrame’>

RangeIndex: 125972 @ to 125971

Data columns (total 43

Dtype

duration null int64
protocol_type 59 null object
service 59 null object
flag -null object
src_bytes null int64
dst_bytes null int64
land null int64

g_fragment null inte64
urgent -null int64

hot 59 null int64
num_failed logins null int64
logged in null int64
num_compromised null inte64
root_shell -null int64

null int64

null int64
num_file creations 59 null int64
num_shells null inte64
num_access_files -null int64
num_outbound_cmds 5 null int64

attack null object
level 125972 null inte4
dtypes: float64(15), int64(24), object(4)
memory usage: 41.3+ MB

dft.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 175341 entries, @ to 175348
Data columns (total 45 columns):

Column Non-| C Dtype

non-null int64

non-null float64

non-null object

service non-null object
state non-null object
spkts non-null int64
dpkts non-null int64
sbytes non-null int64
dbytes non-null int64
rate non-null float64

8 sttl non-null int64
dttl non-null inté4
sload non-null floaté4
3 dload non-null float64
sloss non-null int64
5 dloss non-null inté4
6 sinpkt non-null float64
dinpkt 341 non-null float64
sjit non-null float64

9 djit 341 non-null float64

3 attack cat non-null object
label non-null int64
dtypes: float64(11), int64(38), object(4)
memory usage: 68.2+ MB

Figure 3.1 Features

Once the datasets are collected, they are read from the source in the working environment
using pandas whether in Google Colab or any other local environment. Then the datasets are
loaded and follow preprocessing to get the data in the right format to be used in training.
These preprocessing transformations applicable to missing values are Replace Numeric
feature mean or median Replace Categorical feature mode The value imputation for missing
observations is done numerically or categorically to use the average for the feature
(numerically) or the most frequent value or category (categorically). The subsequent variables
like protocol_type, service, and flag are categorical variables hence we can easily encode
these categorical variables using Label Encoding or One-Hot Encoding. In addition, the
features duration, src_bytes, and dst bytes are scaled by either MinMaxScaler or
StandardScaler in order to confine its values to one or zero. Last but not the least, the data
has been divided into training set and testing set Usually 70 & 80 percent data has been used
for training the model and the remaining 20 & 30 percent has been used to test how the
model performs in front of the unseen data.

3.2 Defining Attack Class

=

o
VP

Figure 3.2 Code snippet Attack Class

3.3 Feature Selection UNSW
FEATURE SELECTION

normal =

Pythan

Pythan

ig

Pythan

*object’)

non_numer: total lect ¢
print("No eric ¢ , non_numeric_

_cat'], dtype="object')

1].astype(

=1_dsta_nume:

Figure 3.3 Code snippet Features Selection of UNSW dataset

3.4 Heatmap for the Attributes

id 004 04 022 PS 032 035 014 026 022 026 0072 -0.22 BMESEN 0.23 0.098 0.22 015 0.53
service - Q.04 0.16 025 0.31 041 013 0.1 022 01 0.24 034 M38 024 011 036 =3P -0.11 0.0062 0.11 Q.23
state - D4 012 -0.076 .15 0.14 0.13 -0.130.0019 015 E{].f!lq--ﬂ.ﬂ;!? 015 ol 04 022

rate - Q.22 044 0.32 0,14 0066 -0.21 0.19 0.2 -0.056 0.12 0.41-0.0057-0.13 013 0.066 36 0.32 0.12
0075038 0.19 012 011 01 0072 D-OB}M 0.12 0.074 0.088 0.2 ﬂ 0.55 03

0.19 -0.13 el L RRVFEY 0.19 0.28 -0.039 0.24 031 0.32 -0.14 -0.086 0.25 038

O -0.063 0.18 0.17 -0.18 0.14 013 034 0.047 0.096 0.1 -0.061 0.29 O.33 -0.24

sith- 5 031 052 0.44

dftl - 0.32 041 019 032 0075
dload --0.35 | -0.13 -0.076 -0.14 -0.34
anpkt - 0.14 -0.1 015 -0.066 -D.19 0.079-0.072-0.077-0.0682-0.087 Q.16 -O.DSE-D.DE‘J.-G.OE!E 013 015 0.11
tprtt - 0.26 022 -0.14 021 012 0.14 0.1%9 0.08% 0.12 019 -0.22 -0.086-0.043 0.15 0.24
synack - 0.22 018 -0.13 019 011 RS 0.12 0.16 0.084 0.17 0.16 -0.19 0.079-0.023 011 019
ackdat - 0.26 0.24 013 02 01 0.13 02 0083 0.19 019 -0.22 -0.083-0.069 0.18 0.26
smean -0,072 0,34 0.0015-0.056 0.072 -0.034,1e-050,014 -0.02 -0.033-0,083-0.023 0062 0.1

ct_srv_src --0.22 SR38 0.15 0.1z 0.093 -0.28 012 -0.087 -0.19 0.16 0.2 -0.03 0054 048 -D.l?mﬁ.093 017 025 -0.25

0.064-0.077 0.1 D.lbmﬂ.!l 0.3

ct_flw_http_mnthd - 0,098 0.36 -0.029 0.13 -0.074 0.31 -0.096-0.051 0.19 016 019 -0.02 -0.17 -0.077-0.068

of_state (1l JESES 024 0.41 m-D.Uis .38 016 0.089 0.084 0.0534.1e-050.094

ct_dst Itm --0.23 -0.11 0.0180.0057-0.12 -0.24 0.047 -0.055 -0.19 -0.17 -0.19 -0.014 049 -0.06

B_sm_ips_ports - 0.15 0,11 0.16 -0.066 0.2 -0.14 -0.061

atback_cat L0062 -0.36

ELR0.086 0.29 013 -0.049-0.023-0.069-0.023 0.17 m 017 0.036 017 013

abel 011 0.4 032 MeSSS 025 033 -0.15 015 011 0.1E 0.069 -0.25 fQS1 -0.22 0.095 -0.25 0.15 8

attack_class 7R3N 0.23 022 012 03 038 024 011 024 1% 026 01 0.25 03 012 014 -0.26 -0.11 -0.35 g
i [

£

i i Ll i i i i 1 Ll i T 1
=T ¥ & 8 T ®B 3§ X # % s ¢ E E E E £ % T &
= -} E L] < =4 & 2 0 il & 2 =] -] 5 = k]
2] = 1 = R E = & - E = R = E
. =85 5 E 8 o B g 3 #
¢ ¢ ¢ £ ¢ 5 § 3

= -3

o)

o

Figure 3.4 Code snippet Features Heatmap of UNSW dataset
3.5 Integer Attributes NSL-KDD

Integer Attributes

duration distribution src_bytes distribution

poane 130000

=ovan 50000

- . ~ o - - -
a 10004 zaba0 30600 40060 w0 02 o4 o o8 Lo 12 14
19

dst_hytes distribution hot distribution
200000

130000

souon sa000

o

oz [x) oe o3 To 12 w zu = an = o n)

num_compromised distribution

oo
ao0om0 10000
=anan 53006
o o
a
o

num_root distribution

1000 F0an anan anon s0a0 () a0 10a0 000 aran anon soan rona 7000

count distribution srv_count distribution

130000
anaa

006
avoso

53000
z00n0 .

o

100 za0 00 w00 =an oo 200 0 a0 ~au

dst_hast_count distribution dst_host_srv_count distribution
sonan

para oo

avase 20000

zvavo 10005

Figure 3.5 Code snippet Attributs

- 0.50

025

- Q.00

-0.25

0,50

—-0.75

duration
protocol_type
service

flag

src_bytes
dst_bytes

and
wrong_fragment
urgent

. hot

num_failed _logins
logged_in
num_compromised
root_shell
su_attempted

num_root
num_file_creations
num_shells
num_access_files
num_outbound_cmds
is_host_lagin

is_guest login

count

srv_count

serror_rate
srv_serror_rate
rerror_rate
srv_rerror_rate
same_snv_rate

diff_ srv_rate
srv_diff_host_rate
dst_host_count
dst_host_srv_count
dst_host_same_srv_rate
dst_host_diff_srv_rate
dst_host_same_src_port_rate
dst_host_srv_diff_host_rate
dst_host_serror_rate
dst_host_srv_serror_rate
dst_host rerror_rate
dst_host_srv_rerror_rate
attack

level

2864
5728 -
8592 -
11456 -
14320
17184
20048
22912
25776 -
28640 -
31504 -
34368 -
37232
40096
42960
45824
48688
51552
54416
57280
60144
63008
65872
68736 -
71600 -
74464
77328
80192
83056
85920
88784
91648
94512
97376
100240
103104
105968
108832
111696
114560
117424
120288
123152

Figure 3.5 Code snippet Attributes distribution
3.6 Attacks ratio in Training And Testing Data

(df.attack_state J.sum{ }#len{dF)

4654 28EBT181 7R

- 181863986204 884 26

Figure 3.6 Code snippet Attack Ratios for single dataset

<ipython-input-21-14e18bd82136>:1: UserMarning: Ignoring “palette’ because no “hue” variable has been a
=ns. kdeplot(

<Axes: xlabel="attack state’, ylabel="Density"':>

0.4 0.6
attack_state

Figure 3.6 Code snippet Attack Ratios for single dataset
3.7 Attacks and Non-Attacks Ratio

my_labels = 'Mumber of 2
plt.pie{myData, label
plt.

plt.
plt.

Attack Rate
Number of Attacks

Number of Non-attack Situations

Figure 3.7 Diagram Attack Ratios for single dataset

3.8 Attacks

df.hea

Python

n(test_df)

len(test_df)

Figure 3.8 Code snippet Attack Classes

Dos/D0os Probe.

Figure 3.8 Diagram for Attack Classes

Attack Classes

Hormal

2k

Probe

Dos/0Dos

Figure 3.8 Diagram for Attack Classes

protocol type

Figure 3.8 Diagram for Attack Classes

norma DDoS atimck e
[EE) - - ep
- - a
- i - el
wrnp - e
- i dsa - o
- e . cnet_s
_— at -—
- iret rerp_ 883
L] - e
- urp i - meenain
- fager - daytime
. o ip
- aith - gepher
LI L
- g) L
- RC L
-y [
. e B hostnames
-l — -
L__I-=lut LB
-t - g
- - chn
- - rmin
- uh L
- el - o0
- ap wanrp
- T - rethios 55
_— sl
rethios_ns
o shell
- h
-
wmtp
- net
-y
-
- o Y
— i
- il ol
— cher
- shell
-

Figure 3.8 Diagram for Features representation for Attack Classes

- - -
a1
- - -
- - -
- - -
- - -
- - -
- - -

- - -
[—_ -
-k -
[—— -
-y -

- uicp path

Figure 3.8 Diagram for Features representation for Attack Classes

3.9 Feature Selection

normal_

Python

Pythan

total_data

Fythan

Python

Figure 3.9 Code Snippet for feature selection

hlEhF'

highest

t.Figure(figs
=sns.heatmap(

Figure 3.9 Code Snippet for feature selection

3.10 Heat Map of Features

wrong_fragment - 082023 00.064028 (B0SNODTDZA09 054017 18 00005 DIN045 08.2D.1 D.10.010.2D ZX0IRD R L020.00.0 X520 (RS BTN DIOD 7 7 o
0 muuzm u)a)a}omzamrw). 140039.20.070.28.0
041210, X502 8. .0 78!
c:-l -5 098.40. X058, 25 0 7L A
03 R, 3, 2038 0.75
.3@.20.38
b.140.10.18.1
220,23 05008650.2D.22 0T IE1 D20 mcnw 030302 0430319,05% 10,30 02 SC2HIX2D 21
A’nanm,mu’\fﬂ 1602 130250043 0as 60051 15 0.9.060.10. 16 06014 0810 718,060 23, IMOSR0 R0 4D S0 6.50
dei st v b 9.0 i .1D.1 g E 0.0207 AT H0.18 19.2°3 00141B.10.088526.048.1 2850, 13 BE)00 D5 18,093
dst_host_same_srv_ral : 3. 0.13.1(URRp. 16,1015 020.15.18,09528.050.1 880,13 09L1D.1Y

host_dift_srv_t 30.036.D.0S0TM0TL04112. 10,030 18.20 0040860 LEOR, 3590, T 06 BOTW OTILN AROES
dst_host_same_s1c_port_rate 0.0 0028, 20,04504420 069045220201 3.3 40D 10.28. 2905001083 18 19,42 1 0,D.08:0 35420, 2. 054K, 38 000DV 0 W2, 20
dst_host_srv_dift_nost_rate-0087110.20.3:9.18.110.10.22 0562 1 6.076.16.0 351 P 19.19.1D.10.038. 20, 20 02071 0020050 DIRA12 18,043 32 0PI LE.0 18 WF092 025
dst_nost_serror_rate-0.0535 0.STEEEER) 2.0 2 1D, 10,2240 0. 10.25. 1 PYER0 22 20 1 I 0. 18.29. 2509 D.20.30.04360. 098,40, X056.18.07
error_rate-8,0 L. 2D 1ﬁ 10,2940 10) 099.26.
3

13.20.120.20.2 ELELO. ‘x)*x-msommm. MEOTAOSL 1) ;u.; 0.96 1

_terror_rate <

attack_class 9.1 SREOE L K0 19.1 19.2DEY EIRE B 7
£mp 0.018.10.28. 3. 13,0606 0.10.08. osunmoaonan,. 19,13.05108226.1D.1
wp 02030102929 101D 20280490.10.19,19.18 1D 0/0.29.29,1D.19.24.101
udp 0.2 32063.24.29.1:0.12. 23 0I60151 D.19.10.220. D092 28.28 096 12. 16.29. 25 0 LY 06103820 IF0CN696.030-D.04120.3
Z39 5000080 /6. D.OFODD B0 3, TR0 10, UEOER0S00E TRO 0RO MO I LOIKOHR] D. !D(lllllﬂh DR DORI0GE0 TSR B ARATHESR 11 —0.2
domain_u-R.028. 200661202 020980 06 0.1 $.24.28, 0990860 10,203 02D98. 10,20, T 05 090 1120 048 32 00/0DN8N 31D, 2.24
cr_i 6.025.16.39.1:0. 100520521 0. 66 04D 61040430 W54 00060, 1. 0B0KE 10,13, 1 650,30 c»emym 040,12 026,60 0450 D40 1311, 1.
Np_data-6. 00050 KB OHISNGD608 D0 A8 149, 1 B.060, 2. OIRODNNENLN60 5% 1-0.-D.042. 10 DBEDID 70.0- .18 0394 062 A2.(RE0BN6D96
nttp 0.0 TR 0040850 20,13 3.0 D 0300208 18.32.27.066.20.18.1 3
cther 2,015, 3L 0BI0E0INZNEH 23,20, 05460, 19, 1 915848 . 000 I0AUIE004L 19. 1D.030,3).30 0150060760 37. 1 JI 000420020390 D0 11 -0.50
private 0200802504 0.0.0007 P 092 15,2 WFE 0.10.140.1 2 40.90. 0090 T50SAAE. 45,005 D86 36 1-0.070.10.30. 00 10 0851950 041
smtp 0.02520,19.18.10,00107518,0 1238, BO0I0R 06E0 DB 149, 15, 0800052, 20,0001 10, 0BDRD D043 10,041 1
U P 0BT BDD TG 15033.1.0 CORT) 8RB0 TNAB03H. 1 0.0 D 35-00ETBDIO 11 20061000085 2§l 028 16.088.1
RE)-0.020:250.30.38 1 JEJTED 265002516 100 200611 TEEER 010,14, 16.055120. .00 0830470560 008.0960D102 [l 032 1935
RST10-8.01.UBD{BODX) 1836, !l) IZ0DABD TXO0, 09 X10 THO B DEOTA0 A3 D.33.058.1 0. D090 KL 63 DI D B0 DE0D DD DKEEDO0 20,0 01 -0.75
50-6.06ED5T .20.23h 10, 2:4 0 038.28.1 X0 22 20 15 118,28 26092.20. 300650 09F4D. XF056.18.07
SF6.07 LTI JDJ 10.29 oHH28 0. 3930) P 1350, 30.10.24.16.0984%.1 150 180. 10, w
3 a o . . =t
g4 g 9N

attack state 013 aa‘nn\v- 13 1£ 19, 211"- 1219 2¢ 0 10248

L350.10,320.8.050.10.030.12.048 28,35

w

h
ther

mp -
smtp -

ount -
fevel -

K

39
domain_u -

RSTO -

peiva’

gged_in

I
SeITor_rats
refror_rate

&ff srv rate -
diff_srv_rate

same_srv_rate

srv_rerror_rate

Sv_serror_rate
dst_host_count

sn

wrong_fragment

srv_diff_host_rat:

 ho!

!

dst_host_sarr
5t_host_same_src_port rate -

dst_no

Figure 3.10 Diagram for Heatmap of KDD

Since the data has been preprocessed, the next process is model selection. In this task,
three machine learning models namely Random Forest, XGBoost, and Support Vector
Machine (SVM) is selected. These models are chosen as a result of their ability to
process a significant amount of information and high performance at detecting subtle
features of network traffic. Random Forest is another type of classifier that uses the
result of n decision trees in order to classify the data and it is also free of overfitting.
XGBoost is a gradient boosting that works through building the model iteratively with
a new model trained to minimize the error of the previous model, thereby making it
perfect for training imbalanced datasets such as network traffic. The basic concept of
SVM is particularly suitable for binary classification problems and it does not limit itself
by the linearity or non-linearity of data.

After the models have been selected, training follows.lection. For this task, three
machine learning models—Random Forest, XGBoost, and Support Vector Machine
(SVM)—are chosen. These models are selected due to their ability to handle large,
complex datasets and their proficiency in capturing intricate patterns in network
traffic. Random Forest is an ensemble method that combines multiple decision trees
to make predictions and is known for avoiding overfitting. XGBoost is a gradient
boosting framework that builds models sequentially, with each new model correcting
the errors of the previous one, making it highly efficient for imbalanced datasets like
network traffic. SVM is effective for binary classification problems and can handle both
linear and non-linear data.

As for the selection of the models, the training phase follows. During the training
process of the model, this model identifies the preprocessed data and transfers the
parameters through the features together with the corresponding attack class label.
For instance, the Random Forest model creates n numbers of decision trees, and the
XG Boost model develops the decision tree as well and builds the models to correct
the previous model’s errors. The other type of regularization though less common is
done also in the selection of hyperparameters with a view of enhancing the existing
models. Some goes to factors such as number of trees in Random Forest, learning rate
in XGBoost, type of kernel in SVM. The parameters of the above models are mu, alpha,
and lambda for the Original GMM; k and m) for the EM GMM; and ¢ and gamma for
the K-means GMM resp Libertarians defend utilitarianism on the basis of rights:
Analyzing the parameters of the above models, mu, alpha and lambda are the
parameters of the original GMM; k and m are that for the EM-GMM; ¢ as welle In
Google Colab, the training process has advantages in terms of using external resources
of the cloud, including such important resources as GPUs, which make it possible to
carry out training much faster, especially in critical situations that require the use of
large amounts of data.ck class label. For instance, the Random Forest model generates
n numbers of decision trees, and the XGBoost model develops the decision trees also
and builds the models to rectify the mistakes of the previous models. Regularization
is done also in the selection of hyperparameters with the intention of improving on
the models. It extends to parameters like the number of decision trees in Random
Forest, the rate of learning in XGBoost, kernel type in SVM. The parameters associated
with the above models include mu, alpha, and lambda for the original GMM; k and m

for the EM GMM; and ¢ and gamma for the K-means GMM models respectively
Hyperparameters include items such as grid search or random search.

e In Google Colab, the training process benefits from the platform’s cloud-based
resources, including access to GPUs, which significantly accelerates the training
process, especially when dealing with large datasets. After models are generated, the
very next action is to assess the models, which we shall discuss below. The evaluation
process is to check how well the trained models performed on a test set of data which
the models had not seen at all. The multiple indices used to compare the results are
accuracy, precisions, recollect rates, F1-scores, and confusion tables. Accuracy sums
up the per cent of correct classification of all the records, while precision and recall
see how a model does the right thing right in classifying positive records and avoiding
both false Positive and false negative records. From the Fl-score, it is clear that for
getting the single value for the performance evaluation of the model, we use the
harmonic mean of precision and recall. A confusion matrix is also utilised visually to
examine if a model can differentiate between normal and distorted traffic.

e ¢ The best model is that chosen from the evaluated models according to the
measurements made during the evaluation process. Additionally, the choice is based
on such a balance between accuracy, precision, recall, and F1-score as possible. For
instance, if the number of false positives must be kept to a minimum, then a high
precision model (e.g XGBoost) can be used. In case high recall is a goal, that is, when
the main objective is to identify as many attacks as possible, then SVM might be
chosen. The final assessment for the best models for the system guarantees the
intricacies of the intrusion detection in consideration with the task.

e Apart from model selection, both hyperparameter optimization and cross-validation
are essential steps in deriving the best out of models.the trade-offs between accuracy,
precision, recall, and Fl-score. For example, if minimizing false positives is crucial, a
model with high precision (such as XGBoost) may be preferred. If detecting as many
attacks as possible is the priority, a model with high recall (such as SVM) might be
chosen. The final model selection ensures that the system meets the specific needs of
the intrusion detection task.

e In addition to evaluating and selecting models, hyperparameter tuning and cross-
validation play crucial roles in optimizing model performance. The second step is fine-
tuning where different hyperparameters are tuned in a bid to get a better model; the
methods applied here are the Grid Search and Random Search. Cross-validation is
used to avoid overfitting, that is tester performance is checked and then compared
with train data so that to ensure that the model performs perfectly on data that it has
not seen before. Cross-validation divides the set of values into several folders, while
several subsets are used for training sets and others for the validation sets. This makes
it easier to give a better estimate of the performance of a given model and also
minimizes chances of overfitting.

4 Final Testing and Validation

This paper examined the network intrusion detection system and checked the results with
the models to see how well they fared on new data. During this phase, the test datasets that
had not been used in any of the model training were invoked to check the capability of the

same models in identifying anomalies. The evaluation measures applied included, Accuracy,
Precision, Recall, F1 score, and the confusion matrix. These metrics gave clear picture about
the nature of model both strengths and weaknesses which exist in each of them.

For instance, there was high accuracy and precision regarding the XGBoost model, a clear
show of how its feature was capable of categorizing instances in the most efficient manner
without watering down its true positive rate. Random forest focusing on big datasets yielded
good performance and low Variance, whereas SVM model showed good recall and identify
rare type of attack. A confusion matrix assisted in the depiction of the spread of the predicted
results in an attempt to identify the regions that the models were accurate in their predictions
as well as the regions that they were inclined to make errors. Comparing these results for all
models was done and it revealed that image different algorithms possess certain strengths
and relies on the selection of the model that typically suits the IDS.

The validation and testing phase asserted that the models selected were able to discern both
known and previously undetected threats in the network traffic. The preprocessing
techniques used in this study; feature selection and normalization, enhanced models’
performance. All in all, the testing phase proved that the proposed concept of using the
machine learning-based approach to address the problem of network intrusions is feasible.

4.1 Classification

,1abels=np.unigue(dt_pred))

ACCURACY :
PRECISON

n_matrix(y_test, dt_pred)

{'center’: Confusion Matrix'}, xlabel='Predicted label’, ylabel='True label’s

Confusion Matrix

0 2109 90 2232 6723 1737 49 3

14 471 9230 206 2611 1947 3219 493 7

50000

2{165 462 33 261 948 123 8 Q 40000

542281 3157 178 13592 8584 5329 256 16

64 123 218 o 57951?'-1 13 4]

30000

True label

20000

7{ 32 909 42 1421 1369 6120 281 7
8] 27 97 1 243 48 681 34 2 10000

Predicted label

Figure 4.1 Code Snippet for Decision tree Classifier

recall F1- support

8.82 -8 7Bale
8.51 s O 1818

8.e8

aCCuracy
maCro 3 B 8.48
8.68

support

78818

macro
weighted

stingClas

ACCURACY

PREC. N

CLASSIFIER RECALL : 8.7
SIFIER F1_SCORE : @

Figure 4.1 Code Snippet Results console

Confusion Matrix

o 2292 TO30 1841
50000
13 2708 1713 1754
12 232 9713 122
2 17335 7782 4268

0 438 EBGE] 167

0 1461 1188 6853

True label

o 309 4 711

a3 a 45

5 -]
Fredicted label

precision recall

-unigue{knn_pred)])

AC
ECTSON :

RECALL :

F1_SCORE

splt.p i knn_pred

title={ 'center": " Matrix"}, xlabel="Predicted label®, ylabel="True label"’:>

Confusion Matrix

0- 2074 0 2403 6464 2499

14 193 8081 9 5430 2230 2241

110 533 278 832 247

1035 2938 18157 7189 4071

True lakel

5217 22581 0O 444 11484 274

164 864 4547 1205 3701

472 21 536

107 16

5 B
Fredicted label

Figure 4.1 Code Snippet for KNN Classifier

print{classification_report(y_test, knn_pred

1531: UndefinedMetrick

1531: UndefinedMetrick
verage, modifier, f"{metric.capitalize
precision recall F1- e support

@ E

m

56

.18/dist-packag ics/ ificati 1531: UndefinedMetrichk
modifier, f"{metric.capitalize

np.unique(lr_pred))

ACCURACY : B.687
N : B.78
REGRESSTON RECALL :

Figure 4.1 Code Snippet for LR Classifier

True label

Confusion Matrix

4] 122 o 971 12543 60 (+]
1 o 2268) 3504 12337 55 Q
2 o 19 o 181 1785 15 Q
5 o 536 o 8138 24582 137 a
6 o 2 o o ﬁ 1] a
7 o 379 o 2010 T&E20 282 Q
a8 o a5 o 213 |00 35 4]
R n] 4 o S0 76 a a

o 1z 5 & : s

Predicted label

Confusion Matrix

[

[

[+]

[

]

¢ e

1 245 10371
2{ 34 501

T 541231 2501

=

o

2637 98
7{ 668 ma
g1 46 131

7 2203 8245 752

9 3369 2183 1995

! 303 1103 49

Z1 17391 9499 2727

0 479 ELERL] 68

5 2992 1603 4228

o 462 44 440

10 1
11 1
1 g
23 Q
Q 0
78 1
B 2

30000

40000

r 30000

[20000

10004

precision

recall

8.81

support

50000

40000

- 30000

F 20000

F 10000

Metrix

Figure 4.1 Diagram for Confusion Metrix
4.2 Evaluation Of NSL-KDD

DECISION TREE

np.unique (dt_pred))

Confusion Matrix

131

o
=
a
1)
2
F

print dt_pred))

precision recall support

Figure 4.2 Evaluation for DecisionTree Classifier for NSL-KDD

y_pred_rf

Matrix'},

xlabel="Predicted label’,

ylabel="True label®

True label

2
Predicted label

RandomForest Classifier for NSL-KDD

Predicted label’, ylabel="True label’

Confusion Matrix

36 192

True label
"

2
Predicted label

warnings.warn(smsg, UserWarning)
(st Model Performance

recall fl-score support

aCCuracy

EICro avg
weighted avg

XGBoost Confusion Matrix

True lakel

2
Predicted label

Figure 4.2 Evaluation for XGBoost for NSL-KDD

5 Conclusion and Future Work

This research work has shown how machine learning models such as XGBoost, Random Forest
as well as SVM can be used to identify network intrusions using existing datasets such as NSL-
KDD and UNSW-NB15. The findings revealed that these models should work well on large
scale data, detect patterns in networks, and classify anomaly patterns with reasonable
precision. It is worth to note that the processes of feature encoding, selection and
normalization were crucial for improving the performances of the models. Hyper parameter
optimization and validation also improved the generalization capabilities of the models from

various input domains.e This system is one of the few that should emphasize the need for the
use of machine learning when performing network intrusion detection.in detecting network
intrusions using datasets like NSL-KDD and UNSW-NB15. The results showed that these
models could handle large, complex datasets, identify patterns in network traffic, and classify
anomalies with high accuracy. The preprocessing steps, including feature encoding, selection,
and normalization, played a vital role in enhancing the models' efficiency. Hyperparameter
tuning and cross-validation further ensured that the models performed reliably across diverse
data distributions.

6 G

The success of this system highlights the importance of employing machine learning
for network intrusion detection. It also offers a solution to cyber threats that can help
to identify a problem before it becomes a major issue in the network. There are also
affordability issues; sometimes it might produce false positives; and it struggles to
identify mutating patterns.

As a future work, comparative analysis can be performed by incorporating higher level
algorithms such as deep learning algorithms for better detection rates.s using datasets
like NSL-KDD and UNSW-NB15. The results showed that these models could handle
large, complex datasets, identify patterns in network traffic, and classify anomalies
with high accuracy. The preprocessing steps, including feature encoding, selection,
and normalization, played a vital role in enhancing the models' efficiency.
Hyperparameter tuning and cross-validation further ensured that the models
performed reliably across diverse data distributions.

The success of this system highlights the importance of employing machine learning
for network intrusion detection. It provides a proactive approach to cybersecurity,
enabling early detection of threats and reducing the risk of network breaches.
However, there are limitations, such as the potential for false positives in some
scenarios and the challenges posed by evolving attack patterns.

In the future, this work can be extended by exploring more advanced algorithms, such
as deep learning models, to improve detection rates further. The appending of
realtime data streams to the system can also assist to make the system more fluid and
flexible in nature to new threats. Further, the incorporation of this system with cloud
platforms could possibly take advantage of further flexibility compared to current
applications and expand the areas of utilization. Further work on minimizing the
number of false positives and enhancing the ability to better explain underlying
machine learning algorithms will also be important to ensure that the implementation
of IDSs becomes even more feasible and beneficial for detecting intrusions in realistic
settings.

lossary

False Positive (FP): while the model provides an indication of an assault when traffic is
normal.

Feature encoding is basically conversion of non- quantitative (qualitative) data string
or categories that are textual or categorical into a form that CAN be tackled by the
machine learning algorithm.

Feature Selection is the process by which only the relevant data points (features) are
chosen from a dataset so as to enhance both the efficiency and performance of the

model.r data point that deviates from regular behaviour and frequently indicates a
potential threat or attack in network traffic.

e assault Class: A number allocated to a certain sort of assault, such as DoS or Probe, to
help machine learning models detect and describe it.

e A confusion matrix is a table that displays a model's performance by stating the
number of correct and wrong predictions in each category.

e Cross-validation is a technique for determining how well a machine learning model
works by dividing the dataset into smaller chunks and training and testing on each.

e Adatasetis a collection of data used for training and testing machine learning models.
The datasets utilised in this experiment are NSL-KDD and UNSW-NB15.

e False Positive (FP): while the model incorrectly predicts an assault while traffic is
normal.

e Feature encoding is the process of transforming non-numerical (categorical) data,
such as text or categories, into numerical values that the machine learning model can
use.

e Feature Selection is the process of selecting only the most significant data points
(features) from a dataset to improve the model's efficiency and accuracy.

e Tuning is the act of tweaking a machine learning model and its environment by
changing the hyperparameters so as to give the best results

e An intrusion detection system (IDS) is a tool or system that detects and alerts to
unauthorised network access or activity.

* Machine Learning (ML) is a sort of artificial intelligence in which computers learn from
data to make decisions or predictions rather than being manually programmed for
each task.

e Normalisation is a method of scaling data so that all values fall within a similar range,
making it easier for the model to handle.

* Precision is a measure of how often the model's predictions of an assault are accurate.
Consequently, high definition leads to reduction of false alarms.

e Accuracy is a measure of how many of the actual attacking events the learning model
identifies.settings to improve its performance.

e An intrusion detection system (IDS) is a tool or system that detects and alerts to
unauthorised network access or activity.

e Recall is a measure of how many actual attacks the model correctly identifies. Less
missed attacks are noticed if the recall is high.

e SVM (Support Vector Machine): One of the machine learning approaches that are used
in classifying data especially difficult and large data set.

e Confusion Matrix Metrics: Parameters that indicate the effectiveness of the model,
these are the true positive which are the attacks identified as such, false positive which
are the normal traffic that is labeled as an attack, the true negative is the normal traffic
correctly identified and the false negative which are the attacks that were not
detected.

e Overfitting: When a model learns the training data too well, and thus it becomes an
overfitting model that does badly when tested on other data.

7 Acronyms

IDS: Intrusion Detection System
ML: Machine Learning

FP: False Positive

FN: False Negative

TP: True Positive

TN: True Negative

SVM: Support Vector Machine

NSL-KDD: Network Security Lab - Knowledge Discovery in Databases
UNSW-NB15: University of New South Wales - Network-Based 15 Dataset
ROC: Receiver Operating Characteristic

F1-Score: F1 Measure or Harmonic Mean of Precision and Recall
GPU: Graphics Processing Unit

CSV: Comma-Separated Values

API: Application Programming Interface

RF: Random Forest

XGBoost: Extreme Gradient Boosting

CSV: Comma-Separated Values

RFE: Recursive Feature Elimination

	1 Introduction
	2 System Requirements
	2.1 System Architecture
	2.2 Hardware Requirements
	2.3 Software Requirements
	2.4 Network and Internet Requirements

	3 Installation and Setup
	3.1 Development Environment Setup:
	3.2 Defining Attack Class
	3.3 Feature Selection UNSW
	3.4 Heatmap for the Attributes
	3.5 Integer Attributes NSL-KDD
	3.6 Attacks ratio in Training And Testing Data
	3.7 Attacks and Non-Attacks Ratio
	3.8 Attacks
	3.9 Feature Selection
	3.10 Heat Map of Features

	4 Final Testing and Validation
	4.1 Classification
	4.2 Evaluation Of NSL-KDD

	5 Conclusion and Future Work
	6 Glossary
	7 Acronyms

