

Configuration Manual

MSc Research Project MSc Cybersecurity

CHIJIOKE FRANKLIN EMEJURU Student ID: X21114382

School of Computing National College of Ireland

Supervisor:

JOEL ALEBURU

National College of Ireland

Year: 2024

MSc Project Submission Sheet

School of Computing

Student Name: Ch	iijioke Franklin	Emejuru
------------------	------------------	---------

Student ID: X21114382

Programme: MSc Cybersecurity

Module: MSc Research Project

Lecturer: Joel Aleburu Submission Due

Date: 12-12-2024

Project Title: Optimizing Fraudulent Transaction Detection In E-Commerce: A Comparative Analysis of Machine Learning And Deep Learning Algorithms With Time And CPU Performance Tracking.

Word Count: 994 Page Count: 11

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Chijioke Franklin Emejuru

Date: 12-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

PROJECT MANUAL CONFIGURATION OPTIMISING FRAUDULENT TRANSACTION DETECTION IN E-COMMERCE: A COMPARATIVE ANALYSIS OF MACHINE LEARNING AND DEEP LEARNING ALGORITHMS WITH TIME AND CPU PERFORMANCE TRACKING:

CHIJIOKE FRANKLIN EMEJURU X21114382

PRODUCT OVERVIEW:

This research aimed to improve online fraud detection in e-commerce using machine learning and deep learning models. As online shopping grows, cybercriminals are getting smarter, and old fraud detection methods are no longer effective. The study compared seven machine learning models and found that Random Forest, Xgboost, and Gradient Boosting performed best in detecting fraudulent transactions. The research highlighted the importance of data balancing and model selection for effective fraud detection. Future work should focus on using advanced techniques, real-time data, and increasing transparency to improve detection rates and make online payments safer.

MATERIALS AND TOOLS UTILIZED

• Hardware: NVIDIA RTX 4090 for deep learning

• Software and Libraries: Python v3.11 for system language. Pandas and numpy for data manipulation, matplotlib and seaborn for visualization, tensorflow, a deep learning framework for building neural networks.

Code Implementation: IMPORTING THE REQUIRED LIBRARIES:

- Here I imported the libraries that I used throughout the whole Project.

READING THE DATASET:

- I Read the dataset and visualise the dataset.

.		5	Help				D.1. D.C.1	
8 + %			Code v		Ju	ıpyterLab 🗋 🔅	Python 3 (ipykern	al) (
	<pre>plt.style.use </pre>	e('ggplot') # S	etting plot style to 'ggplot' from matp	lotlib	_	_		Þ
	READING TH	HE DATASET						
[5]:			rse_transactions_dataset' into data Data re_transactions_dataset.csv")	Frame				
[6]:	<pre># Displaying data.head()</pre>	the DataFrame				🔸 🖻 个	↓ ± ₽	Î
[6]:	timestamp	hour_of_day	sending_address	receiving_address	amount	transaction_type	location_region	ip
	0 2022-04- 11 12:47:27	12 Ox	<pre><ed32d0bf2c00f41ce7ca01b66e174cc4dcb0c1da< pre=""></ed32d0bf2c00f41ce7ca01b66e174cc4dcb0c1da<></pre>	0x39f82e1c09bc6d7baccc1e79e5621ff812f50572	796.949206	transfer	Europe	
	1 2022-06- 14 19:12:46	19 Ox	d6e251c23cbf52dbd472f079147873e655d8096f	0x51e8fbe24f124e0e30a614e14401b9bbfed5384c	0.010000	purchase	South America	
	2022-01- 18 16:26:59	16 Ox	x2e0925b922fed01f6a85d213ae2718f54b8ca305	0x52c7911879f783d590af45bda0c0ef2b8536706f	778.197390	purchase	Asia	
	3 2022-06- 15 09:20:04	9	0x93efefc25fcaf31d7695f28018d7a11ece55457f	0x8ac3b7bd531b3a833032f07d4e47c7af6ea7bace	300.838358	transfer	South America	
	4 2022-02- 18 14:35:30	14 0	xad3b8de45d63f5cce28aef9a82cf30c397c6ceb9	0x6fdc047c2391615b3facd79b4588c7e9106e49f2	775.569344	sale	Africa	

DATA PREPROCESSING:

- I looked at the unique values because One needs to understand the dataset very well to know which column needs to be encoded, which column needs to be dropped, which column has numerical values, and which column has String values like this here.

				~
+ %	T 🖞 🕨 🖩 C 👐 Code 🗸	JupyterLab 🖆 🛛	Python 3 (ipykernel) (2
	LOOKING AT THE UNIONE VALUES TO KNOW WILLOUG INTO PROPANT IN THE PRODUCTIVE MODELLING			
	LOOKING AT THE UNIQUE VALUES TO KNOW WHICH IS IMPORTANT IN THE PREDICTIVE MODELLING.			1
[9]:	<pre>print(f"Number of Unique IDS: {data['anomaly'].unique()}")</pre>			
	Number of Unique IDS: ['low_risk' 'moderate_risk' 'high_risk']			
[10]:	<pre>print(f"Number of Unique IDS: {data['login_frequency'].unique()}")</pre>			
	Number of Unique IDS: [3 5 8 6 4 1 2 7]			
[11]:	<pre>print(f"Number of Unique IDS: {data['age_group'].unique()}")</pre>			
	Number of Unique IDS: ['established' 'veteran' 'new']			
[12]:	<pre>print(f"Number of Unique IDS: {data['purchase_pattern'].unique()}")</pre>			
	Number of Unique IDS: ['focused' 'high_value' 'random']			
[13]:	<pre>print(f"Number of Unique IDS: {data['location_region'].unique()}")</pre>			
	Number of Unique IDS: ['Europe' 'South America' 'Asia' 'Africa' 'North America']			
[14]:	<pre>print(f"Number of Unique IDS: {data['transaction_type'].unique()}")</pre>			
	Number of Unique IDS: ['transfer' 'purchase' 'sale' 'phishing' 'scam']			

EXPLORATORY DATA ANALYSIS:

- This is the Exploratory Data analysis and the analysis here. Which is self-explanatory.

DROPPING OFF REDUNDANT COLUMNS:

- This is the Drop off Redundant column just like this timestamp, sending address, receiving address.

File Edit	View	Run Kei	rnel Setting:	Help									Т
B + %													
•	DRO	PPING	OFF RED	UNDANT CO	DLUMNS 1						♠: ि ↑	↓ ±	₽
[29]:				amp", "sending_	address", "rece	iving_address",	"ip_prefix"]						
[30]:				TO_DROP, axis=1)									
[31]:			ew dataframe	2									
[31]:	hou	ır_of_day	amount	transaction_type	location_region	login_frequency	session_duration	purchase_pattern	age_group	risk_score	anoma	y	
	0	12	796.949206	transfer	Europe	3	48	focused	established	18.75	low_ris	k	
	1	19	0.010000	purchase	South America	5	61	focused	established	25.00	low_ris	ik.	
	2	16	778.197390	purchase	Asia	3	74	focused	established	31.25	low_ris	ik.	
	3	9	300.838358	transfer	South America	8	111	high_value	veteran	36.75	low_ris	k	
	4	14	775.569344	sale	Africa	6	100	high_value	veteran	62.50	moderate_ris	k	

- If you look at the Read data set, it has a timestamp, sending address, receiving address and amount. You will see that they are useless for the training because I am not doing Blockchain, so I don't need all those things here and that's why they were dropped here.

B) + 3	< □ □ ▶	■ C >>	Code 🗸		Ju	upyterLab 🖸 🔅	Python 3 (ipyker	nel) (
	plt.style.us	e('ggplot')	# Setting plot style to 'ggplot' from m	atplotlib				Þ
	READING T	HE DATASET						
[5]:			verse_transactions_dataset' into data D erse_transactions_dataset.csv")	ataFrame				
[6]:	<pre># Displaying data.head()</pre>	the DataFram	e			◆ ⊡ ↑	· ↓ ≛ 早	Î
[6]:	timestamp	hour_of_day	sending_addre	ess receiving_address	amount	transaction_type	location_region	n ip
	0 2022-04- 11 12:47:27		0x9d32d0bf2c00f41ce7ca01b66e174cc4dcb0c1	da 0x39f82e1c09bc6d7baccc1e79e5621ff812f50572	796.949206	transfer	Europe	е,
	1 2022-06- 14 19:12:46	10	0xd6e251c23cbf52dbd472f079147873e655d809	06f 0x51e8fbe24f124e0e30a614e14401b9bbfed5384c	0.010000	purchase	South America	a
	2022-01- 18 16:26:59		0x2e0925b922fed01f6a85d213ae2718f54b8ca3	05 0x52c7911879f783d590af45bda0c0ef2b8536706f	778.197390	purchase	Asia	a ′
	3 2022-06- 15 09:20:04		0x93efefc25fcaf31d7695f28018d7a11ece5545	7f 0x8ac3b7bd531b3a833032f07d4e47c7af6ea7bace	300.838358	transfer	South America	a '
	4 2022-02- 18 14:35:30		0xad3b8de45d63f5cce28aef9a82cf30c397c6ce	b9 0x6fdc047c2391615b3facd79b4588c7e9106e49f2	775.569344	sale	Africa	a -

LABEL ENCODER:

- After dropping them I have to label and encode the dataset which is what I did here. Label encoder is just like converting your numinal variables to your categorical variables so that they will have a numeric 1 and 0 format because that is what the machine learning needs. The machine learning cannot understand something like Transfer, or Purchase. It's just 1 and 0 it understands.

CHECKING FOR MISSING VALUES:

- This is the missing Value checking, and you will see that there are no missing values in the dataset.

File Edit	View Run Kernel	securitys Help			Trusted	
8 + %		C 🕨 Markdown	×	JupyterLab 🖾	Python 3 (ipykernel) (С
	<pre>data["anomaly"] = e</pre>	encoder.fit_transf	orm(data["anomaly"])			T
	CHECKING FOR M	IISSING VALUES				
[37]:	# Counting missing	values in each co	umn			
	missing_values_cour	nt = data.isnull()	sum()			I
	# Calculating the	proportion of miss	ng values for each column			I
			1().sum() / len(data)			
			one DataFrame for a clean summary			
	missing_values_summ					
		s': missing_values missing values pro				
	<pre>Proporcion : # })</pre>	missing_values_pro	orcion			
	# Displaying the su	ummarv table				
	print(missing_value					
	Ν	Missing Values Pr	portion			
	hour_of_day	0	0.0			
	amount	0	0.0			
	transaction_type	0	0.0			
	location_region	0	0.0			
	login_frequency	0	0.0			
	session_duration	0	0.0			
	purchase_pattern	0	0.0			
	age_group risk score	0	0.0			
		0	0.0			

PLOTTING THE CORRELATION MATRIX:

- I plotted the correlational Matrix to check the correlation between the features in the dataset.

VISUALIZING THE DISTRIBUTION OF THE LABEL OR TARGET VARIABLE:

- I potted a target because I have to check whether the dataset is balanced or not, and since it is not balanced, I have to treat it using the balancing technique that randomly samples our target variables based on the minority and majority classes. From this place, the majority class is 80.8%

DATA SPLITTING AND NORMALIZATION:

- After splitting the dataset, you will see the trained text split and I normalised it using normaliser because I tested using standard scaler, Min Max scaler, and robust scaler. I noticed that all of them gave an overfitting value, so I now transformed this test and validation set using the scaler that I did.

APPLYING THE RANDOM SAMPLER:

- This is a random Sampler that sampled the imbalanced data to make it balance. After balancing the data, the next is to train the models. This is straightforward because all you have to do is call the machine learning algorithm and fix the train and test set. This CPU and time are optional but I like using them in the machine learning project, so you can calculate the CPU and Time that was expended when training the models.

File Edit	View Run Kernel Settings Help		Trusted	±.
a + %	(□ 📋 🕨 🔳 C 🕨 Markdown 🗸	JupyterLab 🗋 🔅	Python 3 (ipykernel)	0
	X_val = scaler.transform(X_val)			
	APPLYING THE RANDOM SAMPLER			
[51]:	<pre># initialize random sampler ros = RandomOverSampler(random_state=46)</pre>			
[52]:	# fit the resample on the training data X_train_resampled, y_train_resampled = ros.fit_resample(X_train, y_train)			
[53]:	# fit the resample on the validation data X_val_resampled, y_val_resampled = ros.fit_resample(X_val, y_val)			
	LOGISTIC REGRESSION			
[55]:	<pre># train the logistic regression model lr_model = LogisticRegression(max_iter=10000)</pre>			
	# start tracking the CPU usage and time			
	<pre>cpu_percentage = [] start_time = time.time()</pre>			
	# creating a function to track the average cpu			
	<pre>def cpu_tracker(interval=0.1):</pre>			
	<pre>while True: cpu percentage.append(psutil.cpu percent(interval=interval))</pre>			

LOGISTIC REGRESSION:

- Here you can see the Logistic regression, Accuracy, Precision, F1 score and Recall. This is just the precision for the first, second and third

F	le Edit	view kun kernei settings Help		Tus	160	
8	+ %	Ĩ Ĉ ▶ ■ C → Markdown ~	JupyterLab 📑 🕴	Python 3 (ipykernel	0 (
		LOGISTIC REGRESSION				*
	[55]:	<pre># train the logistic regression model Ir_model = LogisticRegression(max_iter=18000) # start tracking the CPU usage and time cpu_percentage = []</pre>				
		<pre>start_time = time.time() # creating a function to track the average cpu def cpu_tracker(interval=0.1): while True: cpu_percentage.append(psutil.cpu_percent(interval=interval))</pre>				8
		<pre># start CPU tracking in a separate thread tracker_thread = threading.Thread(target=cpu_tracker) tracker_thread.start()</pre>				
-1		<pre>lr_model.fit(X_train_resampled, y_train_resampled) # end the time tracker end_time = time.time() # stop CPU tracking tracker_thread.join(timeout=0)</pre>				
class.		(1996) AND = CONTRACT AND				Ŧ

RANDOM FOREST CLASSIFIER:

- The same goes for the Random Forest, the Gradient boosting is straightforward. You call your model, you fit your train and test. This is the accuracy, precision, recall and F1 score.

File Edit	View Run Ke	ernel Settings	Help							Trusted
) + %	(□ □ ►	■ C >>	Markdown	~				JupyterLab 🗋	ĕ	Python 3 (ipykernel)
[56]:					g_time:.2f} seconds" rage_CPU_usage:.2f}%					
	Time taken to Average CPU u									
[57]:	<pre># evaluate the y_pred = lr_me</pre>									
[58]:	<pre>lr_accuracy =</pre>	accuracy_sco	ore(y_test,	y_pred)						
[59]:	print(f"Accura	acy: {lr_accu	iracy * 100	:.2f}%")						
	Accuracy: 79.	19%								
[60]:	<pre># print the cl print("Classic</pre>			assificatio	n_report(y_test, y_p	red, zero_division=	1))			
	Classification	n Report: precision	recall	f1-score	support					
	0	0.80	1.00	0.89	1277					
	1 2	0.96 0.34	0.78 0.76	0.86 0.47	12683 1760					
	accuracy			0.79	15720					
	macro avg weighted avg	0.70 0.88	0.85 0.79	0.74 0.82	15720 15720					

- The Same thing for Decision tree, Support Vector and all.

MULTILAYER PERCEPTRON:

- For Deep Learning, One needs to familiarize oneself with the just artificial neural network with different layers of neurons like a normal human brain. Here I used tensor flow not Python.

Model Sequential:

- Here I created a model, this is the sequential Model.

Model Compilation:

- This is the Model compilation using the optimiser and loss function because the last function that was used will make sure that function reduces the error. That is the work of the loss function to reduce the error when training the model.

Categorical Cross-entropy:

I used sparse categorical cross-entropy here because I am using label encoded target. If you are just using a normal binary target, binary cross entropy would have been used.

The Training Loop: After training, I had accuracy of 98% of training loop. This is the Training Loop.

File Edit View Run Kernel Setti	js Help	Not Trusted
□ + % □ □ ▶ ■ C ▶	Markdown 🗸	JupyterLab 🖸 😆 Python 3 (ipykernel) 🔿
1474/1474	3s 2ms/step - accuracy: 0.9611 - loss: 0.1003 - val_accuracy:	0.9648 - val_loss: 0.0970
Epoch 7/20		
1474/1474	3s 2ms/step - accuracy: 0.9655 - loss: 0.0888 - val_accuracy:	0.9649 - val_loss: 0.0860
Epoch 8/20		
	3s 2ms/step - accuracy: 0.9714 - loss: 0.0780 - val_accuracy:	0.9728 - val_loss: 0.0716
Epoch 9/20		
	3s 2ms/step - accuracy: 0.9719 - loss: 0.0747 - val_accuracy:	0.9782 - val_loss: 0.0641
Epoch 10/20		
	3s 2ms/step - accuracy: 0.9724 - loss: 0.0715 - val_accuracy:	0.9743 - val_loss: 0.0643
Epoch 11/20		
	3s 2ms/step - accuracy: 0.9753 - loss: 0.0664 - val_accuracy:	0.9625 - val_loss: 0.0935
Epoch 12/20	/	
	3s 2ms/step - accuracy: 0.9755 - loss: 0.0642 - val_accuracy:	0.9764 - val_loss: 0.0593
Epoch 13/20		0.0770
	4s 2ms/step - accuracy: 0.9781 - loss: 0.0576 - val_accuracy:	0.9//8 - Val_10ss: 0.0555
Epoch 14/20	55 3ms/step - accuracy: 0.9762 - loss: 0.0596 - val accuracy:	0.0772
1474/1474	58 5ms/step - accuracy: 0.9762 - 10ss: 0.0596 - Val_accuracy:	0.9//3 - Val_1055: 0.0553
	3s 2ms/step - accuracy: 0.9783 - loss: 0.0547 - val accuracy:	0 0768 - val local 0 0559
Epoch 16/20		0.5768 - Val_1055. 0.0558
1474/1474	4s 3ms/step - accuracy: 0.9798 - loss: 0.0524 - val accuracy:	0 9770 - val loss: 0 0563
Epoch 17/20	45 5m5/5tcp accuracy: 015/50 1055; 010524 Val_accuracy:	0.5770 Vd1_2055. 0.0505
	4s 2ms/step - accuracy: 0.9791 - loss: 0.0544 - val accuracy:	0.9810 - val loss: 0.0487
Epoch 18/20	······································	
	3s 2ms/step - accuracy: 0.9804 - loss: 0.0500 - val accuracy:	0.9814 - val loss: 0.0454
Epoch 19/20		-
1474/1474	3s 2ms/step - accuracy: 0.9800 - loss: 0.0491 - val_accuracy:	0.9849 - val_loss: 0.0393
Epoch 20/20		-
1474/1474	4s 3ms/step - accuracy: 0.9816 - loss: 0.0471 - val accuracy:	0.9833 - val loss: 0.0422

Classification Report:

Then you make predictions, This is the test set, I used the Y-test and Y Pred to predict. After testing the accuracy I had was 98% just like the train too.

Model Accuracy And Model Loss:

This is the plot of the Model accuracy and the model loads because as you are training your model, it has to increase from the blue validation, you can see that the model did not overfit, just as my supervisor thought that it overfitted when he gave me feedback. As the blue is going up, the red is going up as well. The loss is going down as it should be.

Evaluate The Test Accuracy:

This is the Final accuracy for the test which Is 98.44% and that is the end of my project.

File Edit	View Run Kernel Settings Help
B + %	K 🖺 🖞 🕨 🖩 C 🕨 Code 🗸 JupyterLab 🖸 🎍 Python 3 (ipykernel)
	0.88 - 0.05 - 0.05 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 Epoch
[117]:	<pre># Test set evaluation test_loss, test_accuracy = model.evaluate(X_test, y_test)</pre>
[117]:	
	test_loss, test_accuracy = model.evaluate(X_test, y_test) 492/492 1s 1ms/step - accuracy: 0.9839 - loss: 0.0476
	test_loss, test_accuracy = model.evaluate(X_test, y_test) 492/492 1s 1ms/step - accuracy: 0.9839 - loss: 0.0476

References: "Metaverse Financial Transaction Dataset", [Online]. Available: <u>https://www.kaggle.com/datasets/faizaniftikharjanjua/metaverse-financial-transactions-dataset</u> [Accessed on 23 Oct 2024].