ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Cybersecurity

CHIJIOKE FRANKLIN EMEJURU
Student ID: X21114382

School of Computing
National College of Ireland

Supervisor: JOEL ALEBURU

Student Name:
Student ID:
Programme:
Module:
Lecturer:
Submission Due

Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Chijioke Franklin Emejuru
X21114382
MSc Cybersecurity Year: 2024
MSc Research Project
Joel Aleburu
12-12-2024
Optimizing Fraudulent Transaction Detection In E-Commerce: A
Comparative Analysis of Machine Learning And Deep Learning

Algorithms With Time And CPU Performance Tracking.

994 Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Chijioke Franklin Emejuru

12-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

PROJECT MANUAL CONFIGURATION
OPTIMISING FRAUDULENT TRANSACTION DETECTION IN E-COMMERCE: A
COMPARATIVE ANALYSIS OF MACHINE LEARNING AND DEEP LEARNING
ALGORITHMS WITH TIME AND CPU PERFORMANCE TRACKING:

CHIJIOKE FRANKLIN EMEJURU
X21114382

PRODUCT OVERVIEW:

This research aimed to improve online fraud detection in e-commerce using machine learning
and deep learning models. As online shopping grows, cybercriminals are getting smarter, and
old fraud detection methods are no longer effective. The study compared seven machine
learning models and found that Random Forest, Xgboost, and Gradient Boosting performed
best in detecting fraudulent transactions. The research highlighted the importance of data
balancing and model selection for effective fraud detection. Future work should focus on
using advanced techniques, real-time data, and increasing transparency to improve detection
rates and make online payments safer.

MATERIALS AND TOOLS UTILIZED

° Hardware: NVIDIA RTX 4090 for deep learning

° Software and Libraries: Python v3.11 for system language. Pandas and numpy for
data manipulation, matplotlib and seaborn for visualization, tensorflow, a deep learning
framework for building neural networks.

Code Implementation:
IMPORTING THE REQUIRED LIBRARIES:
- Here I imported the libraries that I used throughout the whole Project.

File Edit View Run Kernel Settings Help Trusted
B+ XD O » & C » Markdown v Jupyterlab [7 & Python 3 (ipykernel) O
]

IMPORTING THE REQUIRED LIBRARIES

import pandas as pd # Importing pandas Library and aliasing it as pd

import numpy as np # Importing numpy Library and aliasing it as np

import time # tracks time for a certain operation

import psutil # tracks cpu usage

import threading # allows continous monitoring

from sklearn.preprocessing import Normalizer

from sklearn.model_selection import train_test_split, cross_val_score

import matplotlib.pyplot as plt # Importing pyplot module from matplotiib Library and aliasing it as plt
from sklearn.preprocessing import LabelEncoder

from imblearn.over_sampling import RandomOverSampler # the oversamplLer

from sklearn.linear_model import LogisticRegression # logistic regression

from sklearn.ensemble import RandomForestClassifier # random forest

from xgboost import XGBClassifier # extreme gradient boost

from sklearn.ensemble import GradientBoostingClassifier # gradient boost

from sklearn.tree import DecisionTreeClassifier # decision trees

from sklearn.svm import SVC # support vector classifier

import seaborn as sns # Importing seaborn Library and aliasing it as sns

from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score, roc_auc_score, precision_recall_curve, roc_curve, auc, confusion_mat
import warnings

warnings.filterwarnings("ignore")

pd.set_option('display.max_columns', None) # Setting pandas option to display all columns in DataFrame
plt.style.use('ggplot') # Setting plot style to ‘ggplot' from matplotliib

4 >

READING THE DATASET:
- | Read the dataset and visualise the dataset.

File Edit View Run Kernel Settings Help Trusted
B+ XDODM » = C » Code M Jupyterlab (7 # Python 3 (ipykernel) O
plt.style.use('ggplot') # Setting plot style to 'ggplot' from matplotlib -
4 » ‘
READING THE DATASET
Reading data from 'metaverse_transactions_dataset’ into data DataFrame
data = pd.read_csv("metaverse_transactions_dataset.csv")
[6]: # Displaying the DataFrame 6B 1Ty & F R
data.head()
[6]: timestamp hour_of_day sending_address receiving_address amount transaction_type location_region ip
2022-04-
11 12:4727 12 0x9d32d0bf2c00f41ce7cal1bbbe174cc4dchOcida 0x39f82e1c09bcbd7baccc1e79e5621f812f50572 796.949206 transfer Europe
_‘421092%046(; 19 Oxd6e251c23cbi52dbd472f079147873e655d08096f 0x51e8fbe24f12420e30a614e14401b9bbfed5384c 0.010000 purchase South America
2 18210;5;505; 16 0x2e0925b922fed01f6a85d213ae2718f54b8ca305 0x52c7911879f783d590af45bda0c0ef2b8536706f 778.197390 purchase Asia
3 1525};;-00{?‘; 9 0x93efefc25fcaf31d7695f28018d7a11ece55457f (xBac3b7bd531b3a833032f07d4e47c7af6eaTbace 300.838358 transfer South America
2022-02-
4 18 14:35:30 14 Oxad3b8ded5d63f5cce2BaefJaB2cf30c397cbcebd 0x6fdc047c23916715b3facd79b4588c7e9106e49f2 775.569344 sale Africa
Ll 3 v

DATA PREPROCESSING:

- I looked at the unique values because One needs to understand the dataset very well to
know which column needs to be encoded, which column needs to be dropped, which
column has numerical values, and which column has String values like this here.

File Edit View Run Kemel Settings Help Trusted
B+ XTO O » ®m C » Code v Jupyterlab [7 % Python 3 (ipykernel) O

LOOKING AT THE UNIQUE VALUES TO KNOW WHICH IS IMPORTANT IN THE PREDICTIVE MODELLING.
print(f"Number of Unique IDS: {data['anomaly'].unique()}")

Number of Unique IDS: ['low_risk' 'moderate_risk' 'high_risk']

print(f"Number of Unique IDS: {data['login_frequency'].unique()}")

Number of Unique IDS: [35864127]

print(f"Number of Unique IDS: {data['age_group'].unique()}")

Number of Unique IDS: ['established' 'veteran' 'new']

print(f"Number of Unique IDS: {data['purchase_pattern'].unique()}")

Number of Unique IDS: ['focused' 'high_value' 'random']

print(f"Number of Unique IDS: {data['location_region'].unique()}")

Number of Unique IDS: ['Europe' 'South America' 'Asia' 'Africa' 'North America']

print(f"Number of Unique IDS: {data['transaction_type'].unique()}")

Number of Unique IDS: ['transfer' 'purchase' 'sale' 'phishing' ‘'scam']

EXPLORATORY DATA ANALYSIS:
- This is the Exploratory Data analysis and the analysis here. Which is self-explanatory.

File Edit View Run Kernel Settings Help Trusted
B + XD » m C » Code v Jupyterlab [7 4 Python 3 (ipykernel) O

EXPLORATORY DATA ANALYSIS

TRANSACTION TYPE AND ANOMALY RELATED

plt.figure(figsize=(15, 10))

ax = sns.countplot(x="transaction_type", hue="anomaly", data=data)

for i in ax.patches:
ax.annotate(f"{i.get_height()}", (i.get_x() + i.get_width() / 2., i.get_height()), ha="center”, va="center”, fontsize=11,
color = "black”, xytext = (@, 5), textcoords = "offset points")
ax.tick_params(axis="both", which="major", labelsize=12)

plt.show()
anomaly
25000 200 = low_risk
BN moderate_risk
s high_risk
22125.0
20000 -

DROPPING OFF REDUNDANT COLUMNS:
- This is the Drop off Redundant column just like this timestamp, sending address,
receiving address.

File Edit View Run Kernel Settings Help Trusted
B + XO OO » m C » Makdown v Jupyterlab [7 & Python 3 (ipykernel) O
I ~ DROPPING OFF REDUNDANT COLUMNS 1 IO AL

List of columns to drop
COLUMNS_TO_DROP = [“timestamp”, "sending_address®, "receiving_address”, "ip_prefix"]

Drop columns
data = data.drop(COLUMNS_TO_DROP, axis=1)

Looking at new dataframe

data.head()

hour_of_day amount transaction_type location_region login_frequency session_duration purchase_pattern age_group risk_score anomaly
0 12 796.949206 transfer Europe 3 48 focused established 18.75 low_risk
1 19 0.010000 purchase South America 5. 61 focused established 25.00 low_risk
2 16 778.197390 purchase Asia 3 74 focused established 31.25 low_risk
3 9 300838358 transfer South America 8 m high_value veteran 36.75 low_risk
4 14 775.569344 sale Africa 6 100 high_value veteran 62.50 moderate_risk

- Ifyou look at the Read data set, it has a timestamp, sending address, receiving
address and amount. You will see that they are useless for the training because | am
not doing Blockchain, so I don’t need all those things here and that’s why they were
dropped here.

File Edit View Run Kernel Settings Help Trusted
B+ X OTB » m C » Code v Jupyterlab [7 & Python 3 (ipykernel) O
plt.style.use('ggplot') # Setting plot style to 'ggplot’ from matplotlib
4 >

READING THE DATASET

Reading data from 'metaverse_transactions_dataset’ into data DataFrame
data = pd.read_csv("metaverse_transactions_dataset.csv")

[6]: # Displaying the DataFrame + B t™Ty s F R
data.head()

[el: timestamp hour_of day sending_address receiving_address amount transaction_type location_region ip
0 1 12_?5?170;7 12 0x9d32d0bf2c00f41ce7ca01bb6e174ccddchbOcida 0x39f82e1¢09bcbd7baccc1e79e56211f812f50572 796.949206 transfer Europe
1 142,"392?205(; 19 Oxd6e251c23cbf52dbd472f079147873e655d8096f 0x51e8fbe24f124e0e30a614e14401b9bbfed5384c 0.010000 purchase South America
2 1821053;505; 16 0x2e0925b922fed01f6aB5d213ae2718f54b8ca305 0x52c7911879f783d590af45bdalc0ef2b8536706f 778.197390 purchase Asia
3, 52392;)054 9 Ox93efefc25fcaf31d769528018d7a11ece55457f 0xBac3b7bds531b3a833032f07d4e47cTaf6earbace 300.838358 transfer South America

2022-02-

4 18143530 14 Oxad3b8de45d63f5cce28aef9aB2cf30c397cbeebd Ox6fdc047¢2391615b3facd79b4588c7e9106e49f2 775.569344 sale Africa
4 4

LABEL ENCODER:

- After dropping them I have to label and encode the dataset which is what | did here.
Label encoder is just like converting your numinal variables to your categorical
variables so that they will have a numeric 1 and 0 format because that is what the
machine learning needs. The machine learning cannot understand something like
Transfer, or Purchase. It's just 1 and 0 it understands.

LABEL ENCODER

This is a preprocessing technique used to transform non-numerical labels into numerial labels. This process is necessary in machine learning because most machibe learning
algorithms require input data in numerical format rather than strings or objects. Basically, label encoding converts each value in a column to a number. Label encoder one-hot
encodes the categorical variables to numerical variables.

encoder = LabelEncoder()

This code encodes the features which are not numerical, for the machine Learning model.
data["transaction_type"] = encoder.fit_transform(data["transaction_type"])

data["location_region"] = encoder.fit_transform(data["location_region"])

data["purchase_pattern"] = encoder.fit_transform(data["purchase_pattern"])

data[“age_group”] = encoder.fit_transform(data["age_group"])

data["anomaly”] = encoder.fit_transform(data["anemaly"])

CHECKING FOR MISSING VALUES:
- This is the missing Value checking, and you will see that there are no missing values
in the dataset.

File Edit View Run Kernel Settings Help Irustea

B+ XTO O » = C » Markdownv Jupyterlab [7 % Python 3 (ipykernel) O
data["anomaly"] = encoder.fit_transform(data["anomaly"])

CHECKING FOR MISSING VALUES

Counting missing values in each column
missing_values_count = data.isnull().sum()

Calculating the proportion of missing values for each column
missing_values_proportion= data.isnull().sum() / len(data)

Combining count and proportion into one DataFrame for a clean summary
missing_values_summary = pd.DataFrame(
‘Missing Values': missing_values_count,
‘Proportion’: missing_values_proportion
)
Displaying the summary table
print(missing_values_summary)

Missing Values Proportion

hour_of_day [} e.e
amount -] 0.8
transaction_type] 0.0
location_region] 2.0
login_frequency] 8.0
session_duration] e.e
purchase_pattern 8 0.0
age_group] .0
risk_score] 0.0

PLOTTING THE CORRELATION MATRIX:
- I plotted the correlational Matrix to check the correlation between the features in the
dataset.

File Edit View Run Kemnel Settings Help Trusted

B + X O 0O » = € » Markdown v Jupyterlab [#& Python 3 (ipykerel) O
PLOTTING THE CORRELATION MATRIX

A correlation matrix is a table showing correlation coefficients between features in a data. It ranges between -1 and 1. If two features have a high correlation it implies that as
one variable increases, the other variable increases.

initialize the correlation matrix
corr = data.corr()

Create heatmap

mask = np.triu(np.ones_like(corr, dtype=bool))

f, ax = plt.subplots(figsize=(3@, 20))

sns.heatmap(corr, mask=mask, vmax=0.3, center=0, square=True, linewidths=@.5,cbar_kws={"shrink":@.5}, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap of Fraud detection Dataset")

plt.show()

Correlation Heatmap of Fraud detection Dataset

3 - 0.00048
€

VISUALIZING THE DISTRIBUTION OF THE LABEL OR TARGET
VARIABLE:

- | potted a target because | have to check whether the dataset is balanced or not, and
since it is not balanced, | have to treat it using the balancing technique that randomly
samples our target variables based on the minority and majority classes. From this
place, the majority class is 80.8%

File Edit View Run Kernel Settings Help Trusted

B + X O 0 » = C » Markdown v Jupyterlab [7 & Python 3 (ipykernel) O

VISUALIZING THE DISTRIBUTION OF THE LABEL OR TARGET VARIABLE

initialize the value counts of the labels
label_counts = data["anomaly"].value_counts()

create plot

plt.figure(figsize=(5,5))

plt.pie(label_counts, labels=label_counts.index, autopct="%1.1f%%", startangle=1490)
plt.title("Label distribution")

plt.axis("equal")

plt.show()

Label di;tribution

DATASPLITTING AND NORMALIZATION:

- After splitting the dataset, you will see the trained text split and | normalised it using
normaliser because | tested using standard scaler, Min Max scaler, and robust scaler. |
noticed that all of them gave an overfitting value, so | now transformed this test and
validation set using the scaler that | did.

File Edit View Run Kernel Settings Help Trusted
B + XD 0O » = C » Markdown v Jupyterlab [7 £ Python 3 (ipykernel) O

DATA SPLITTING AND NORMALIZATION

In machine learning, data can be inputed in several magnitudes and sometimes it may hinder the model from learning some important data points or features correctly, with
such a problem, the need to normalize or standardize our data becomes of utmost importance. Normalization is a technique used to transform the features of a dataset into a
commeon scale, that is to represent the datapoints magnitude within a commen range so that the machine learning is not influenced by the disproportional datapoints helping
the data to converge faster and perform better.

splits the data into dependent and independent variables
X = data.drop("anomaly”, axis = 1) #independent columns
y = data["anomaly"] #target

num_classes = len(np.unique(y)) [}

splits the data into train sets
X_train, X_temp, y_train, y_temp = train_test split(X, y, test_size=0.4, random_state=46)

splits the data into test and validation sets
X_val, X_test, y val, y_test = train_test_split(X_temp, y_temp, test_size=8.5, random_state=45)

scaling the faetures
scaler = Normalizer()

fit the scaler to the train data
X_train = scaler.fit_transform(X_train)

Fit the sraler tn the test dafn

APPLYING THE RANDOM SAMPLER:

- This is a random Sampler that sampled the imbalanced data to make it balance. After
balancing the data, the next is to train the models. This is straightforward because all
you have to do is call the machine learning algorithm and fix the train and test set.
This CPU and time are optional but I like using them in the machine learning project,
so you can calculate the CPU and Time that was expended when training the models.

File Edit View Run Kemel Settings Help Trusted

B+ XD 0O » = C » Markdown v Jupyterlab [7 % Python 3 (ipykernel) O
X_val = scaler.transform(X_val)

APPLYING THE RANDOM SAMPLER

initialize random sampler
ros = RandomOverSampler(random_state=46)

Fit the resample on the training data
X_train_resampled, y_train_resampled = ros.fit_resample(X_train, y_train)

fit the resample on the validation data
X_val_resampled, y_val_resampled = ros.fit_resample(X_val, y_val)

LOGISTIC REGRESSION

train the logistic regression model
lr_model = LogisticRegression(max_iter=10020)

start tracking the CPU usage and time
cpu_percentage = []
start_time = time.time()

creating a function to track the average cpu
def cpu_tracker(interval=e.1):
while True:
cpu percentage.append(psutil.cpu percent(interval=interval))

LOGISTIC REGRESSION:
- Here you can see the Logistic regression, Accuracy, Precision, F1 score and Recall.
This is just the precision for the first, second and third

Hie QI VIewW Kun Kemnel Sewngs Heip nuseu

B+ X DO » m C » Markdownv Jupyterlab 7 #& Python 3 (ipykemel) O

LOGISTIC REGRESSION

train the log egression model

1r_model = LogisticRegression(max_iter=10000)

start tracking the CPU usage and time
cpu_percentage =
start_time = time.time()
creating a function to track the average cpu
def cpu_tracker(interval=0.1):

while True:

cpu_percentage. append(psutil.cpu_percent(interval=interval)) '

start CPU tracking in a separate thread
tracker_thread = threading.Thread(target=cpu_tracker)
tracker_thread.start()

1r_model.fit(X_train_resampled, y_train_resampled)

end the time tracker
end_time = tine.time()

stop CPU tracking

tracker_thread. join(timeout=@)
class.

RANDOM FOREST CLASSIFIER:
- The same goes for the Random Forest, the Gradient boosting is straightforward. You

call your model, you fit your train and test. This is the accuracy, precision, recall and
F1 score.

File Edit View Run Kernel Settings Help
B + X DO » m & » Markdown v

print(f"Time taken to train the model: {training_time:.2f} seconds")
print(f"Average CPU usage during training: {average_CPU_usage:.2f}%")

Time taken to train the model: 2.59 seconds
Average CPU usage during training: 58.78%

evaluate the model predictions
y_pred = 1r_model.predict(X_test)

lr_accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy: {lr_accuracy * 10@:.2f}%")

Accuracy: 79.19%

print the classification report

print("Classification Report:\n", classification_report(y_test, y_pred, zero_division=1))

Classification Report:
precision recall fl-score support

] K- 1.88 @.89 1277

1 e.9% 8.78 2.86 12683

2 8.34 8.76 @.47 1760

accuracy e.79 15720
macro avg e.7e 2.85 2.74 15720
weighted avg 0.88 8.78 .82 15728

- The Same thing for Decision tree, Support Vector and all.

MULTILAYER PERCEPTRON:

JupyterLab [

Trusted

& Python 3 (ipykemne) O

- For Deep Learning, One needs to familiarize oneself with the just artificial neural
network with different layers of neurons like a normal human brain. Here | used

tensor flow not Python.

File Edit View Run Kernel Settings Help
B+ X0 O » = C » Markdown v

MULTILAYER PERCEPTRON

import tensorflow as tf # importing the neural network framework with alias tf
from tensorflow.keras.models import Sequential # activating the Linear Layers of the neural netwerk
from tensorflow.keras.layers import Dense # activating the dense and fully connected Layer of the neural network

define the neural netwrok model

model = Sequential([
Dense(64, input_shape=(X_train.shape[1],), activation = 'relu'),
Dense(32, activation='relu’),
Dense(num_classes, activation='softmax') # multi-class classification

n

model compilation

model . compile(optimizer='adan’,
loss="sparse_categorical_crossentropy’,
metrics=["accuracy'])

start tracking the CPU usage and time
cpu_percentage = []
start_time = time.time()

creating a function to track the average cpu
def cpu_tracker(interval=e.1):
while True:
cpu_percentage.append(psutil.cpu_percent(interval=interval))

Model Sequential:
- Here | created a model, this is the sequential Model.

define the neural netwrok model

model = Sequential([
Dense(64, input_shape=(X_train.shape[1],), activation = 'relu’),
Dense(32, activation="relu'),
Dense(num_classes, activation='softmax') # multi-class classification

b

Jupyterlab [7

Trusted

Python 3 (ipykemel) O

Model Compilation:
- This is the Model compilation using the optimiser and loss function because the last
function that was used will make sure that function reduces the error. That is the work
of the loss function to reduce the error when training the model.

model compilation

model.compile(optimizer="adam’',
loss="sparse_categorical_crossentropy',
metrics=['accuracy'])

start tracking the CPU usage and time
cpu_percentage = [

start_time = time.time()

creating a function to track the average cpu

def cpu_tracker(interval=e.1):]
while True:
cpu percentage.append(psutil.cpu percent(interval=interval)) v

Categorical Cross-entropy:
| used sparse categorical cross-entropy here because | am using label encoded target.
If you are just using a normal binary target, binary cross entropy would have been
used.

model compilation

model.compile(optimizer="adam’,
loss="sparse_categorical_crossentropy’,
metrics=['accuracy’])

The Training Loop:
After training, | had accuracy of 98% of training loop. This is the Training Loop.

File Edit View Run Kernel Settings Help Not Trusted
B+ X 0O [» ® C » Markdown v Jupyterlab [7 2 Python 3 (ipykernel) (O

1474/1474 —————————————— 35 2ms/step - accuracy: @.9611 - loss: ©.1@@3 - val_accuracy: ©.9648 - val_loss: @.897@ N
Epoch 7/20

1474/1474 ————————————— 3s 2ms/step - accuracy: 8.9655 - loss: B.@888 - val_accuracy: ©.9649 - val_loss: ©.8860

Epoch 8/20

1474/1474 ————— 3s 2ms/step - accuracy: 8.9714 - loss: ©.8788 - val_accuracy: 9.9728 - val_loss: 8.6716

Epoch 9/20

1474/1474 = 35 Ims/step - accuracy: 0.9719 - loss: ©.8747 - val_accuracy: ©.9782 - val_loss: @.8641

Epoch 18/28

1474/1474 ——————————————— 3s 2ms/step - accuracy: 8.9724 - loss: 8.8715 - val_accuracy: ©.9743 - val_loss: ©.8643

Epoch 11/2@

1474/1474 —————————— 3s 2ms/step - accuracy: 8.9753 - loss: ©.8664 - val_accuracy: 8.9625 - val_loss: 8.8935

Epoch 12/2@

1474/1474 ———————————— 35 2ms/step - accuracy: @.9755 - loss: @.8642 - val_accuracy: 8.9764 - val_loss: 8.8593

Epoch 13/2e

1474/1474 ————— 4s 2ms/step - accuracy: ©.9781 - loss: ©.8576 - val_accuracy: ©.9778 - val_loss: @.8555

Epoch 14/28

1474/1474 ———————————— 55 3ms/step - accuracy: 8.9762 - loss: ©.8596 - val_accuracy: 8.9773 - val_loss: @.8553

Epoch 15/20

1474/1474 ————————————————— 3s 2ms/step - accuracy: 8.9783 - loss: B.8547 - val_accuracy: 8.9768 - val_loss: 8.8558

Epoch 16/2e

1474/1474 ——— 4s 3ms/step - accuracy: ©.9798 - loss: ©.0524 - val_accuracy: 8.9770¢ - val_loss: 9.8563

Epoch 17/28

1474/1474 ————————————————— 4s Ims/step - accuracy: ©.9791 - loss: ©.0544 - val_accuracy: ©.981@ - val_loss: ©.8487

Epoch 18/20

1474/1474 ——————————————— 3s 2ms/step - accuracy: 8.9804 - loss: B.8508 - val_accuracy: 0.9814 - val_loss: 8.8454

Epoch 19/2e '
1474/1474 ——————————— 3s 2ms/step - accuracy: 9.9800 - loss: ©.8491 - val_accuracy: 9.9849 - val_loss: 9.8393

Epoch 20/20

1474/1474 ———————————— 4s 3ms/step - accuracy: 0.9816 - loss: ©.8471 - val_accuracy: 0.9833 - val_loss: @.8422

Classification Report:
Then you make predictions, This is the test set, | used the Y-test and Y Pred to predict.
After testing the accuracy | had was 98% just like the train too.

MAKE PREDICTION

y_pred = model.predict(X_test)
y_pred_classes = np.argmax(y_pred, axis=l) # Get the index of the highest probability for each sample

492/492 ——————— 1s 1ms/step

I ~ CLASSIFICATION REPORT £ e rvEs T

precision = precision_score(y_test, y_pred_classes, average='macro')
recall = recall _score(y test, y pred_classes, average='macro')

f1 = f1_score(y_test, y_pred_classes, average='macro’)

accuracy = accuracy_score(y_test, y_pred_classes)

print(f"Precision (macro)}: {precision}")
print(f"Recall (macro): {recall}")
print(f"F1 Score (macro): {f1}")
print(f"Accuracy: {accuracy}")
Precision (macro): ©.9891524242364511
Recall (macro): @.9562755448718541

F1 Score (macro): ©.971737€993665334
Accuracy: 0.9844147582697201

Model Accuracy And Model Loss:

This is the plot of the Model accuracy and the model loads because as you are training
your model, it has to increase from the blue validation, you can see that the model did
not overfit, just as my supervisor thought that it overfitted when he gave me feedback.

As the blue is going up, the red is going up as well. The loss is going down as it
should be.

File Edit View Run Kernel Settings Help Trusted
B+ XD O » ®m C » Code v Jupyterlab [7 & Pythnn](ipykemel)@
P —
Model accuracy Model loss

0.98 - —— Train

0.35 - — Train

—— Vvalidation —— Vvalidation
0.96 0.30
- 0.25
> 0.94
ol 7]
= a
] 0.20
E 0.92 3
<
0.15
0.90
0.10
0.88
0.05 -
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 0.0 2.5 5.0 7.5 10,0 125 15.0 175
Epoch Epoch

Evaluate The Test Accuracy:
This is the Final accuracy for the test which Is 98.44% and that is the end of my
project.

File Edit View Run Kemnel Settings Help Trusted

B+ XD0O» = ¢ » code v JupyterLab [7 % Python 3 (ipykernel)

088 [%ﬁt:-g
0.05
00 25 50 75 100 125 150 17.5 00 25 50 75 100 125 150 175
Epoch Epoch
EVALUATE THE TEST ACCURACY

Test set evaluation
test_loss, test_accuracy = model.evaluate(X_test, y_test)

492/492 ————————————— 1s 1ms/step - accuracy: ©.9839 - loss: 0.8476

print(f"Test Accuracy: {test_accuracy:.4f}")

Test Accuracy: 8.983@

10

©.

References:
“Metaverse Financial Transaction Dataset”, [Online]. Available:
https://www.kaggle.com/datasets/faizaniftikharjanjua/metaverse-financial-transactions-

dataset [Accessed on 23 Oct 2024].

11

https://www.kaggle.com/datasets/faizaniftikharjanjua/metaverse-financial-transactions-dataset
https://www.kaggle.com/datasets/faizaniftikharjanjua/metaverse-financial-transactions-dataset

