

Enhancing Security in Node.js Applications

to Prevent SQL Injection

MSc Research Project

Cyber Security

Pradeep Kumar Reddy Elugoti

Student ID: X23192909

School of Computing

National College of Ireland

Supervisor: Joel Aleburu

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

PRADEEP KUMAR REDDY ELUGOTI

………

Student ID:

X23192909

………..……

Programme:

 CYBER SECURITY

………………………………………………………………

Year:

 2024

…………………………..

Module:

 Msc Practicum 2

…….………

Supervisor:
 Joel Aleburu
…….………

Submission

Due Date:

 12-12-2024

…….………

Project Title:
 Enhancing Security in Node.js Applications to Prevent SQL Injection

…….………

Word Count:

 5272 20

……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Pradeep Kumar Reddy Elugoti

……

Date:

 12-12-2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Fortifying Node.js Applications against SQL Injection

PRADEEP KUMAR REDDY ELUGOTI

X23192909

Abstract

Web applications’ emergence has made security a key issue in electronic

business and interaction, including managing risks associated with the SQL

Injection (SQLi) vulnerability. This paper assesses the ability of Node.js-based

applications to defend against SQLi threats through adopting the event-driven

approach. The key areas of the study are parameterized queries, input validation

and Object-Relational Mapping (ORM), and their efficiency in protecting the

application with regards to performance and usability. This project outcomes

helps to prove that in case of the correct usage the mentioned security measures

are fairly effective in the Framework reduction of SQLi vulnerabilities. Their

effectiveness was then checked through test too through manual manipulation of

the vulnerabilities and automated testing using OWASP ZAP. The first

experiments demonstrated that SQLi attacks boasted an almost 100% chance of

success when input was not sanitized – thus, the need for proper security

measures. This work underlines how it is crucial to implement extensive security

principles at every phase of web applications’ evolution, which will improve

safety within the Node.js domain.

1 Introduction

Web applications have evolved into a significantly vital component of the contemporary

cross-boundary digital landscape, serving various functions like modern communications,

facilitating commerce, and hastening up information flow within various sectors. As

increasing dependence on web platforms grows so do the upsurge of corresponding

cybersecurity threats emerge, thus creating huge concerns for sensitive data protection and

integrity issues of the online services (Jang-Jaccard & Nepal, 2014). The following is the

documentation of one such threat: the SQL injection vulnerability. SQL Injection Attacks are

based on the exploitation of these vulnerabilities in web application code to reach the

databases, manipulate data, and compromise confidentiality, integrity, and availability of

critical information.

This project builds on SQL injection vulnerabilities in web applications. In particular,

the focus will be on the Node.js server-side programming environment. Node.js has come to

be widely adopted for developing real-time web applications since its event-driven

architecture ensures great scalability and high performance when one needs to cope with

numerous concurrent connections. However, it cannot be taken for granted that an

environment in server-side scripting-in this case, Node.js-presents no vulnerabilities to an

2

attack just like any other. Among these other vulnerabilities in server-side lie SQL. Thus,

proactive measures should be applied to find, mitigate, and consequently avoid these

vulnerabilities so as to ensure good security of the web applications based on Node.js.

This illustrates why it is crucial for web applications to be protected by means of a

rich set of security measures in addition to this specific exploit. Preventive measures for these

risks help developers and corporations to reduce any possible consequences of information

leakage and continuously protect users’ personal data. The top level goal of this project is to

raise security awareness and promote security practices within the development community.

With solutions proposed for gaps that were detected in the analysis, this project will offer

developers effective solutions and recommendations to protect Node.js applications from

SQL injection risks; closing the presently existing between the theoretical concepts and tools

to produce optimally protective software.

As such, the project suggests the use of parameterized queries, inputs validation, and

other general security activities suited to the Node.js structure. Furthermore, increasing the

security level of the Node.js applications is possible with the help of incorporating third-party

Web Application Firewalls as well as other protective breakthroughs combating against the

SQL injection and unauthorized data access. It is also a good idea to integrate the option of

continuous monitoring with the company’s stricter compliance standards to strengthen its

existing protection from the emerging security threats addressed in Node applications.

Figure 1: SQLi

1.1 Research Question

1.1.1 Main Research Question

To what extent are the carried out security measures in a Node.Js based application used for

sales management immune to the common SQL injection attacks while at the same time

providing adequate performance and ease of use?

Sub-questions

To address the main research question comprehensively, the following sub-questions are

explored, focusing on security, performance, and usability:

3

Security Implementation: To which specific security practices and configurations can Node.js

application be subjected to to prevent SQL injection?

Performance Impact: How these security measures impact the performance of a Node.js

based web application?

Usability Concerns: In what way does the application of these securities affect the functions

of the application for conventional and strategic users like the salespersons and

administrators?

1.2 Project Goal/Objective

The purpose of this project is to build a secure, fast, and scalable application for sales

management using Node.js. This application should respond to the security threat that is SQL

injection and it should do so in a way that will not compromise its performance and usability

as a practical application for users.

2 Related Work

SQL injection is a critical security flaw in web applications, enabling attackers to exploit

weaknesses in application code through the insertion of malicious SQL commands. These

vulnerabilities often arise when user inputs are not properly validated or sanitized before

being used in SQL queries (Sarit, 2023). Attackers can manipulate input fields or parameters,

allowing unauthorized access to databases, extraction of sensitive information, or even full

system compromise. For example, an attacker can input malicious code like ' OR '1'='1 into a

login form, transforming a query such as:

into:

This results in unrestricted access to the database, bypassing authentication

mechanisms.

2.1 Common SQL Injection Techniques

2.1.1 Union-Based SQL Injection

Attackers use vulnerabilities to inject SQL commands via the UNION operator, which joins

their malicious queries to existing queries intended for fetching unauthorized data (Sengupta,

2022). These have been quite common in databases aiming at extracting critical information

from a database, such as usernames and passwords. By means of malicious input, an attacker

could easily add his SQL commands down the line to access sensitive data.

4

2.1.2 Blind SQL Injection

While conducting a Blind SQL Injection, an attacker won't be able to actually see database

errors but infers from application behavior (Dizdar, 2024). Application Response-conditional

expressions, injected within tampered input parameters may allow an attacker to create/

extract databases responses; error messages, response time, etc.

2.1.3 Error-Based SQL Injection

This technique uses database errors to disclose structural information about the underlying

database. Through incomplete or malformed SQL query injections, attackers can glean

schema details, table names, or query results that subsequently can be used to enhance

subsequent attacks (Dizdar, 2024).

2.1.4 Time-Based SQL Injection

Time-based injections are those where an attacker manipulates the queries to introduce

delays, and through the application response times, he is able to infer details about the

database (Swisher, 2024). Using commands like SLEEP, attackers can observe time-based

anomalies that identify vulnerabilities.

2.2 Node.js Security Landscape

Node.js, an open-source runtime for server-side JavaScript execution, offers a robust

platform for real-time applications but comes with unique security challenges. While its

asynchronous, event-driven architecture enhances performance, it also introduces

vulnerabilities that developers must address.

2.3 Security Challenges in Node.js Applications

2.3.1 Package Management System (npm)

Node.js relies heavily on third-party modules through npm, which is one of the biggest

sources of vulnerabilities. Bad or poorly maintained packages may expose applications to

vulnerabilities; thus, auditing and managing dependencies is quite a painful process for

developers (Alfadel et al., 2022).

2.3.2 Single-Threaded Nature

While Node.js is single-threaded, which is efficient, it is vulnerable to resource starvation

attacks like DoS. Resource throttling and performance optimization of the application are

some of the strategies that have been used to mitigate this.

2.3.3 Asynchronous Programming

Asynchronous operations are efficient, though they make error handling tedious and do make

one prone to vulnerabilities like code injection. It requires that a developer implement strong

error handling mechanisms so security loopholes may be avoided.

5

2.3.4 Prototype Pollution

Node.js is vulnerable to Prototype Pollution, a vulnerability of JavaScript, which allows

attackers to manipulate object prototypes and hence execute unauthorized code. Therefore,

this risk can be mitigated by strict input validation by applying secure coding practices.

2.4 Previous Research on Node.js Security and SQL Injection

Some researchers have studied Node.js and the vulnerability of this framework to SQL

injection attacks. For example, Xu et al. (2023) pinpointed parameterized query and input

validation as important preventive measures against SQL injection. ORM frameworks and

appropriate users permission configurations were described as important in improving

security according to Wijaya (2024). Through their study, Imtiaz and Williams (2022) show

that nearly a fifth of the Node.js projects included in the survey had the latent risk of SQL

injection, an indication that developers require enhanced tools and procedures to safeguard

Node.js applications.

2.5 Mitigating SQL Injection Threats

Mitigation strategies for this threat comprise: input validation, parameterized queries and

using ORM frameworks such as sequelize. Input validation is a way of filtering inputs that

user submits to a web based application and disallowing injection of other codes.

Parameterized queries basically involve the input parameters as part of the user input string,

decreasing the chances of injection attacks. Most ORM frameworks allow you to leverage the

framework to auto-generate SQL queries and clean up the inputs removing any vulnerable

strings.

Static analysis has also been helpful in finding SQL injection at the development stage

of application development. For instance, Møller and Schwarz (2014) showed that static

analysis could be used to specify vulnerability with the help of tools that automatically find

them, but often the process has to be supplemented with the use of manual analysis. These

methods are useful for blocking known threats, but may continually need tweaking in order to

provide solutions against relatively newer threats.

2.6 Gaps and Challenges in Existing Literature

Although plenty of research studies have focused on providing solutions to the problem of

SQL injection in web applications, significant knowledge gaps exist, especially concerning

Node.js applications. There are few detailed studies analyzing the Node.js ecosystem,

frameworks and libraries in the quality of SQL injection vulnerabilities, Srivastava et al.

(2018) performed a specific investigation of a Node.js application with a different focus, and

while Li et al. (2021) empirically studied Node.js applications in general, they did not focus

on SQL injection. Substantial literature in web application security is available; however,

Node.js has a different approach of event-driven and asynchronous architecture, which the

prior work does not effectively cover. Most of the previous research is focused on individual

methods, the use of input validation or parameterized queries, as an example, rather than how

these choices could be implemented appropriately within Node.js applications.

6

Among the issues there is ambiguity and constant evolution of the very Web applications

themselves, majority of which extensively depend on remotely developed modules and

frameworks. Ensuring that adequate security measures are put in place within such

environments, often calls for mastering of the entire code and integration plans. Furthermore,

Node.js is still a young platform, and has a rapidly evolving ecosystem, which – when

combined with the seemingly endless stream of new threats and best practices – makes for a

constantly shifting goalpost for developers. This means that there is a need to balance the

security and scalability of means and the functionality and performance of the applications.

These are the gaps that future research should fill by focusing on specific aspects that

could be helpful in ensuring Node.js applications are safer. The possible future directions

could include developing automated tools and frameworks for finding and fixing SQL

injection vulnerabilities in Node.js codebases. Those could be based on static and dynamic

analysis for recognizing sensitive patterns, further issuing actionable recommendations.

Other interesting directions for the future have to do with making use of machine

learning or artificial intelligence methods in general for advanced detection and prevention

against SQL injection attacks. These types of approaches can adapt to the evolving pattern of

threats, therefore affording proactive and efficient ways of mitigating them. Furthermore, an

exploratory analysis into the impact of newly emerging trends, such as serverless computing

and microservices architecture, on the SQL injection vulnerabilities in Node.js applications

can provide an insight crystal clear into the new threat landscape and help develop more

focused security solutions.

3 Research Methodology

This research used a quantitative mode of research, with an experimental research design,

aimed at testing the effectiveness of security measures against SQL Injection attacks. Real

life attack patterns observed in contemporary web applications were modeled in controlled

experiments to evaluate effectiveness of tested protective measures.

3.1 Research Procedure

3.1.1 Development Environment Setup

o Tools and Technologies Used

▪ Node.js with Express.js - Utilized for server-side scripting.

▪ MySQL Database - Managed application data and tested SQL

injection prevention methods.

▪ OWASP ZAP - Employed for web application vulnerability testing.

▪ XAMPP - Used as the local server environment.

3.1.2 Security Implementation Techniques

o Parameterized Queries - Integrated using Sequelize to secure database

interactions.

o Input Validation - Implemented via Express.js middleware to sanitize and

validate user inputs.

7

o ORM Procedures - Leveraged Object-Relational Mapping (ORM)

frameworks to abstract database queries securely.

3.1.3 Testing and Evaluation Setup

o Manual SQL Injection Testing - Performed by attempting SQL injection

through various input fields to evaluate the robustness of implemented

security measures.

o Automated Testing with OWASP ZAP - Used to identify vulnerabilities and

evaluate the security posture of the application.

3.1.4 Data Collection Methods

o Log Data - Collected from server and application logs to monitor SQL

injection attempts and their outcomes.

o Performance Data - Recorded application response times and behavior under

different security configurations to analyze potential performance impacts.

3.1.5 Data Analysis Techniques

o Statistical Analysis: Quantified the effectiveness of various security

measures.

3.2 Experimental Setup

3.2.1 Unsanitized Input Handling

Tested the application’s response to SQL injection attempts when no input

sanitization was applied.

3.2.2 Parameterized Queries

Evaluated the security of parameterized queries compared to traditional SQL query

execution.

3.2.3 Error Handling and Logging

Analyzed how the application managed and logged erroneous SQL queries,

identifying any unintended disclosure of sensitive information.

3.3 Procedure

1. Preparation: Configured the Node.js environment, set up the MySQL database, and

prepared test scripts using Postman.

2. Baseline Testing: Conducted initial tests to establish performance metrics without

security implementations.

3. Security Implementations: Integrated security measures such as parameterized

queries and input validation.

4. Attack Simulation: Simulated SQL injection attacks to test the robustness of

implemented security measures under controlled conditions.

8

5. Data Collection and Analysis: Collected log data and performance metrics for

statistical analysis.

6. Evaluation: Assessed the effectiveness of each security measure based on collected

data and identified areas for improvement.

3.4 Ethical Considerations

All the experimental analysis was therefore conducted under simulated test conditions that

allowed no actual data to be utilized. In this regard, all the instruments and measurements

used have been for analysis and experimental use only and in a manner observant of

acceptable ethical standards.

This methodology comprehensively specified the security features of a sales application

implemented using the Node.js environment. In the research, several SQL injection cases

were modeled, and different approaches to remedy the problem were tried in order to get

practical knowledge on how to improve application security. The results help to advance the

knowledge on the protection of Node.js applications against SQL injection risks in practical

environments.

4 Design Specification

Efficiency and security are the prime concerns for business applications in this digital world,

dealing with sensitive financial and personal information. This is a full-fledged Sales

Management Application using Node.js, boasting strong protection against SQL injection

vulnerabilities. Node.js is a platform famous for its asynchronous handling and real-time data

interaction capability, hence forming the backbone of this application.

Figure 2: System Interface

4.1 Features Overview

The application also includes advanced functionalities that have been integrated to ensure the

usability and safety of the data. The application is intended to assist in managing a secured

9

interactive site where sales records are controlled, commission and salaries are followed, and

communications among salespeople and management are effected. Its aim would be to

further improve organizational productivity through protection of this critical information.

Figure 3: System UseCase

4.2 Main Functionalities

1. User Authentication:

Secure access control ensures only authorized sales personnel can access their

accounts, preventing unauthorized entry.

2. Sales Record Management:

Facilitates the daily entry of sales data, enabling accurate calculation of commissions

and monitoring of overall sales performance.

3. Commission and Salary Tracking:

Automatically computes commissions and provides real-time visibility of earnings,

motivating sales staff by highlighting financial rewards.

4. Performance Review System:

Displays performance ratings and criteria, helping sales personnel track and improve

their performance.

5. Internal Messaging System:

10

Enables communication between sales personnel and their managers for streamlined

problem-solving and updates.

6. Project and Idea Submission:

Offers a platform for sales personnel to propose new projects or ideas directly to

management, encouraging innovation.

4.3 Administrative Functions

1. Management Dashboard:

Allows administrators to oversee sales personnel, their records, and performance

metrics through a centralized dashboard.

2. Adjust Ratings and Salaries:

Enables managers to modify performance ratings and compensation structures,

ensuring fair and flexible HR management.

3. Direct Messaging and Feedback

Facilitates direct communication between managers and individual sales staff,

promoting efficient feedback and guidance.

4.3 Development Environment

The application leverages a robust stack of technologies tailored for efficiency and

scalability:

1. Programming Language – Node.js:

Node.js, known for its event-driven, non-blocking I/O model, is ideal for real-time,

data-intensive scenarios. Its asynchronous capabilities ensure seamless handling of

multiple connections without significant server load.

2. Database – MySQL:

MySQL is employed for the efficient storage of all user related data such as the users’

credentials, sales and communication history. Thus, the application requirements meet

its criteria: it is sufficiently reliable and capable of handling intricate queries.

3. Framework – Express.js:

11

Express.js provides the API developers with a barebones, albeit a highly flexible

system for writing server side logic. Its routing features and middleware integration

make it easier to generate secure applications with high scalability.

4.4 Application Architecture

The application adopts a scalable and secure n-tier architecture, ensuring efficient interaction

between the client, server, and database.

1. Client-Server Model:

o Client Interface: The frontend, built with HTML, CSS, and JavaScript,

provides an intuitive user experience.

o HTTP Requests: The client communicates with the backend via HTTP

requests handled by Express.js.

o Server Processing: The server processes requests, interacts with the MySQL

database, and returns responses, such as data, success messages, or error

notifications.

2. Database Design:

The MySQL database is structured to support the application's functionalities with the

following key tables:

o Agents Table: Stores user details, including role-based access (e.g., admin,

salesperson).

o Sales Records Table: Logs daily sales entries for commission calculations.

o Messages Table: Handles internal communications between users.

o Performance Ratings Table: Tracks and updates performance metrics for

sales personnel.

This Node.js-based Sales Management Application guarantees secure real-time performance

and can be scaled up if needed. It possesses a sound design structure and incorporates

vulnerability countermeasures like input validation as well as parameterized queries in order

to illustrate how real SQL injection risks can be neutralized without inopportune sacrifices to

such aspects as functionality and speed.

5 Implementation

The implementation part of the sales management application targeted embedding essential

nodes of security within Node.js to protect the web application from SQL Injection threats.

Three major strategies were followed: parameterized queries, input validation, and Object-

Relational Mapping procedures. These measures were taken to make sure that complete

protection is guaranteed without any effect on application performance and usability.

12

5.1 Parameterized Queries

Parameterized queries were implemented throughout the application to ensure that

interactions with the database would not be vulnerable. This approach separates SQL

commands from user inputs, placing user input data into placeholders. When user-provided

data is bound to these placeholders, it is treated solely as data and cannot alter the structure of

the query.

Figure 4: Parameterized Queries

This approach thus neutered attempts at injecting malicious SQL code. It adopts the use of

parameterized queries, whereby the application provides security to its database through

unauthorized access or manipulation during runtime, especially when taking dynamic user

inputs.

5.2 Input Validation

Another key control that was included in the implementation was input validation. There is a

focus on all the sorts of input data at the data receiving and checking their compliance of

defined rules prior to database processsing. Data input validation was integrated in the

processing based on middleware in the Express.js framework so that one can verify and

sanitize user inputs. Essentially, this mechanism of attempting to control the flow of data at

the application perimeter will eliminate possible invasive inputs before they can spread

further in the system. Input validation does not only protect against SQL injections but also it

increases security in general because only data in the correct format get to access the

database.

5.3 ORM Procedures

Another strong layer of protection against such attacks was added by the use of the Sequelize

ORM framework. Basically, ORM reduces the interaction with the database by using

abstractions of SQL statements and their automated generation. No need for the developer to

write raw SQL code reduces the possibility of committing errors or vulnerabilities. With

ORM, all the database operations would inherently use secure, parameterized queries that

provide a robust defense against any SQL injection attacks. Also, ORM procedures speed up

the development process and ensure that the application is more maintainable, scalable, and

secure at the same time.

13

Figure 5: ORM Procedures

5.4 Comprehensive Security Strategy

A comprehensive defense against SQL injection attacks involves a combination of

parameterized queries, input validation, and ORM procedures. Each measure reinforces the

others to create layers of security protecting the application at various points of data handling.

Individually and collectively, these strategies ensure that the application remains resilient

against one of the most common and dangerous threats in web security.

The following security measures greatly improved the Node.js-based sales management

application's security posture. Now, the application is more than ready to handle sensitive

data securely while maintaining a seamless experience for its users. Such a strategic approach

not only covers the current vulnerabilities but also forms the foundation for the sustainable

secure development of applications in the future.

6 Evaluation

This section evaluates the security features of Node.js Sales Management Application against

SQL injection attacks. A set of experiments is conducted and automated tests with statistical

and graphical analyses are presented, yielding academic insights into practical implications.

6.1 Experiment 1: Unsanitized Input Handling

The first experiment aimed at examining the exposure of the application to SQL injection

attacks that arise from failure to sanitize the inputs entered by users. This scenario

represented real world hacking attempts where attackers take advantage of non secure input

fields so as to inject SQL commands. In the test, the researchers sent SQL injection payloads

as-is, including inputting any desired email and using injection commands in the password

field. Several unauthorized SQL commands were performed and this means that an attacker

can easily access restricted areas as the results highlighted.

14

Figure 6: validating input

The raw record of the experiment captured several cases in which the unauthorized user got

authenticated and granted access through the first account in the database. A bar graph

showing the frequency of successful attacks was used to illustrate the problem; the

application’s weakness in defending against SQL injection attacks, where 72% of the

payloads were able to penetrate the defenses. This tells it all about the stand out need for

input sanitation in any web application for protection against SQL injection.

Figure 7: Payloads Summary

6.2 Experiment 2: Parameterized Queries

The second experiment was trying to investigate the efficacy of parameterized queries in

countering the SQL injection attacks. Unlike unsanitized inputs, the parameterized queries

separate user inputs from the SQL commands through placeholders in the query structure.

15

Here, the attempts at SQL injection are performed by submitting malicious payloads in the

password field. This time, the application successfully managed to thwart all attempts,

reflecting the robustness of the parameterized queries.

Logs from this phase showed custom error messages, for instance, access denied, rather than

SQL errors to keep the sensitive database information well out of reach.

Figure 8: Error name rather than SQL error

Through a comparative bar chart view, there was a total absence of successful SQL

injections, furthering the radial difference between applications using parameterized queries

and those that were getting unfiltered inputs. Out of 312 such attack attempts, no instances

were successful, thus securing the application with the effective use of parameterized queries.

Figure 9: Payload success summary

6.3 Automated Testing with OWASP ZAP

Aside from the said manual tests, automated security assessment was performed with the aid

of OWASP ZAP, one of the most effective web application security testing tools. Although

16

SQL injection was not found, other security problems that are unrelated to SQL injection

were identified in the course of the test. These were consisting of missing CSPs on some

accounts, absence of the ‘HttpOnly’ cookies on some cookies, and the absence of the

‘SameSite’ attribute. Moreover, cross-domain JavaScript files included various accesses by

URL, which have certain risks of certain script-based exploits. The following results while

they are not unique to SQL injection demonstrate the importance of analysing and securing

other aspects of web applications.

Figure 10: ZAP Results

6.4 Experiment 3: Error Handling and Logging

The third experiment examined logs, specifically how the application handled SQL errors and

how the errors were communicated. Good error management ensures that an attacker does not

get to understand the structure of the database as this is useful in other levels of SQL

injection attacks.

Figure 11: Error Logging

This saw that the error messages returned were standard and no secret information disclosed

to end users. It used simple error messages that did not indicate the presence or absence of the

17

vulnerabilities thus hiding the application from attackers who sought to glean details of the

underlying database.

Figure 12: Rate limit error

6.5 Findings and Implications

The evaluation summed up beneficial information on the security components of the

application and how efficient these components in combating the attack of SQL injection.

Lack of sufficient sanitizer for input handling demonstrated critical weaknesses where on

average, most of the attacks were successful. But when the use of parameterized queries was

adopted the threats posed by SQL injection were eradicated completely, showing why it is

essential to adopt a technique in the development of secure web applications.

Automated testing revealed extra optimization potential, including fulfilment of more strict

cookie policies and cross-domain JavaScript issues. These results suggest that web

application security should not be viewed solely as the problem of safeguarding databases,

but as a complex issue encompassing numerous aspects.

In case for Node.js Sales Management Application various enhancements such as

parameterized queries, input validation, and consistent and robust error handling were

incorporated. The result of removing INPUT bottoms eliminated SQL injection vulnerability,

but other elements were called into attention when the automated tests were conducted. In

conclusion, these results support the necessity of implementing further security measures and

constant monitoring of the contemporary environment in the field of web application

protection.

7 Conclusion and Future Work

This research underlines the crucial importance of enforcement regarding security practices

in web applications, especially in the popular runtime environment Node.js. The experiments

carried out ran a series of enlightening tests that gave good contrast between applications

susceptible to SQL injection and those protected by the use of parameterized queries and

input validation. Such measures are proven to completely neutralize SQL injection attempts;

thus, they are indispensable in securing Node.js applications. Besides, automated tests reveal

18

the complexity of web application security and emphasize that the threats are above SQL

injection, hence requiring a higher degree of comprehensiveness and vigilance.

The threats of web applications are changing dynamically, and therefore require

continuous innovation and improvement. While this project contributed significantly to the

improvement of security in Node.js applications, future research based on the results of this

study will help to take up emerging challenges in the area. Areas that call for further

exploration include:

1. Development of Automated Security Tools:

In the future, emphasis should be directed towards developing tools that would offer

advanced static and dynamic analysis for automatic detection and remediation of SQL

injection vulnerabilities in Node.js applications. Such tools would ease finding

security gaps and help improve best practices while developing.

2. Leveraging AI and Machine Learning:

The potential of AI and machine learning in improving the detection and prevention

of SQL injection and other vulnerabilities is huge. For instance, the research might

touch on how these technologies can be used in building adaptive, intelligent systems

that would respond to evolving threats in real time.

3. Examining Serverless and Microservices Architectures:

The impact of the serverless computing paradigm and microservices architectures on

web application security is something that, with increasing adoption, shall be further

explored in the future. Understanding the threats particular to these architectures will

provide guidelines for developing needed security measures that will address these

issues.

4. Establishing Holistic Security Frameworks:

Besides SQL injection, research should be directed toward developing an integrated

security framework that will help mitigate most of the critical vulnerabilities in web

applications, such as Cross-Site Scripting, Cross-Site Request Forgery, and Server-

Side Request Forgery. Such security frameworks should offer solutions with a holistic

approach, considering a wide array of plausible threats.

5. Fostering Industry and Community Collaboration:

This would facilitate academia-industry-open-source partnerships, which will be more

helpful for sharing knowledge and speeding up the development of new security tools

and best practices. Such collaborative forums and initiatives can provide a platform

for addressing emerging threats on common ground.

When these areas are under consideration, one significant goal shall always be to strike a

balance between security ad convenience. The desired outcome is to have security bring

value to usability to foster innovation rather than limit. In this way, the constant growth of the

web application ecosystem can go on with the increase of its security against various kinds of

threats.

19

References

Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal

of Computer and System Sciences, 80(5), 973–993. https://doi.org/10.1016/j.jcss.2014.02.005

Sarit. (2023, December 21). What is SQL Injection | SQLI Attack Example & Prevention

Methods | Imperva. Learning Center. https://www.imperva.com/learn/application-

security/sql-injection-sqli/

Sengupta, S. (2022, August 3). Union-Based SQL Injection — Guide to understanding &

mitigating such attacks. Medium. https://sudip-says-hi.medium.com/union-based-sql-

injection-guide-to-understanding-mitigating-such-attacks-1775149e80e6

Dizdar, A. (2024, September 11). Blind SQL Injection: How it Works, Examples and

Prevention. Bright Security. https://brightsec.com/blog/blind-sql-injection/

Dizdar, A. (2024, September 9). Error-Based SQL injection: Examples and 5 tips for

prevention. Bright Security. https://brightsec.com/blog/error-based-sql-injection/

Swisher, J. (2024, September 3). What is Blind SQL Injection & How to Prevent

These Attacks. Jetpack. https://jetpack.com/blog/blind-sql-injection/

Alfadel, M., Costa, D. E., Shihab, E., & Adams, B. (2022). On the Discoverability of npm

Vulnerabilities in Node.js Projects. ACM Transactions on Software Engineering and

Methodology, 32(4), 1–27. https://doi.org/10.1145/3571848

Xu, M., Xie, B., Cui, F., Jin, C., & Wang, Y. (2023, November). SQL injection attack sample

generation based on IE-GAN. In 2023 IEEE 22nd International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom) (pp. 1014-1021). IEEE.

Wijaya, M. C. (2024). Security Analysis of SQL Injection Attacks on Multimedia and

Journal-Services Sites Using Concatenated Input Validation and Parsing Method

(CIVP). Ingenierie des Systemes d'Information, 29(5), 1915.

Imtiaz, N., & Williams, L. (2022, June 19). Are your dependencies code reviewed?:

Measuring code review coverage in dependency updates. arXiv.org.

https://arxiv.org/abs/2206.09422

Møller, A., & Schwarz, M. (2014). Automated detection of client-state manipulation

vulnerabilities. ACM Transactions on Software Engineering and Methodology

(TOSEM), 23(4), 1-30.

Srivastava, T., Pandey, A., & Khan, R. (2018). A study of Node.js using injection

vulnerabilities. International Journal of Advanced Research in Computer Science and

Software Engineering, 8(5), 64. https://doi.org/10.23956/ijarcsse.v8i5.666

Li, Song & Kang, Mingqing & Hou, Jianwei & Cao, Yinzhi. (2021). Detecting Node.js

prototype pollution vulnerabilities via object lookup analysis. 268-279.

10.1145/3468264.3468542

