

Configuration Manual

MSc Research Project Programme Name

Ivan Ronald Dsouza Student ID: X22189386

School of Computing National College of Ireland

Supervisor: Eugene McLaughlin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student ID: X22189386

Programme: MSc Cyber Security **Year:** 2024

Module: MSc Research Practicum

Lecturer:

Eugene McLaughlin

Submission Due

Date: 12/12/2024

Project Title: IOT Forensics: A Comprehensive Analysis of an IOT Device using

Digital Forensic and Penetration Testing Tools and Methodologies

Word Count: 795 Page Count: 10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Ivan Ronald Dsouza

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only			
Signature:			
Date:			
Penalty Applied (if applicable):			

Configuration Manual

Ivan Dsouza Student ID: X22189386

1 Introduction

This document is a configuration manual that comprises of the steps undertaken for successful execution of the project along with screenshots. In addition, details pertaining to system configurations, hardware/software requirements and other technicalities will also be addressed.

2 System Configuration

This section details information about the device used for the entire research project

Specifications	Description and Versions	
Operating System	Windows 10 Home Version 22H2	
Processor	11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz	
System Type	64-bit operating system, x64-based processor	
Memory	8 GB	

3 Tools and Software Configuration and Requirements

This Section Highlights the external tools and software utilised for this project.

Software	Version	Use case
VMWare Workstation	Version 17.0 Player	Virtual environment creation
		for hosting Kali Linux
Kali Linux	Version 6.6.9 64 bit	Conduct Vulnerability
		Analysis and Penetration
		Testing on the Baby Monitor
Nmap	7.94 SVN	Scanning the IOT Device
Binwalk		Firmware analysis of IOT
		Device
JohnTheRipper	Open source	Brut forcing the password
FTK Imager	4.7.1.2	Creating Forensic Image for
_		Digital Forensics
Autopsy	4.21.0	Analysis of Forensic Image
		to generate artefacts

4 Implementation

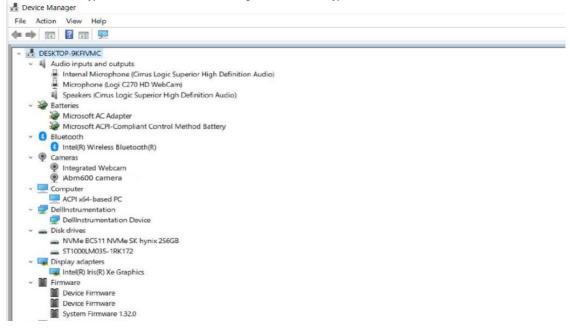
Static Analysis via USB

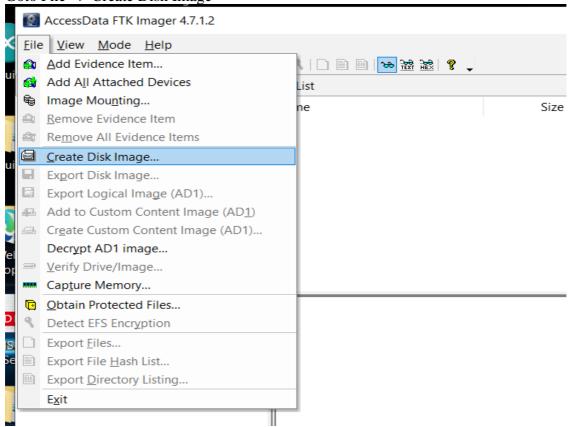
To execute static analysis via USB, connect the Baby Monitor to the laptop as shown in the

Figure 1:

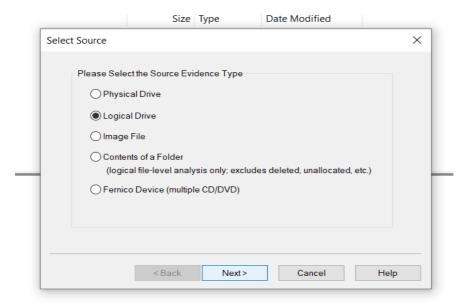
Figure 1: Connection of IOT Device to Laptop via USB

However, after connecting the baby monitor to the laptop through the USB port there is a possibility that the laptop might not detect the IOT Device. In this scenario, go to Control Panel => Device Manager => Cameras. If the device is not detected then reset your Drivers and repeat the process. The same error was faced in this research after which the drivers were reset resulting in detection of the Baby Monitor. Figure 2

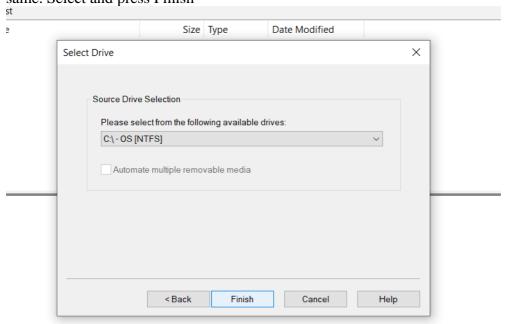


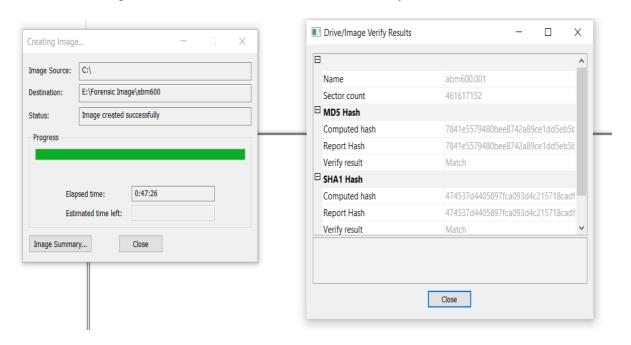

Figure 2: Device Driver

Digital Forensic Analysis


To carry out Digital Forensic Analysis FTK Imager is used to create a forensic image while Autopsy is used to analyse the forensic image. The steps taken can be given as follows

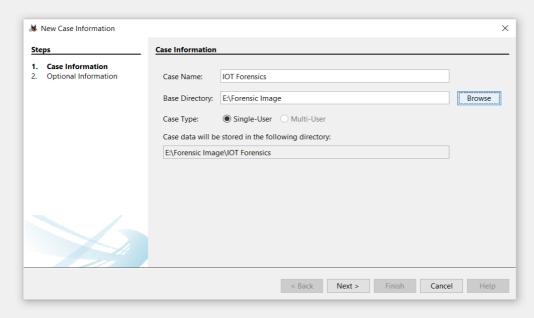
Creation of Forensic Image

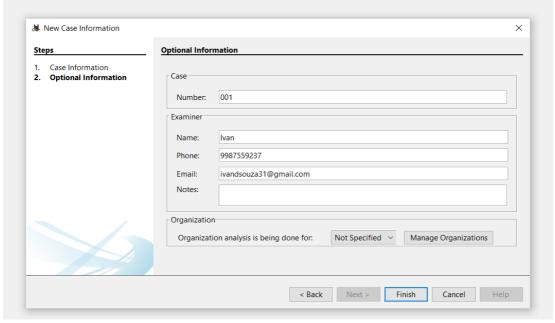

Goto File => Create Disk Image


As the forensic image created is a logical image select Logical File

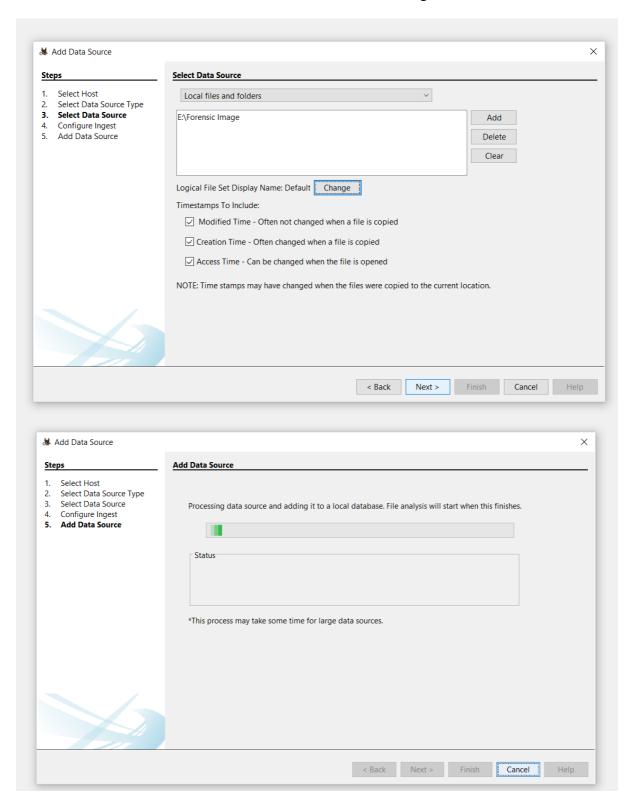
Select C Drive as the source drive to create the forensic image and then select E drive as the destination drive to store the forensic image. The source and the destination drive cannot be same. Select and press Finish

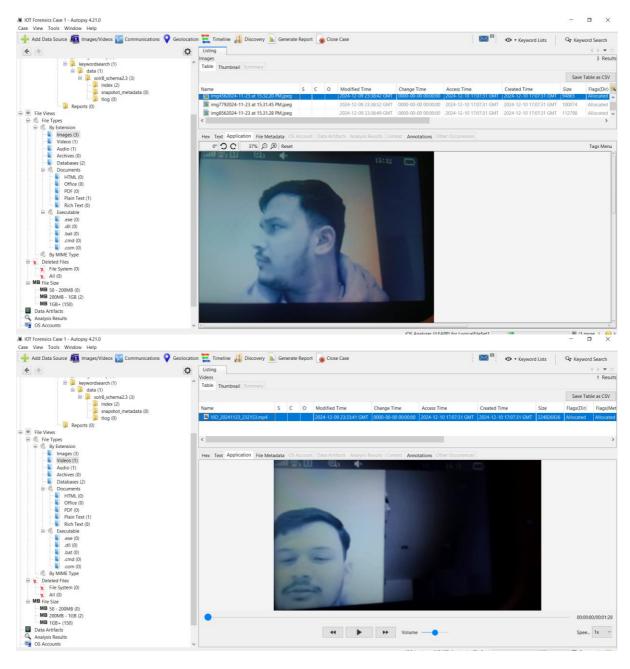
The Forensic Image has been created and verified successfully




Once the forensic image is created Autopsy is used to analyze and investigate the forensic image

Analysis of Forensic Image


Open Autopsy and Create a New Case. Then enter the Case Information selecting E drive as the base directory, as that is the destination of the Forensic Image. Then enter the optional information as well



Now Select and Add the Data Source which is the forensic image in E Drive

Vulnerability Analysis and Penetration Testing

Scanning Phase using Nmap ports 22/tcp ssh and 80/tcp are open

```
(root@ kali)-[/home/kali]
# nmap 192.168.155.131
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-12-12 04:41 EST
Nmap scan report for 192.168.155.131
Host is up (0.00034s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
```

Fuzzing using FFUF Fuzzer and wordlist

```
root® kali)-[/home/kali]
ffuf -c -u http://192.168.155.131/~FUZZ -w /usr/share/wordlists/dirb/common.txt
      v2.1.0-dev
:: Method
                     : GET
                     : http://192.168.155.131/~FUZZ
:: URL
:: Wordlist
                     : FUZZ: /usr/share/wordlists/dirb/common.txt
:: Follow redirects : false
:: Calibration
                     : false
:: Timeout
                     : 10
:: Threads
                     : 40
:: Matcher
                      : Response status: 200-299,301,302,307,401,403,405,500
```

Base 58 encoded file decoded using CyberChef

Retrieved P@55w0rd!

```
(root@kali)-[/home/kali]

// john --show hash
ssh_key.rsa:P@55w0rd!

1 password hash cracked, 0 left
```