

Developing a Framework for Integrating
Security

Testing into the CI/CD Pipeline using
Automation.

MSc Practicum Part 2
MSc Cybersecurity

Praveen Derenda Seetharam
Student ID: 23174501

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Praveen Derenda Seetharam
……. ………

Student ID:

23174501
………..……

Programme:

MSc Cybersecurity
………………………………………………………………

Year:

2024-2025
…………………………..

Module:

MSc Practicum Part 2
…….………

Supervisor:

Vikas Sahni
…….………

Submission
Due Date:

12/12/2024
…….………

Project Title:

Developing a Framework for Integrating Security
Testing into the CI/CD Pipeline using Automation.

…….………

Word Count:
7368 20
……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Praveen D S
……

Date:

11/12/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Developing a Framework for Integrating Security
Testing into the CI/CD Pipeline using Automation.

Praveen Derenda Seetharam
23174501

Abstract
The increasing frequency of security breaches in software applications proves the

importance of more frequent and comprehensive security testing, integrated into CI/CD
deployment pipelines. This research presents a novel framework that incorporates
security testing at all stages of software development life cycle. The unique mix of
SAST, DAST, and dependency vulnerabilities scanning, the framework provides
developers and security team with a diverse set of security testing tools. The framework
is implemented using GitHub Actions to streamline automation and integrates tools such
as Lint for code formatting, CodeQL for static analysis, CodeClimate for maintainability
checks, Snyk for dependency vulnerability scanning, and OWASP ZAP for dynamic
application security testing. The output of these processes is then containerized and
pushed to Docker Hub, ensuring a seamless integration with modern CI/CD workflows.
OWASP Juice Shop, a deliberately vulnerable web application, serves as the target
application for demonstrating the effectiveness of this framework. By automating
security testing and embedding it into CI/CD pipelines, this research provides a robust
approach to mitigating risks earlier in the development process while maintaining the
agility and speed of modern software delivery practices.

1 Introduction
CI/CD is now recognized as one of the most important and effective processes for enabling
rapid development and deployment of modern software. These pipelines allow for swift
feature updates and enhancements, significantly improving the software development
lifecycle's efficiency. However these pipelines provide an excellent and larger work carrying
capacity, these pipelines pose new challenges especially when addressing security issues. The
conventional security testing techniques are generally inadequate in providing timely or
consistent protection against new threats, thereby allowing vulnerabilities to go unnoticed
during development. This growing concern has led to the need to integrate security testing
into CI/CD pipelines while maintaining the speed and scalability required for modern
software delivery.

Security in CI/CD pipelines has emerged as a critical subject of study over the past several
years, based on the relatively well-established field of software quality assurance, as well as
secure development methodologies. The earlier techniques for security testing are certainly
ad hoc, often taking significant time and work and mostly performed in isolation of
development. For the past few years, the robust network security instruments as well as
characteristic life cycle have enabled security penetration into the development life cycle. By
incorporating security into the DevOps workflow, organizations can guarantee that their
applications are secure and devoid of vulnerabilities prior to deployment in the production
environment (Ahmed & Francis, 2019) However, there is still a lack of knowledge on how

2

the usage of these tools can be most effectively integrated into constantly growing CI/CD
ecosystems. This project aims to address this gap by developing a framework that
incorporates security testing into CI/CD pipelines while ensuring a balance between security
and delivery speed.

This research is based on previous research in secure software development as well as
automated testing. Hence it seeks to offer a realistic approach to meet the needs of software
development teams, something that has not been adequately addressed in literature and
practice. The problem is that most organizations face difficulties in choosing the correct set
of tools and methodologies to solve their problems within security protection systems. This
project finding contributes to the general societal challenge of increasing focus on software
security without slowing down delivery by identifying the most effective tools and methods
and showing how they may be used collectively.

This framework will not only minimize the vulnerability of an application to a security
breach, but also be a repeatable model that can be adopted for security testing on any CI/CD
pipeline. They should provide practical solutions for developers, security analysts and
researchers striving to enhance the interconnection between security and software
development speed.

Research Questions and Objectives
The project address one primary research question:

1. How can security testing be effectively integrated into CI/CD pipelines?
To address this question, the project focuses on the following objectives:

• Identify and evaluate leading security tools for static analysis, dynamic analysis, and
dependency scanning.

• Develop a reusable framework for integrating these tools into CI/CD workflows.
• Test and validate the framework’s effectiveness in detecting vulnerabilities without

significantly affecting pipeline efficiency.

Limitations and Assumptions
While aiming to provide a robust security testing framework, this project operates under
specific constraints, the scan is limited to open-source software and public repositories
because of the resource limitation. Furthermore, the testing environment is artificial, and it
does not clearly address all real-world issues like legacy systems and relatively elaborate
CI/CD setups.

Key assumptions include the use of standard pipeline infrastructure and adherence to
DevSecOps principles by the target audience. Despite these limitations, the framework is
designed to offer practical insights and scalable solutions for integrating security testing into
modern CI/CD pipelines.

Structure of the Paper
The remainder of the paper is structured as follows:

3

• Section 2 provides a literature review of previous work by researchers and
practitioners in cloud and pipeline security.

• Section 3 details the research methodology employed in the project.
• Section 4 describes the design of the proposed model, including the security

techniques and frameworks used to secure the CI/CD pipeline.
• Section 5 outlines the implementation of the security solutions within the pipeline.
• Section 6 evaluates the framework, comparing CI/CD pipelines with and without

security.

2 Related Work

2.1 Introduction to CI/CD Security Challenges
The adoption of DevOps and CI/D practices have transformed the paradigm of software
development and reducing time for new releases cycles and automation for deployments.
Still, the acceleration factor and the automated nature of CI/CD pipeline concept are two
sides of the coin that increases security threats. This is especially true when new releases are
packaged frequently as the application becomes more exposed to these vulnerabilities if
security features are not rigorously tested by the pipeline.

DevSecOps1 aims at continuing the evolution of DevOps security to catch up with the speed
of the process. Myrbakken and Colomo-Palacios (2017) note that, although the incorporation
of security into DevOps is difficult, the potential rewards are great. Mao et al. (2020) focus
on DevSecOps principles targeting security from planning, coding, building and testing
phases and infrastructural practices that include secrets management and container security
scan. At the same time, Chernyshev et al. (2021) review different approaches to application
security such as threat modeling, static and dynamic analysis and software composition
analysis, and identified that there are short emergences and making gaps in the real-world
practice and advancements.

Sindhu (2021) describes typical challenges in DevOps including fabrication of
communication between the development and security team that results in insecure and slow
delivery. Extrapolated from the study, one should recommend the DevSecOps approach,
PAM, and compliance with the necessary security regulations to minimize threats, and
especially when working with clouds. Mohan et al. (2018) and Battina & Sindhu (2017) also
reported that there is a lack of effective implementation of security tools in practice. The
solutions addressed in these studies are security policies, identity and access management,
vulnerability scanning, and continuous monitoring; however, these are also mostly
hypothetical.

Rahman et al.,(2022) explains how security has been neglected mostly in CI/CD processes,
given that DevOps is aligned with speed and automation. Since security tools used in

1 https://www.techtarget.com/searchitoperations/definition/DevSecOps

4

traditional security model would imply human intervention, which is not proper in the
context of CI/CD pipeline that takes place every time a software is built and deployed. This
paper touches on several crucial aspects of the shift-left approach in terms of developing a
security check throughout the developmental phases before products get to the production
level.

Garcia et al. (2022) also pointed out that when there are multiple integrations into the code,
new threats emerge because new and untested dependencies will be introduced coupled with
hasty deployment. Moreover, Sato et al. (2023) described how traditional security solutions
cannot address the modern, DevOps-based system development, and therefore, security
practitioners must employ agile and automated approaches to perform continuous security
evaluations of CI/CD pipelines.

2.2 Existing Approaches for Security in CI/CD
A few automated security testing tools have been created and implemented at the CI/CD
pipeline level. The commonly used types of vulnerability identification tools are found in the
developers’ environment during the coding phase and include Static Application Security
Testing (SAST)2, Dynamic Application Security Testing (DAST), and Dependency
Scanning.

ZiYue Pan (2024) conducted a systematic analysis of security threats from open-source
CI/CD pipelines, where 327310 GitHub repositories were surveyed. This work highlights a
number of attack vectors and then measures the level of risk, which shows that CI/CD
pipelines contain code injection and VUs. The scenarios are suggested in the paper together
with the detailed threat model and attack techniques, accompanied by five true stories of
attacks. It also includes Include methods for addressing these threats for CI/CD
configurations and scripts and highlights the requirement for enhancement of the security
measures within CI/CD environments.

Mangla (2023) discussed how security tools can be incorporated into CI/CD practices, with a
major focus on the automation of misconfiguration. To embed security across the entire
CI/CD process, the study takes a DevSecOps approach. It touches on the importance of
constant discovery of the security problems at the different stages of the pipeline and presents
a guideline for improving on the existing security solutions. Thus, by adopting automation in
these areas, the research seeks at enhancing generic security outcomes and minimising
security threats inherent to software delivery.

Feio et al. (2024) propose a DevSecOps framework based on the continuous security testing
method which can be implemented in different aspects of software development life cycle.
The paper pays special attention to the methodology of incorporating security into the
development life cycle to eliminate the segregation of development, security, and operations.

2 https://checkmarx.com/glossary/static-application-security-testing-sast/

5

CI/CD practices are described here with a pipeline and sequence of activities defined for each
step and tools used for automation. A case study is presented that illustrates how using the
presented framework helps in the proactive discovery of issues which improve the security of
applications within this framework.

2.3 Challenges with Automated Security Testing
The incorporation of AST technologies within the CI/CD approaches has several challenges.
One of the most commonly mentioned problems is the high number of false positives in
SAST and DAST tools. Similar observations were made by researchers; Kumar et al. (2022)
pointed out that most of these instruments tend to detect seemingly innocent code to be a
security threat, and therefore, a developer will have to waste time going through these results
from the instruments, which goes against the concept of automation.

Another big problem falls under the category of non-functional requirements, where one is
performance bottlenecks. Awad et al. (2021) discovered that, incorporating DAST tools
within a CI/CD system results in protracted build times because significant time is devoted to
performing analysis of running applications. This results in conflict between security and
velocity, the latter being a force applied on developers to deliver updates as soon as possible.
The last one is scalability which is a big issue for big firms running microservices
architecture. As highlighted by Zhao et al. (2021), it becomes almost impossible not to
burden large resource costs or slow the release pipeline when attempting to run security tests
across numerous services.

Smith et al. (2023) wanted to know how DAST tools affect performance within CI/CD
pipelines, something especially important for organizations that use microservices in big and
complex environments. They found that DAST tools bring in the problem of scalability the
rate at which security testing is conducted decreases as the number of services grows.

Rajapakse et al. (2022) present an approach to integrate three automated dynamic security
testing techniques into a CI/CD pipeline and provide an empirical analysis of the introduced
overhead. The paper identifies unique research and technology challenges that the
DevSecOps community faces and proposes preliminary solutions to these challenges. The
findings aim to enable informed decisions when employing DevSecOps practices in agile
enterprise application engineering processes and enhance overall enterprise security.

Rangnau et al. (2020) describe a study to understand how the application of dynamic security
testing tools may be adopted and performed integrated within CI/CD pipelines. The paper
also focuses on the role of security in software development, especially at the current time
when its relevance is rapidly increasing in connection with the implementation of DevOps
practices. The authors stress that the existing security management approaches cannot
compete with the level of application development, and, as a result, a new approach is
introduced – DevSecOps, which focuses on integrating security into the DevOps approach.

6

The study integrates three automated dynamic testing techniques: There is Web Application
Security Testing (WAST) using Zed Attack Proxy (ZAP)3, Security API Scanning (SAS) by
JMeter and Behaviour Driven Security Testing (BDST) by using SeleniumBase. The authors
give a quantitative assessment of the overhead incurred by these integrations and define novel
issues experienced by DevSecOps professionals when incorporating security testing into the
CI/CD pipeline. The paper is intended for the result to help development teams in
satisfactorily establishing security testing practices for the agile software development
environment.

2.4 Novel Approaches for Security Automation in CI/CD
A recent research investigation has discussed machine learning and AI integrated security in
the automated security testing aspects in CI/CD pipelines. L. A. Nikolov (2023) deals with
the integration of automation in DevSecOps context stressing that it is crucial to participate
everyone with automation in order to improve the security. In this paper, authors consider
how DevSecOps practices improve identification of issues and implementation of security
measures across application development phases. CI/CD integrates automation steps which
make security testing also automated in one way or another, and this paper focuses on various
approaches to automate security testing aspects in CI/CD pipelines, with further discourse on
the discussed problems and solutions so that organizations may have a guide into correctly
implementing security into the development cycle. N. M. Grigorieva (2024) devotes this
topic to discovering the significance of DevSecOps in strengthening software protection and
using new approaches to incorporate protection automation into CI/CD pipelines. This article
focuses on the best practices required for automation of security practices that can be adopted
for continuing security monitoring as well as vulnerability assessment constituting the main
agenda in the formation of a defensive software development life cycle. It raises awareness
on the decentralization of automatic security practices within organizations; hence making
security an intrinsic part of the software development life cycle rather than an annexation.

A. K Reddy(2021) seeks to analyse how this best practice is included and the changing
culture referred to as DevSecOps. It is evident from the study that security should be
integrated throughout the CI/CD with no emphasis placed on speed. Applying the
synthesising phase of the current research paradigm, the paper outlined the following
successful DevSecOps strategy enablers which include; the ‘Security as Code’ concept and
culture shift in organisations. It stresses a need to have security tools included in the CI/CD
process to reduce vulnerabilities and increase overall interaction among all parties engaged in
software development. The results imply that implementing DevSecOps is useful for
achieving significant improvements in security, performance, and compliance, pointing to a
fruitful line of development for organizations striving to improve the security of the software
they produce.

3 https://www.hackerone.com/knowledge-center/owasp-zap-6-key-capabilities-and-quick-tutorial

7

2.5 Frameworks Combining SAST, DAST, and Dependency Scanning
There are many frameworks are being developed that consider more than one approach to test
security, that is, SAST, DAST, and SCA. A unified security model that includes SonarQube,
OWASP ZAP, Snyk4 is explained in detail by Syed et al. (2021) that is implemented using
the CI/CD pipeline with Jenkins. The framework performs security testing throughout the
pipeline across the coding stage with SAST, at the running phase with DAST, and finally
using SCA to identify optimum vulnerable third parties.

In the same vein, Gupta et al. (2022) presented a security model that encompasses SAST,
DAST, and dependency-valve scanning, performed inside the GitLab CI/CD pipeline. In their
case study of HospitalRun, – a healthcare management application they developed – they
illustrated how a unified framework enhanced the identification of vulnerabilities at various
development phases. However, the research demonstrated difficulties in tool configurations
and appointed the important question of the fine-tuning to decrease the number of false
alarms.

In more detail, Wang et al. (2023) presented an updated approach based on integrating the
above-mentioned methods with container security solutions such as Aqua Security and Trivy.
This end to end security solution also makes sure that any security flaws will be not only in
the host code but also with the containers where the application is hosted on.

2.6 Open-Source Tools for CI/CD Security
In particular, there are number of open-source security tools that are currently used to
address security between CI/CD phases. Open-source tools such as OWASP ZAP,
SonarQube, Snyk and Trivy works under the SAST, DAST and dependency scanning
categorizations, and are widely adopted by developers who want to integrate security in their
CI/CD processes.

In another recent project by Chen et al. (2020), the authors discussed integration of OWASP
ZAP into Jenkins pipelines with reporting of typical web application threats including SQL
injection and cross-site scripting (XSS). But it also shifted the focus to the fact that the
resource optimization by ZAP can significantly worsen when the engine is scanning large and
complex applications.

Zhao et al., (2021) devoted their attention to specific SAST tool, namely SonarQube which
they pointed out as an effective tool of identifying security vulnerabilities at the very early
stages of development. But the study raised the argument that static analysis in SonarQube is
very likely to produce false positive results especially when working on large applications
having many layers of microservice architectures.

The below table lists the open source security tools that can be Integrated with CI/CD.

4 https://snyk.io/learn/what-is-ci-cd-pipeline-and-tools-explained/

8

Tools Integration Features Limitations
Jenkins GitHub,

Bitbucket,
GitLab

- Highly customizable with
1500+ plugins
- Strong community support
- Supports distributed builds

- Steeper learning curve for
beginners
- Maintenance overhead due
to plugin management

GitLab
CI/CD

GitLab
repositories

- Built-in CI/CD pipelines
- Auto DevOps for
automation
- Comprehensive security
features

- Limited to GitLab
ecosystem
- Some advanced features
may require higher-tier
plans

CircleCI GitHub,
Bitbucket

- Cloud-based automation
- Docker support
- Auto-scaling capabilities

- Free tier has limitations on
build minutes
- Configuration can be
complex for large projects

Travis CI GitHub - Simple YAML
configuration
- Integrated with GitHub
- Free for open-source
projects

- Limited support for private
repositories in the free tier
- Slower build times
compared to competitors

GoCD Various
version
control
systems

- Pipeline visualization
- Value stream mapping
- Native Docker support

- Can be complex to set up
and manage
- Less community support
compared to Jenkins

GitHub
Actions

GitHub - Automates CI/CD directly
from GitHub
- Event-based triggers

- Limited to GitHub
repositories only
- Workflow complexity can
increase with larger projects

SonarQube Various
CI/CD tools

- Continuous inspection of
code quality
- Integrates static analysis

- Requires additional setup
for full functionality
- Performance may degrade
with large codebases

OWASP
ZAP

Integrates
with CI/CD
pipelines

- Dynamic application
security testing (DAST)
- Automated vulnerability
scanning

- May produce false
positives
- Requires configuration and
tuning for optimal results

Table 1: Open-Source tools

This work addresses no framework that use only opensource tools there are numerous other
tools are also available that can be integrated into the framework to meet specific
requirements, the above table highlights a selection of open-source tools.

3 Research Methodology
The study is based upon the fundamental principles of DevSecOps, provisions of placing
security as a forefront practice in software development process. Ahmed and Francis (2019)

9

research showed the need for integrating security in the DevOps workflow to reduce
vulnerabilities. Previous works of Kumar & Goyal (2021) and Battina & Sindhu (2017) also
state that automated security testing decrease manual efforts and reduce response time to
vulnerabilities. To address gaps identified in prior research, this research focuses on
developing and implementing a framework for integrating security testing into CI/CD
pipelines using automation tools and technologies, the evaluation of the framework's
performance in detecting vulnerabilities while maintaining the efficiency of the CI/CD
pipeline. The framework includes GitHub Actions and incorporates security tools such as
Lint, CodeQL, CodeClimate, Snyk, and OWASP ZAP. The OWASP Juice Shop, a
vulnerable application designed for security training, is used as a test case to validate the
framework.

Stages of Secure CI/CD pipeline
Continuous Integration
The CI/CD pipeline is designed and built using GitHub Actions. Key configurations of the
pipeline includes GitHub repository is used as Source Code Management to store and manage
the OWASP Juice Shop application code. GitHub Actions workflows are defined in .yml files
to automate CI tasks such as code formatting checks using Lint and static code analysis using
CodeQL. The workflows were triggered by events such as code pushes, pull requests, and
merges, ensuring continuous integration and testing. Docker was used to containerize
application artifacts, which were then pushed to Docker Hub, ensuring reproducibility and
consistency across environments.

Continuous Security
A continuous security workflow using GitHub Actions is used to ensure the security of a
codebase and to automate security testing. The GitHub Actions workflow was adopted by
authors (Benedetti, et al., 2022) and (Kinsman, et al., 2021) and discussed the importance of
using GitHub Actions as the latest technology introduced by GitHub to automate the
workflows. CodeQL was employed to scan the codebase for vulnerabilities, such as injection
flaws and insecure coding practices. Snyk was utilized to identify vulnerabilities in third-
party dependencies. OWASP ZAP was integrated into the workflow to simulate attacks and
identify vulnerabilities in the running application. The continuous security workflow was
configured to automatically notify developers of detected vulnerabilities or failed security
checks, enabling prompt remediation. The continuous security workflow was configured to
automatically notify developers of detected vulnerabilities or failed security checks, enabling
prompt remediation.

Code Analysis
The pipeline is incorporated with multiple tools to perform comprehensive security checks
various static code analysis tools were used to scan the codebase for potential vulnerabilities
Lint Ensured adherence to coding standards and detected formatting issues ,CodeClimate
measured maintainability and identified technical debt, CodeQL Provides deep static
analysis for identifying security vulnerabilities in the application’s source code and Snyk

10

Checks for outdated dependencies in the project. These tools operates seamlessly within the
GitHub Actions workflows, triggered automatically upon code changes or feature merges.

Continuous Delivery
In this phase, the application code is deployed to a staging environment where it can be tested
in a staging environment. The application, after passing security checks, was deployed to a
staging environment to simulate production conditions. Docker images are pushed to Docker
Hub, enabling efficient delivery of containerized applications. Additional tests are executed
in the staging environment to validate application functionality and security.

4 Design Specification
The presented framework for integrating security testing into a CI/CD pipeline enables a
secure, automated solution for software deployment. This section gives the detail
requirements, the tools utilized, and the architecture supporting the framework while
providing an overview of its key components. To tackle problems in modern software
development, the framework combines security measures in the CI/CD lifecycle to facilitate
secure delivery without sacrificing speed. We spin around it by implementing code testing,
security scanning and deployment automation as a series of well-known tools and workflows.
GitHub Actions was used as the primary CI/CD automation server to develop the framework.
This choice was made based on how extensively it could integrate and adapt to handle
workflows, triggered by developer actions such as code commits and or pull requests. The
system uses security tools: Lint, CodeQL, Snyk, CodeClimate and OWASP ZAP to carry out
static and dynamic code analysis, dependency checks and vulnerability assessments.

In this design, the pipeline is centered around modular stages, each performs a specific
functional task in delivery, from code validation to deployment. The stages ensure that at
every checkpoint, potential issues whether functional or security-related are identified and
resolved promptly.

Figure 1:Framework Design

11

Key Features and Requirements
The design requirements of the framework include:

1. Automation: All the stages of the CI/CD process starting from integration, testing
and deployment all the stages must be automated to reduce manual intervention.

2. Security Integration: Security checks must be conducted at every stage of the
pipeline to detect and address vulnerabilities in the early stages.

3. Reproducibility: The pipeline ensures consistent results across different
environments using Docker for containerization.

4. Error Reporting: Errors at any stage are logged and communicated to the
development team, ensuring swift remediation.

The framework operates under a layered security model, employing multiple testing
methodologies such as static analysis, dynamic analysis, and software composition analysis
to ensure comprehensive protection.

Pipeline Workflow Design
The CI/CD pipeline is organized into sequential stages:

1. Code Validation and Integration: When developers push code to the GitHub
repository, the process triggers a pipeline. The pipeline starts by validating the code
using Lint to enforce consistent formatting. Following this, CodeQL performs static
analysis to detect coding flaws and potential security issues like SQL injection or
access control misconfigurations.

2. Dependency Scanning: Using the tool Snyk, the pipeline examines the project’s
third-party dependencies for known vulnerabilities. This step ensures the software
does not inherit security risks from external libraries or modules.

3. Code Maintainability: The CodeClimate tool assesses code quality, maintainability,
and adherence to best practices. It provides developers with actionable insights to
improve code robustness and readability.

4. Dynamic Security Testing: The application, once built, is deployed into a
Dockerized staging environment for runtime analysis. Here, OWASP ZAP conducts
vulnerability scans to identify potential exploits in a live scenario.

5. Artifact Packaging and Deployment: After passing all security and functionality
checks, the application is containerized using Docker. The resulting artifact is stored
in Docker Hub, ready for deployment to production environments.

6. Monitoring and Reporting: Post-deployment, the framework monitors the
application for runtime vulnerabilities. Logs and metrics are generated to evaluate
performance, detect security issues, and provide feedback for continuous
improvement.

Toolset Description
1. GitHub Actions: GitHub Actions is the pipeline engine that executes the workflows

that are described in .yml files in this framework. Its event-driven architecture yields
actions depending on changes in a repository, so for a good CI/CD.

2. Lint: This tool checks the formatting of code, ensuring production of code which has
already been standardized and minimizes on error arising from structuring of codes.

12

3. CodeQL: This tool is a very powerful SAST tool that scans through the codebase in
order to identify vulnerabilities and bad practices early on.

4. Snyk: Moreover, the SCA of Snyk allows for determining vulnerabilities in project
dependencies and suggests an appropriate solution that requires fix.

5. CodeClimate: Code health checks, this tool is used for measuring the maintainability
of the code that is, areas that requires optimization besides areas that can trigger poor
performance.

6. OWASP ZAP: The premier choice for a DAST tool, OWASP ZAP functions in a
staging environment and probes for vulnerabilities by attempting to attack an
application.

7. Docker: Docker then facilitates the running of the application in the development,
testing and the production environment by encapsulating them within small, light
weight and independent modules called containers.

8. Docker Hub: This is a cloud based container registry to store and distribute Docker
images in a simpler and easier manner.

Tools Language Support Provider Approach
GitHub Actions All languages

supported by GitHub.
GitHub Event-driven automation with YAML

configuration for tasks like building,
testing, and deploying.

CodeQL JavaScript, Python,
Java, C++, Go, etc.

GitHub Uses semantic code analysis to detect
vulnerabilities and provide
remediation guidance.

OWASP ZAP Language-agnostic OWASP Simulates runtime attacks to identify
vulnerabilities like SSRF and XSS.

Snyk JavaScript, Python,
Ruby, Java, etc.

Snyk Integrates dependency checks and
provides automated fix suggestions.

Docker Language-agnostic Docker Inc. Packages application and dependencies
into portable containers.

Lint (ESLint) JavaScript/TypeScript OpenJS
Foundation

Static analysis tool to identify and fix
coding standard violations.

CodeClimate Ruby, JavaScript,
Python, Go, etc.

Code Climate Analyzes codebase for maintainability
and test coverage alongside security
issues.

Table 2:Security Tools
Each tool was designed to run smoothly in every stage of pipeline, without the need to
interact with another tool, and pass on artifacts or results. Adding this modularity helps to
maintain the stability and expandability while ensuring security checks are not skipped.. For
instance, use of static analysis tools ensures the code is correct before packaging, and
dynamic tests that simulate real-world attacks post build. The proposed framework integrates
robust security process into the CI/CD process to make sure that application is production
ready and also protecting them from threat potential.

13

5 Implementation
The results obtained using the methodology and proposed design identified various
vulnerabilities and addressed them in the early development cycle. The implementation stage
involved creating a fully automated CI/CD pipeline that integrates comprehensive security
testing at every step. This was achieved using GitHub Actions to define workflows that
automated the process of building, testing, securing, and deploying applications. The
OWASP Juice Shop application was used as the testbed for the framework due to its rich set
of realistic vulnerabilities, making it an ideal choice for validating security processes.

The implementation resulted in several key deliverables. Firstly, custom workflows were
written using YAML scripts. These workflows describes the sequence of tasks triggered by
specific GitHub events such as code pushes, pull requests, or merges into the main branch.
These workflows were configured to perform security scans, quality checks, and automated
deployments without requiring manual intervention. By orchestrating these processes within
GitHub Actions, the pipeline ensured that all stages of integration and delivery were both
repeatable and efficient.

Another critical output of the implementation was the creation of Dockerized application
images. The codebase was built and packaged into containerized images that could be
deployed across any environment with minimal configuration. These Docker images were
rigorously tested for vulnerabilities and then uploaded to Docker Hub, ensuring a consistent
and secure deployment process.

The framework also produced detailed security reports. These reports, generated during each
pipeline execution, highlighted vulnerabilities found through static and dynamic security
testing. Tools such as CodeQL performed static application security testing to identify
potential flaws in the source code, while Snyk conducted software composition analysis to
detect issues in third-party dependencies. OWASP ZAP was used in the staging environment
for dynamic application security testing, simulating real-world attack scenarios to uncover
runtime vulnerabilities. These reports were integrated into GitHub’s interface, enabling
developers to review issues directly within their workflow.

In addition to security outputs, the pipeline also provided insights into code quality. By
incorporating tools like CodeClimate, the implementation measured code maintainability,
identifying areas of technical debt, complexity, and code smells. These quality metrics
allowed the development team to address potential issues early, improving the overall health
of the codebase.

All processes were designed to operate seamlessly within the CI/CD pipeline. The
implementation ensured that once new code was committed to the GitHub repository, the
pipeline would automatically initiate the build process. This involved compiling the
application, resolving dependencies, and preparing the Docker image for testing. Automated

14

testing followed, with tools like JUnit verifying the functionality of individual components
and integrated security tools ensuring the absence of vulnerabilities.

The entire implementation relied on a robust set of tools and languages. GitHub Actions
formed the backbone of the pipeline, orchestrating tasks defined in YAML scripts. The
primary language of the application, JavaScript (Node.js), was used alongside custom scripts
written in Python for specialized data processing and reporting tasks. Docker played a crucial
role in creating consistent, portable application containers, while Docker Hub served as a
centralized repository for storing and sharing these images.

In conclusion, the implementation successfully delivered an integrated CI/CD pipeline that
automated the development and security testing processes. It achieved the primary goal of
embedding security into the software delivery lifecycle, ensuring that every release was
tested for vulnerabilities before reaching production. By producing actionable security reports
and maintaining high levels of automation, the framework represents a significant step
forward in integrating DevSecOps practices into modern software development.

6 Evaluation
This experiment aimed to detect vulnerabilities in every stage of CI/CD Pipeline. The secure
module of the CI/CD Pipeline is built by integrating security tools to identify security
misconfigurations and vulnerabilities in every stage of the CI/CD pipeline. The evaluation
was performed between the CI/CD Pipeline and the Secure CI/CD Pipeline. The pipeline
without security does not detect any vulnerabilities. However, this presented pipeline with
security detected the security vulnerabilities that benefit compliance and security. The output
produced from the security tools and GitHub Actions workflows showed the security
misconfigurations and vulnerabilities on OWASP Juice Shop, a deliberately vulnerable web
application.

6.1 CI/CD Pipeline Without Security Testing
Without security testing, the CI/CD pipeline only focuses on things like automating the
application build, testing, deployment. The pipeline is blind to security flaws in the codebase,
dependencies, and the configurations without the proper security tools integrated.

• Code Quality and Security: The absence of static analysis tools like Lint or CodeQL
which means that issues like syntax errors, code smells, and potential vulnerabilities
will go undetected, and which leads the code base to exploit.

• Dependency Vulnerabilities: Tools like Snyk and other dependencies scanning tools,
which scan dependencies for known vulnerabilities, are not part of the pipeline. This
can result outdated libraries used in the applicating with known exploits and putting
the application at risk.

• Vulnerability Assessments: Without the dynamic analysis tools like OWASP ZAP,
which lacks any proactive measures to scan the application for runtime vulnerabilities
or misconfigurations in the infrastructure, such as insecure cloud configurations or
improper access controls.

15

The pipeline without the security testing tools leaves the application vulnerable and
inefficiencies in detecting and addressing security risks at the early stages of the development
cycle.

6.2 CI/CD Pipeline with Security Testing
With help of mentioned above instruments such as Lint, CodeQL, Snyk, CodeClimate, and
OWASP ZAP the CI/CD pipeline will transform into very secure innovative automated
framework that scans, identify and prevent most of the security threats at each stage of the
development process.

Code Analysis and Linting: Lint, CodeClimate, in this pipeline, are used detect syntax error,
code smell, and likely issues at the beginning of the SDLC process. These tools help maintain
code quality and enforce secure coding practices, reducing the risk of security vulnerabilities
introduced during development. The below diagram shows the vulnerabilities identified by
Lint scan and the CodeClimate.

Figure 2: CodeClimate Analysis

Static Code Analysis with CodeQL: CodeQL performs deep static code analysis, it detectes
the vulnerabilities such as SQL injection, cross-site scripting (XSS), and buffer overflow
vulnerabilities. This ensures that the code is fully examined for critical security issues before
it reaches production. CodeQl has identified 119 issues on the OWASP Juiceshop application
with Hard-Coded Credentials, Server-Side request forgery, Code injection etc.

16

Figure 3: CodeQl Scan

Dependency Management with Snyk: Snyk scans the application to detect a list of all
dependencies and run them through matched databases of known vulnerabilities. This tool is
specifically essential for the scanned application because third-party libraries, a common risk
with modern applications, often have exploitable vulnerabilities. The below figure shows
Snyk scan result for the repository.

Figure 4: Snyk Scan

Security and Vulnerability Scanning with OWASP ZAP: During the dynamic analysis
phase, OWASP ZAP simulates an attack on the running Application, more specifically the
program searches for cross-site scripting (XSS), broken authentication, and insecure direct
object references (IDOR). With ZAP running during staging or pre-production it is possible
to identify some of the run time vulnerabilities and rectify them before going live. From the

17

below figure we can see the ZAP scan for OWASP Juice shop done before deploying in to
production environment.

Figure 5: ZAP Scan
Automated Security Workflow: These security tools are seamlessly integrated into the
pipeline using GitHub Actions, which automates the triggering of scans and vulnerability
assessments. With every commit or pull request, the tools run automatically to analyze the
code, dependencies, and runtime behavior, ensuring that no new security issues are
introduced into the codebase. Additionally, if any security flaws are detected, automated
alerts and reports are generated, allowing the team to take immediate corrective action.

6.3 Discussion
Figure 6 represents the results of an experiment that evaluated the effectiveness of tools
CodeQl, Synk, Codeclimate and OWASP ZAP in identifying vulnerabilities in a pipeline
integrated with security. The results of the experiment showed that all the tools identified a
relatively high number of vulnerabilities. The integration of security testing into every stage
of the CI/CD pipeline substantially improves the security posture of the application.
Compared to a pipeline without security checks, the secure pipeline provides significant
benefits in identifying and mitigating vulnerabilities early in the development process. As a
result, the application is more secure, compliant, and resilient to potential attacks. By doing
so, it was possible to quickly address any issues that were encountered and maintain the

18

overall security of the pipeline over time. In summary, this approach not only strengthens the
overall security framework but also enhances the ability to deliver secure software quickly
and efficiently.

Figure 6: Vulnerabilities Analysis

7 Conclusion and Future Work
To answer the research question, this research employed a framework that integrates the
security testing into all stages of the CI/CD process The conclusion thus shows that this study
provides proof that security testing at the CI/CD pipeline as proposed in this study can indeed
work at the speed and scale needed in the current software development methods.s. The
LimeLM product is an effective solution that is integrated with a SA&ST approach that
combines SAST, DAST, and Dependency Vulnerability Scanning. This is evidenced by the
fact that popular tools Lint, CodeQL, CodeClimate, Snyk, and OWASP ZAP can be
integrated into the automated work cycle, which is performed by GitHub Actions.

For proving the practicality and basic sanity of the framework for vulnerability consistency,
the evaluation is carried out in OWASP Juice Shop. In comparison to a standard CI/CD
pipeline where there is no security integration the secure pipeline serves as a more effective
means of analyzing for and identifying vulnerability and misconfigurations at stages in the
deployment process which in turn increases security.

The contribution of this research is a reusable, scalable and efficient framework on
DevSecOps, aiming to improve the challenge in CI/CD contexts of integrating security into
fast development delivery. It gives guidance to other organizations on how they can use a
similar approach to enhance application security and mitigate risks at stage one of the
development process. Although this research effectively applies security testing to the CI/CD
process in this work, further research studies and eventual implementation of other
sophisticated security tools like the fuzz testing tools and AI security testing systems could be
explored and incorporated to enrich frameworks’ functions. This solution might contain
functionalities for automatic patching of threats and continuous threat detection and

19

escalation to threats and incidents. When implemented in CI/CD pipeline, this solution can
enhance organizations’ security and limit the number of breaches or consequent security
incidents.

References
Ahmed, Z. & Francis, S. C., 2019. Integrating Security with DevSecOps: Techniques and
Challenges. 2019 International Conference on Digitization (ICD), pp. 178-182.

Battina & Sindhu, D., 2017. BEST PRACTICES FOR ENSURING SECURITY IN
DEVOPS: A CASE STUDY APPROACH. International Journal of Innovations in
Engineering Research and Technology, pp. 38--45.

Mao, R. et al., 2020. Preliminary Findings about DevSecOps from Grey Literature. 2020
IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), pp.
450-457.

Chernyshev, M., Baig, Z. & Zeadally, S., 2021. Cloud-Native Application Security: Risks,
Opportunities, and Challenges in Securing the Evolving Attack Surface. Computer, pp. 47-
57.

Rahman, N. H. B. M. (2023). Exploring the role of continuous integration and continuous
deployment (CI/CD) in enhancing automation in modern software development: A study of
patterns, tools, and outcomes. Quarterly Journal of Emerging Technologies and Innovations,
8(12), 10–20.

C. Feio, N. Santos, N. Escravana and B. Pacheco, "An Empirical Study of DevSecOps
Focused on Continuous Security Testing," 2024 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), Vienna, Austria, 2024, pp. 610-617.

Mangla, M. (2023). Securing CI/CD Pipeline: Automating the Detection of
Misconfigurations and Integrating Security Tools. National College of Ireland

Z. Pan et al., "Ambush From All Sides: Understanding Security Threats in Open-Source
Software CI/CD Pipelines," in IEEE Transactions on Dependable and Secure Computing,
vol. 21, no. 1, pp. 403-418.

M. Efendi, T. Raharjo and A. Suhanto, "DevSecOps Approach in Software Development
Case Study: Public Company Logistic Agency," 2021 International Conference on
Informatics, Multimedia, Cyber and Information System (ICIMCIS, Jakarta, Indonesia, 2021,
pp. 96-101.

M. F. Domínguez-Acosta and G. A. García-Mireles, "Identifying Activities for Enhancing
Software Quality in DevOps Settings," 2021 10th International Conference On Software
Process Improvement (CIMPS), Torreón, Coahuila, Mexico, 2021, pp. 84-89.

20

D. B. Cruz, J. R. Almeida and J. L. Oliveira, "Open Source Solutions for Vulnerability
Assessment: A Comparative Analysis," in IEEE Access, vol. 11, pp. 100234-100255.

Fernández González, D., Rodríguez Lera, F.J., Esteban, G. et al. “SecDocker: Hardening the
Continuous Integration Workflow.” SN COMPUT. SCI. 3, 80 (2022).

Danilo Sato and Andrei Macedo. Challenges and benefts in implementing continuous
delivery: A systematic literature review. 2016 IEEE 9th International Conference on
Software Testing, Verifcation and Validation (ICST), pages 13–24, 2016.

L. A. Nikolov and A. P. Aleksieva-Petrova, "Action Research on the DevSecOps Pipeline,"
2023 International Scientific Conference on Computer Science (COMSCI), Sozopol,
Bulgaria, 2023, pp. 1-6.

T. Rangnau, R. v. Buijtenen, F. Fransen and F. Turkmen, "Continuous Security Testing: A
Case Study on Integrating Dynamic Security Testing Tools in CI/CD Pipelines," 2020 IEEE
24th International Enterprise Distributed Object Computing Conference (EDOC),
Eindhoven, Netherlands, 2020, pp. 145-154.

R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and solutions when
adopting DevSecOps: A systematic review,” Information and Software Technology, vol. 141,
p. 106700.

N. M. Grigorieva, A. S. Petrenko and S. A. Petrenko, "Development of Secure Software
Based on the New Devsecops Technology," 2024 Conference of Young Researchers in
Electrical and Electronic Engineering (ElCon), Saint Petersburg, Russian Federation, 2024,
pp. 158-161.

A. K. Reddy, Venkat, S. Thota, C. S. Ravi, and M. Bonam, “DevSecOps: Integrating Security
into the DevOps Pipeline for Cloud-Native Applications,” Journal of Artificial Intelligence
Research and Applications, vol. 1, no. 2, pp. 89–114.

H. Chen, J. Chen, J. Chen, S. Yin, Y. Wu and J. Xu, "An Automatic Vulnerability Scanner
for Web Applications," 2020 IEEE 19th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), Guangzhou, China, 2020, pp. 1519-
1524.

