ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc. In Cybersecurity

Arbaz Adib Dalwali
Student ID:; x23161795

School of Computing
National College of Ireland

Supervisor: Dr. Rohit Verma

Student
Name:

Student ID:
Programme:

Module:
Lecturer:

Submission
Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet

School of Computing
Arbaz Adib Dalwai

X233 161705 e re e e e e
MSc. In Cybersecurity 2024-25

BOLSTERING CLOUD SECURITY WITH REAL-TIME SIEM USING HYBRID-
RULE BASED AND ML INSIGHTS.

8436 ...
... Page Count: ..49..........ccooiiiiiiii e

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Arbaz Adib Dalwai

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Arbaz Adib Dalwai
x23161795

1 Setting up the Instances with necessary permissions on
Amazon Web Services (AWS)

Total 6 instances were created in this project and each instance had a separate role to serve as

per the requirements. All these instances were placed in the same virtual private cloud (VPC)

to avoid any connectivity issues. The process for creating the instances can be explained in

the following steps

e Go to the elastic cloud compute (EC2) service on AWS and launch the instances.

e Select the Application and operating system (OS) images (as per the requirements of the
different components).

e Select the instance type (as per the computational strengths needed to perform the
functionalities).

e Allocate the storage space.

e Set up a unique key pair (.pem file) for logging in to instance.

e Allow the necessary network settings and create unique security groups (for maintaining
the network ports & connections)-

Elastic IP (internet protocol) allocation steps-
e (o to the Elastic IP section on the EC2 service in AWS. Shown in figure 1 below-

Allocate Elastic IP address i

Elastic IP address settings inc

Public IPv4 address pool
© Amazon's pool of IPvé4 addresses

more [3

Network border group Info
Q us-east-1 be

Global static IP addresses
AWS Global Accelerator can provide glabal static IP addresses that are announced worldwide using anycast from AWS edge locatians. This can help improve the availability and latency for
ur user traffic by using the Amazon glabal network. Learn more [%
Y

yo
Create accelerator [)
(o rator (1)

Tags - optional

Atag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value. You can use tags to search and filter your resources or track your AWS costs.

Figure 1

e Through the “Allocate IP address” button on top right getting the IPs from Amazon’s
pool of IPv4 addresses. A total of 5 elastic IPs could be allocated to my AWS account (as
per the permissions granted through college’s AWS team).

e After getting the elastic IP associating the IP address to the instance ID as shown below
in figure 2.

& pat @ @ N. Virginia ¥ abs/user341C

EC2 > Elastic IP addresses > Associate Elastic IP address © 6 &

Associate Elastic IP addressi«to -
Choose the instance or network interface to associate to this Elastic IP address (3.228.185.88)

Elastic IP address: 3.228.185.88
Resource type
O_instance
i-059e06413e26b7876 (IDS server) - running
i-05e1a011840d9bbfb (SIEM-server) - running
1-0d0e6559b66b2S (File server) - running ssociated Elastic IP address will be disassociated, but the

i-09084f1775¢5599d7 (Employee machines) - running
1-044df8116e1ad3db0 (Attacking machine) - running

i-05fd02ac4f24eba32 (ML models) - running

(P minstoc i

Private IP address

Q, Choose a private IP addres
Reassociation

) Allow this Elastic IP address to be reassociated

Cancel Associate

[Cloudshell Feedback

Cookie preferences

Figure 2

e Allocated IP addresses as depicted in figure 3 below-

@ N. Virginia ¥

e EC2 > Instances > i-0d0e6d559b6d6b2d9 ®© 6 B
Dashboard < Elastic IP addresses (5) @ Allocate Elastic IP address
EC2 Global View
IRV Q. Find resources by attribute or tag 1 o]
Events
L) Name v | Allocated IPv4 addr... v | Type v Allocation ID v Reverse DNS record
¥ Instances
SIEM Public 1P eipalloc-0d695de28730deeff -
Instances
Instance Types (] Employee machine Public 1P eipalloc-0705¢3b22f40371e2 -
Launch Templates) Mimodel 54,81.14537 public 1P eipalloc-014e740dfe06db301 -
Spot Requests] oS 5482178224 Public IP eipalloc-07617¢315aca57eb7 -
Savings Plans O File server 98.83.82.139 Public IP eipalloc-04d76e7626857¢66b -
Reserved Instances 4

Dedicated Hosts

Figure 3

All the instances created along with their configurations including the security groups are
listed below-

1. File server- Below is the figure 4 showing the same.

e EC2 > Instances > i-0d0e6d559b6d6b2d9 & B

Dashboard < . . "
Instance summary for i-0d0e6d559b6d6b2d9 (File server) into @ (Cconnect) (Cinstance state v) (" Actions v)
EC2 Global View
Updated less than a minute ago
Events
Instance ID Public IPv4 address Private IPv4 addresses
¥ Instances [0 i-0d0e6d559b6d6b2d9 I5) 98.83.82.139 | open address [3 0 172313145
Instances
IPv6 address Instance state Public IPv4 DNS
Instance Types - @ Running I0) ec2-98-83-82-139.compute-1.amazonaws.com |
Launch Templates open address [2
Spot Requests .
Hostname type Private IP DNS name (IPv4 only)
Savings Plans IP name: ip-172-31-31-45.ec2.internal I6) ip-172-31-31-45.ec2.internal
Reserved Instances
Answer private resource DNS name Instance type Elastic IP addresses
Dedicated Hosts IPva (A) t3.micro 5} 98.83.82.139 (File server] [Public IP]
Capacity Reservations
Auto-assigned IP address VPCID AWS Compute Optimizer finding
¥ Images - I0) vpe-09e772ecabic866¢1 [2 (© Opt-in to AWS Compute Optimizer for recommendati
s ons
o e[A
AMI Catalog | Learn more [3
v Elastic Block Store IAM Role Subnet ID Auto Scaling Group name
- 'E] subnet-030319b2c3398021e [2 -
Volumes
Snapshots IMDSv2 Instance ARN Managed
Lif le M Required 'E] am:aws:ec2:us-east-1:662231714704:instance/i-0d0 false
oy Hanage 6d559b6d6b209

¥ Network & Security Operats
perator -

(I cloudshell Feedback

Figure 4

Instance Type: t3.micro

Application OS: Amazon Linux; VERSION="2023"; ID="amzn".

Storage: 8 GIiB

Key pair: fileserver.pem

Elastic IP allocated: Public IP- 98.83.82.139, Private Ip- 172.31.31.45

Open ports & Security group configuration:

- Port 22 is open for secure socket shell (ssh) in order to get an administrative access to the
instance to configure and manage it.

- Port 443 is enabling secure web traffic to the file server using the HTTPs

- Port 80 allows access to the web application hosted on the file server

- Custom ICMP- IPv4 rule in the outbound rules is facilitating the connection with the
intrusion detection system (IDS) server so that all the traffic generated at file server is
monitored and analysed by the IDS.

The below figures 5 & 6 depict the inbound and outbound rules resp.

Inbound rules it

Security group rule ID Type Info Protocol info Portrange Source Info Description - optional Info

Info

- (@) (a)) (oome)

sgr-054f3b4a04954f486 HTTP v {Cus___ v] {Q] [] (Delete)

sgr-048a916265d0b6537 SSH

Figure 5

Outhound rules info

Security group rule ID Type Info Protocol Port range Destination Info Description - optional Info
Info Info
sgr-0759788a587dd326b All traffic v [Cu... v] [Q } [IDS connection J C Delete)
sg- X
039afda44f2cb56c2

Figure 6

Testing the access connection-

The SSH connection with the instance (file server) is established using the command-

ssh -i “F:\fileserver.

pem” ec2-user @98.83.82.139 and is visible through the below figure 7

U B ec2-user@ip-172-31-31-45:~ X + v

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

Loading personal and system profiles took 16UOms.
(base) PS C:\Users\arbaz dalwai> ssh ec2-user@98.83.82.139
A newer release of "Amazon Linux" is available.
Version 2023.6.20241028:
Version 2023.6.20241031:
Version 2023.6.20241111:
Version 2023.6.20241121:
Run "/usr/bin/dnf check-release-update" for full release and version update info
] #_
~_ o HEHE
_HEHEH
\###]
\#t/ ___
Ve

Amazon Linux 2023

https://aws.amazon.com/linux/amazon-1inux-2023

Last login: Fri Nov 29 23:10:01 2024 from 89.100.111.212
[ec2-user@ip-172-31-31-45 ~]$

Figure 7

Employee machine- Below is the figure 8 depicting the same

aws | e | Q Seorch [Alt+S] B 8 ® @ Nvignav voclabs/user3410150=x23161795@student.ncirlie @ 6622-3171-4704 ¥
e EC2 > Instances > i-09084f1775c5599d7 [CI
Dashboard <

Instance summary for i-09084f1775c¢5599d7 (Employee machines) inf

—\
((_j}.(Connect \(Instance state ¥)

Actions ¥)
EC2 Global View

Updated less than a minute ago
Events
Instance 1D Public IPva address Private IPv4 addresses
¥ Instances 15 -09084f1775¢5599d7 15 52.204.25.98 | open address [3 I 17231.39.47
Instances
IPv6 address Instance state Public IPv4 DNS
Instance Types - @ Running [0 ec2-52-204-25-98.compute- 1.amazonaws.com
Launch Templates open address [2
Spot Requests .
Hostname type Private IP DNS name (IPv4 only)
Savings Plans IP name: ip-172-31-39-47.ec2.internal I8 ip-172-31-39-47.ec2.internal

Elastic IP addresses
I5 52.204.25.98 (Employee machine) [Public IP)

Answer private resource DNS name Instance type
IPvd (A) t3.micro

Auto-assigned IP address VPCID AWS Compute Optimizer finding

¥ Images - 15 vpc-09e772ecal (® Opt-in to AWS Compute Optimizer for recommendati
AMIs ons.
earn more [2
AMI Catalog I more [3
v Elastic Block Store 1AM Role Subnet ID Auto Scaling Group name
‘ - 15} subnet-08740425317727b3 [-
Volumes
Snapshots IMDSv2 Instance ARN Managed
Wifecycle Manager Required 16 armawsiec2:us-east-1:662231714704:instance/i-090 false
e 84f1775¢5599d7

¥ Network & Security o
- perator -

B cloudshell Feedback

Caokie preferences

Figure 8

Instance Type: t3.micro
Application OS: Amazon Linux; VERSION="2023"; ID="amzn"
Storage: 8 GIiB

Key pair: employee machine.pem

Elastic IP allocated: Public IP- 52.204.25.98, Private Ip- 172.31.39.47

Open ports & Security group configuration:
- Port 22 is open for ssh in order to get an administrative access to the instance to configure

and manage it.

mailto:ec2-user@98.83.82.139

- Port 80 allows the employee machine to access web applications which also includes the
phishing page hosted by the attacking machine.

- Custom ICMP- IPv4 rule in the outbound rules is necessary for the connection with the
IDS server so that all the traffic generated at employee machine is monitored and
analysed by the IDS.

The below figures 9 & 10 depict the inbound and outbound rules resp.

Inbound rules it

Security group rule ID Type Info Protocol info Port range Source Info Description - optional Info
Info
sgr-0dc1c57cf1b505923 HTTP v Cus... v Q
0.0.0.0/0 X
sgr-0628d048e2c72000 o - s v) [a
0.0.0.0/0 X
Figure 9

Outbound rules it

Security group rule ID Type Info Protocol Info Portrange Destination Info Description - optional Info

Info

5gr-06b75be0f32b04956 All traffic v Cus... v Q IDS connection

sg- X
039afda44f2cb56c2

Figure 10
Testing the access connection-

The SSH connection with the instance (employee machine) is established using the
command-

ssh -i ""F:\employee machine.pem" ec2-user@52.204.25.98 and is visible through the
below figure 11

U B ec2-user@ip-172-31-39-47:~ X + v

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

Loading personal and system profiles took 1101ms.
(base) PS C:\Users\arbaz dalwai> ssh ec2-user@52.204.25.98

A newer release of "Amazon Linux" is available.
Version 2023.6.20241111:
Version 2023.6.20241121:
Run "/usr/bin/dnf check-release-update" for full release and version update info

] #—
~_ HE#E_ Amazon Linux 2023
_t\
\## |
\#/ ___ https://aws.amazon.com/linux/amazon-1linux-2023
'—>

Last login: Sat Nov 30 01:14:55 2024 from 89.101.66.164
[ec2-user@ip-172-31-39-47 ~]$%

Figure 11

3. Attacking machine- Below is the figure 12 showing the same

mailto:ec2-user@52.204.25.98

wes > i-044df8116e1ad3db0

Dashboard <

EC2 Global View i
Updated less than a minute ago
Events

Instance summary for i-044df8116e1ad3db0 (Attacking machine) i

Instance ID Public IPv4 address Private IPv4 addresses
¥ Instances) i-044df8116e1ad3dbo I} 54.161.1.46 | open address [3 15 17231.40.223
Instances
1PV address Instance state Public IPv4 DNS
Instance Types - @ Running I) ec2-54-161-1-46.compute-1.amazonaws.com
Launch Templates open address [2
Spot Requests N
Hostname type Private IP DNS name (IPv4 only}

Savings Plans IP name: ip-172-31-40-223.ec2.internal

Reserved Instances

Answer private resource DNS name
Dedicated Hosts 1Pva4 ()
Capaity Reservations

Auto-assigned IP address

* Images [0 54.161.1.46 [Public IP]
AMIs
AMI Catalog
» Elastic Block Store 1AM Role
Volumes -
Snapshots IMDSv2
Required

Lifecycle Manager

* Network & Security Openat
perator

16 ip-172-31-40-223 ec.internal

Instance type Elastic IP addresses
t2.micro -
VPCID AWS Compute Optimizer finding

0 vpc-09e772ecabfc8b6e [A (@ Opt-in to AWS Compute Optimizer for recommendati
ons

| Learn more [3

Subnet ID Auto Scaling Group name
ID) subnet-087404253177e27b9 [-

Instance ARN Managed
0 amaws:ec2us-east-1:662231714704instance/i-044 false
dfg116e1ad3db0

[Cloudshell Feedback

Instance Type: t2.micro

Figure 12

Application OS: Amazon Linux; VERSION="2023"; ID="amzn"

Storage: 8 GIiB
Key pair: attacking machine.pem

This instance does not have an elastic IP allocated as it is the attacking machine and it should
depict a realistic approach. Hence dynamic public and private IPs are allocated to it
everytime the instance is restarted to increase the complexity of the attack simulation
replicating an attackers mindset to avoid detection.

Open ports & Security group configuration:

- Port 22 is open for ssh in order to get an administrative access to the instance to configure

and manage it.

- Port 80 allows connection to the phishing page which is to be hosted on the instance.
Through this the employee machine can access the phishing simulation.

- The outbound rule for all traffic allows the instance to send the traffic including both
phishing page response and distributed denial of service (DDoS) attack. This would help

in inititaing the simulated attack.

The below figures 13 & 14 depict the inbound and outbound rules resp.

Inbound rules info

Security group rule ID Type Info Protocol

Info

HTTP v

sgr-0cff2512d5555072c

sgr-00bd1d28ce35d0908 SSH v

Port range Source Info Description - optional Info

Info

(@) (@) (
(e v (a) (

) (Coaee)

)

Figure 13

Outbound rules info

Security group rule ID Type Info Protocol Info Port range Destination Info Description - optional Info

Info

sgr-083313cal15ea7050f All traffic v Cus... v Q
0.0.00/0 X

Figure 14
Testing the access connection-

The SSH connection with the instance (attacking machine) is established using the command-
ssh -i ""F:\attacking machine.pem™ ec2-user@54.161.1.46 and is visible through the given
figure 15.

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

Loading personal and system profiles took 18ulms.
(base) PS C:\Users\arbaz dalwai> ssh ec2-user@54.161.1.46

A newer release of "Amazon Linux" is available.
Version 2023.6.20241028:
Version 2023.6.20241031:
Version 2023.6.20241111:
Version 2023.6.20241121:
Run "/usr/bin/dnf check-release-update" for full release and version update info
1 #—
~_ o HiEE Amazon Linux 2023
_H#HEE\
\### |
\#/ ___ https://aws.amazon.com/linux/amazon—1linux—2023
VNI I_>
/
SN
-/
_/m/!
Last login: Mon Dec 2 01:47:25 2024 from 89.100.111.212
[ec2-user@ip-172-31-46-223 ~]1% |

Figure 15

4. The IDS server- Below is the figure 16 showing the same.

Q, Sear

B8 © © Nvighiav vocabyjusers1015023161795@studentr

nstances > i-059¢06413e26b7876 @ B
< B p~ e N N N
Instance summary for i-059e06413e26b7876 (IDS server) i (@) (connect) (Instancestate v) (Actions v)
AN AN AN J
Updated less than a minute ago
Instance ID Public IPv4 address Private IPvd addresses
¥ Instances 16 1-059e06413¢26b7876 I} 54.82.178.224 | open address [2 IF 172313186
Instances
1Pv6 address Instance state Public IPvd DNS
Instance Types - © Running I} ec2-54-82-178-224.compute-1.amazonaws.com |
Launch Templates open address [3
Spot Requests)
Hostname type Private IP DNS name (IPva4 only)
1P name: ip-172-31-31-86.2cZ.internal 10} ip-172-31-31-B6.ec2.internal
Answer private resource DNS name Instance type Elastic IP addresses
1Pvd (8) t2.micro I 54.82.178.224 (1IDS) [Public IP)
Capacity Reservations
Auto-assigned IP address VPCID AWS Compute Optimizer finding
¥ Images - [0 vpc-09e772ecabicBB6c1 [2 @ Opt-in to AWS Compute Optimizer for recommendati
AMIs ons.
sarn moare [A
AMI Catalog | Learn mare [2
v Elastic Block Store 1aM Role Subnet ID Auto Scaling Group name
- 5 subnet-030313b2; 3021e [3 -
Volumes
Snapshots IMDSv2 Instance ARN Managed
Lifecyele Manager Required D) arn:awsiec2:us-east-1:662231714704idnstance/i-059 false
recydle Manag e06413¢26b7876
¥ Network & Security
Operator

[Cloudshell Feedback

mailto:ec2-user@54.161.1.46

Figure 16

Instance Type: t2.micro

Application OS: Ubuntu; VERSION="24.04.1 LTS (Noble Numbat)"; ID=ubuntu.

Storage: 17 GiB

Key pair: IDS-server.pem

Elastic IP allocated: Public IP- 54.82.178.224; Private IP- 172.31.31.86

Open ports & Security group configuration:

- Port 22 is open for ssh in order to get an administrative access to the instance to configure
and manage it.

- All traffic from file server and employee machine allows the IDS server to receive the
mirrored traffic from the source for analysis.

The below figure 17 depict the inbound rules.

Inbound rules st

Security group rule ID Type Info Protocol Info Port range Source Info Description - optional Info

info

sgr-0676f2078dae6a2f2 SSH v [Cus... v] [Q] |: } (Delete)
sgr-0d6338290dbfe5b85 [Cus... ¥] [Q] [Employee machine) (Delete)
sg- X
06c8fd4148f763967
o) (e) G
sg- X
0Oce2208ad7c3d62dc
Figure 17

Testing the access connection-

The SSH connection with the instance (attacking machine) is established using the command-
ssh -i "F:\IDS-server.pem™ ubuntu@54.82.178.224 and is visible in the below figure 18.

mailto:ubuntu@54.82.178.224

) B ubuntu@ip-172-31-31-86:~ X + v
Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

Loading personal and system profiles took 1025ms.
(base) PS C:\Users\arbaz dalwai> ssh ubuntu@sy.82.178.224
Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-1019-aws x86_64)

* Documentat
* Management:
* Support:

https://help.ubuntu.com
https://landscape.canonical.com
https://ubuntu.com/pro

System information as of Mon Dec 2 ©2:19:38 UTC 2024

0.08 Processes: lod
Users logged in:

IPv4 address for enX@:

System load:
Usage of /: 56.7% of 15.42GB
Memory usage: 66%
Swap usage: 0%

0
172.31.31.86

* Ubuntu Pro delivers the most comprehensive open source
compliance features.

security and

https://ubuntu.com/aws/pro
Expanded Security Maintenance for Applications is not enabled.

16 updates can be applied immediately.
To see these additional updates run: apt list --upgradable

Enable ESM Apps to receive additional future security updates.

See https://ubuntu.com/esm or run: sudo pro status

Last login: Sat Nov 30 01:27:00 2024 from 89.100.111.212

$ |

Figure 18

5. The security information and event management (SIEM) server- Below is the figure 19
showing the same.

B & @ @

N. Virginia ¥ voclabs/user3410150=

i-05e1a011840d9bbfb e B

Dashboard <

Instance summary for i-05e1a011840d9bbfb (SIEM-server) o @ (; Connect) (Instance state ¥) (_ Actions ¥)

EC2 Global View

Updated less than a minute ago
Events
Instance ID Public IPv4 address Private IPv4 addresses
¥ Instances I0) i-05e1a011840dSbbfb IF) 3.228.185.88 | open address [3 16 172.31.17.200
Instances
IPv6 address Instance state Public IPv4 DNS
Instance Types - @ Running I5) ec2-3-228-185-8B.compute-1.amazonaws.com
Launch Templates open address [2
Spot Requests .
Hostname type Private IP DNS name (IPv4 only)

Savings Plans

Reserved Instances

IP name: ip-172-31-17-200.ec2.internal

16 ip-172-31-17-200.ec2.internal

Answer private resource DNS name Instance type Elastic IP addresses
Dedicated Hosts 1Pv4 (A) t3alarge I5) 3.228.185.88 (SIEM) [Public IP]
Capacity Reservations
Auto-assigned IP address VPCID AWS Compute Optimizer finding
* Images - D) vpc-09e772eca6fc866c1 [(D Opt-in to AWS Compute Optimizer for re
AMIs ons
Learn more [
AMI Catalog | Learn more [3
w Elastic Block Store IAM Role Subnet ID Auto Scaling Group name
- ID) subnet-030319b2c3398021e [-
Valumes
Snapshots IMDSv2 Instance ARN Managed
Required I0) armiawsiec2:us-east-1:662231714704:instance/i-05e false
Lifecycle Manager 12011840d9bbfb
* Network & Security
Operator

iShell

Feedback

Instance Type: t3a.large

Application OS: Ubuntu; VERSION="22.04.5 LTS (Jammy Jellyfish)"; ID=ubuntu.

Storage: 35 GiB

Key pair: SIEM.pem
Elastic IP allocated: Public IP- 3.228.185.88; Private IP- 172.31.17.200
Open ports & Security group configuration:
Port 22 is open for ssh in order to get an administrative access to the instance to configure
and manage it.

Figure 19

Privacy

Terms

Cool

preferences

- Port 80 allows the web access to the elastic, logstash and kibana (ELK) server.

- Port 9200 allows the access to elasticsearch for querying and storing logs.

- Port 5044 allows the Logstash to listen to the logs shared by the filebeat from IDS server.

- Port 5601 allows the Kibana functionalities which acts as the visualization layer for the
SIEM.

- Port 9200 with the source IP of machine learning (ml) models allows the connection
between the two servers (ml models and SIEM), so that the ML models server is able to
fetch the logs for real-time analysis.

The below figure 20 depict the inbound rules.

Inbound rules e

Security group rule ID Type Info Protocol info Port range Source Info Description - optional Info
Info
sgr-01153¢02e53cfc2ba Custom TCP v 9200 Cus... Q For elasticsearch Delete
3.228.185.88/32 X
sgr-0dc3b5h126df301c6 Custom TCP v 5044 Cus... ¥ Q 3.228185.88/32 X For Logstash (_ petete
sgr-0f1d784734329ba7d Custom TCP v 5601 Cus... ¥ Q 3.228185.88/32 X For Kibana (" petete
sgr-0035b3a53f473a750 SSH v Cus... ¥ Q 3.228.185.88/32 X Delete
0.000/0 X
- HTTP v Cus... w Q Delete
- Custom TCP v 9200 Cus... w Q 54.81.14537/32 X For Elasticsearch- ML moc Delete

Figure 20
Testing the access connection-

The SSH connection with the instance (attacking machine) is established using the command-
ssh -i "F:\SIEM.pem"™ ubuntu@3.228.185.88 and is visible through the given figure 21.

O 2 ubuntu@ip-172-31-17-200: ~ X + -

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

Loading personal and system profiles took 1038ms.
(base) PS C:\Users\arbaz dalwai> ssh ubuntu@3.228.185.88
Welcome to Ubuntu 22.04.5 LTS (GNU/Linux 6.8.0-1019-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Mon Dec 2 02:37:43 UTC 2024

System load: ©.26 Processes: 107

Usage of /: 32.8% of 33.74GB Users logged in: (<]

Memory usage: 73% IPv4 address for eth®: 172.31.17.200
Swap usage: 0%

* Ubuntu Pro delivers the most comprehensive open source security and
compliance features.

https://ubuntu.com/aws/pro
Expanded Security Maintenance for Applications is not enabled.
12 updates can be applied immediately.
7 of these updates are standard security updates.

To see these additional updates run: apt list —-upgradable

Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status

Last login: Sat Nov 30 01:38:51 2024 from 89.100.111.212

$ |

Figure 21

6. The ML models server- Below is the figure 22 showing the same.

10

mailto:ubuntu@3.228.185.88

voclabs/user3410150=x23161795 neirLie @ 6622-3171-4704 ¥

e EC2 > Instances > i-05fd02acaf24eba32 & B

Dashboard L4

Instance summary for i-05fd02ac4f24eba32 (ML models) i @ (connect) (Cinstance state v) (" actions v)

Updated less than a minute ago

EC2 Global View

Events

Instance ID Public IPv4 address Private IPv4 addresses
¥ Instances [0 i-05fd02acaf24eba32 [0 54.81.145.37 | open address [0 172.31.40.86
Instances N
IPv6 address Instance state Public IPv4 DNS
Instance Types _ @ Running D) ec2-54-81-145-37.compute-1.amazonaws.com
Launch Templates open address [3
Spot Requests
pot Requi Hostname type Private IP DNS name (IPvd only)
Savings Plans IP name: ip-172-31-40-86.ec2.internal I5) ip-172-31-40-86.ec2.internal
Reserved Instances R N
Answer private resource DNS name Instance type Elastic IP addresses
Dedicated Hosts 1Pva (A) 3.micro [0 54.81.145.37 (Ml model) [Public IP]
Capadity Reservations
Auto-assigned IP address VPCID AWS Compute Optimizer finding
¥ Images - 1D vpc-09e772ecabfc866c1 [3
AMIs
AMI Catalog
v Elastic Block Store 1AM Role Subnet ID Auto Scaling Group name
- I5 subnet-087404253177e27b9 (3 -
Volumes
Snapshots IMDSv2 Instance ARN Managed
Lifecycie M Required I8 amaws:ec2us-east-1:662231714704instance/i-05f false
anager
Trecycle Manage d02ac4f24eba32

¥ Network & Security o
perator

[cloudshell Feedback

Figure 22

Instance Type: t3.micro

Application OS: Ubuntu; VERSION="22.04.5 LTS (Jammy Jellyfish)"; ID=ubuntu.

Storage: 8 GIiB

Key pair: ml models.pem

Elastic IP allocated: Public IP- 54.81.145.37; Private IP- 172.31.40.86

Open ports & Security group configuration:

- Port 22 is open for ssh in order to get an administrative access to the instance to configure
and manage it.

- All traffic in the outbound rules section allows the ml model server to send the
predictions and logs back to the elasticsearch (SIEM-ip as shown in the screenshot).

The below figures 23 & 24 depict the inbound and outbound rules resp.

Inbound rules it

Security group rule ID Type Info Protocol info Port range Source Info Description - optional Info

Info

sgr-011d96cdc31cf3d90 o v (s v) (@) (] (petete)

Figure 23

Outbound rules i
Security group rule ID Type Info Protocol Info Portrange Destination Info Description - optional Info

Info

Figure 24
Testing the access connection-

The SSH connection with the instance (attacking machine) is established using the command-
ssh -i ""F:\ml models.pem™ ubuntu@54.81.145.37 and is visible through the figure 25.

11

mailto:ubuntu@54.81.145.37

O B ubuntu@ip-172-31-40-86: ~ X + v

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
Loading personal and system profiles took 1615ms.
(base) PS C:\Users\arbaz dalwai> ssh ubuntu@54.81.145.37
Welcome to Ubuntu 22.04.5 LTS (GNU/Linux 6.8.0-1019-aws x86_6u)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro
System information as of Mon Dec 2 03:05:45 UTC 2024
System load: 0.0 Processes: le4
Usage of /: 51.7% of 7.57GB Users logged in: 2]
Memory usage: 22% IPvl address for ens5: 172.31.40.86
Swap usage: 0%

* Ubuntu Pro delivers the most comprehensive open source security and
compliance features.

https://ubuntu.com/aws/pro
Expanded Security Maintenance for Applications is not enabled.

6 updates can be applied immediately.
To see these additional updates run: apt list --upgradable

Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status

Last login: Sat Nov 30 01:41:14 2024 from 89.101.66.164

$ |

Figure 25

2 Traffic forwarding from File server & Employee machine
to the IDS server

For forwarding the traffic from file server and employee server instance, traffic mirroring
feature from AWS is used. This guarantees that the IDS gets the traffic from these sources
and can monitor all the data/network activities that happen within the network. The steps
through which the Traffic Mirroring is incorporated in the thesis are explained below-

1. Setting up the Mirror target

- Navigate to the VPC service on AWS and open the Traffic mirror targets section to create
traffic mirror target.

- Set the Target name.

- Select the target type as network interface and select the target from the list of
instances/interface ID available (i.e. Elastic network interface ENI) and then save the
target. As the IDS had to be selected as the mirror target the following was done in my
setup.

Below is the figure 26 showing the creation of the mirror target.

12

® L @ il N. Virginia ¥ voclabs/user3410150=x23161795@student.ncirl ie @ 6622-3171-4704 ¥

VPC ¥ Traffic mirror targets » Create traffic mirror target c]
Create traffic mirror target

Target settings
A description ta help you identify the traffic mirror target
Name tag - optional

1DS-Target
Description - optional

ribe your traffic mirror target

eni-080e6979aecc21afb
eni-0964d2e2dddc59e71
eni-Odc3e21e341af1b7b
eni-0fdfc72791966fd1b

eni-0af86e7927808758F

eni-0576539d87dcdedat =
[Q Select target | c

Tags - optional
A tag is a label that you assign to an ce. Each tag consists of a key and an optional value. You can use tags to search and filter your resources or track your AWS costs

Key Value - optional

(3 Cloudshell Feedback © 2024, Amazon Web Services, Inc. or its affiliates. Privacy Terms Cookie preferences (I8

Figure 26

2. Creating Mirror filter
- Navigate to the VPC section on AWS and open Traffic mirror filters, then create
traffic mirror filter
- Set the name and add the rule in inbound and outbound section and finally save
the filter.
- In this setup as all the traffic had to be sent to IDS the inbound and outbound
traffic is set to ALL. This can be seen in the figure 27-

(2] 2 @ 8 M. Virginia ¥ voclabs/user3410150=x23161795@student.ncirlie @ 6622-3171-4704 v

Traffic mirror

Description - optional

Netwark services - optional

amazon-dns

Inbound rules - optional

Number Rule action Protocol Source port Destination Source CIDR Destination Description
range - port range - block CIDR block
optional optional
100 accept ¥ | | All protocols v N/A N/A 0.0.0.0/0 0.0.0.0/0 Delete rule
Add rule Sort rules

Qutbound rules - optional

Number Rule action Protocol Source port Destination Source DR Destination Description
range - portrange- block CIDR block
optional optional
100 accept ¥ All protocals v N/A N/A 0.0.0.0/0 0.0.0.0/0 Delete rule

(3 Cloudshell Feedback © 2024, Amazon Web Services, Inc. or its affiliates. Privacy Terms Cookie preferences |8

Figure 27

3. Establishing Mirror sessions

- Navigate to the VPC, then traffic mirror sessions and create traffic mirror session.

- Set the name for the session.

- Select the mirror source (a list of ENI) from where the traffic will be initiated (in
this case file server eni and employee machine eni)

- Select the mirror target which is available as per requirements (in this case the
IDS target which is already created through above steps).

- Select the mirror filter (in this case the above filter is selected).

- Set the session number (any unique number between 1 to 32766).

13

& 29 show the mirror sessions created for this project-

% us-east-1.console.aws.amazon.com/vpcconsole/home?region=us-east ‘- sionld=tms-(4 fr A

igure 28

voclabs/user3410150=x23161795 @student.ncirLie @ 6622-3171-4704 ¥

VPC dashboard *® VPC > Traffic mirror sessions » tms-01e2023b45d85dd44 @
. c - 54
tms-01e2023b45d85dd44: File server mirror Modify session | _Delete |

EC2 Global View [2 N

Details

y VPC v
Name Session 1D Description Owner
w Virtual private cloud File server mirror tms-01e2023b45d85dda4 662231714704
Target Owner
four veCs Source Target 662231714704 VNI
Subnets eni-0af86e7927808758f [2 tmt-064f0e33ed08bcbaf 7621671
Filter

Route tables Session number Packet length tmf-03a4b7203c451c2a
Internet gateways 1 Entire packet
Egress-only internet
gateways Tags Manage tags
Carrier gateways Q Sean 1 o
DHCP option sets

Key Value
Elastic IPs

Name File server mirror

Managed prefix lists

Endnaints

Figure 28

€« C %5 us-east-1.console.aws.amazon.com/vpcconsole/homeZregion=us-east-1#TrafficMirrorSessiontrafficMirrorSessionld=tms-013d20c3b7efde865 % A

B 4 0 @

N. Virginia ¥ voclabs/user3410150=x23161795@student.ncirlie @ 6622-3171-4704 ¥

VPC dashboard X VPC > Traffic mirror sessions > tms-013d20c3b7efde865 <
: g < T | 62
tms-013d20c3b7efde865: Employee machine to IDS Modify session | Delete |
EC2 Global View [2 %
Details
v
Name Session 1D Description Owner
w Virtual private cloud Employee machine to IDS tms-013d20c3b7efde865 662231714704
Target Owner
Your VEXs Target 662231714704 VNI
Subnets tmt-064f0e33ed08bc64f 12928080
Filter
Roate tables Session number Packet length tmf-03a4b720f9c451c2a
Internet gateways 2 Entire packet
Tags Manage tags
Q Search tags 1 @
Key Value
Elastic IPs
Name Employee machine to IDS

Managed prefix lists

Figure 29

3 Setting up the File server
The process of setting up the File server will be explained in this section.
1. Configuring the web server Apache:

- Updating the package Repository through-

sudo yum update -y

- Installing Apache
sudo yum install httpd -y

- Start and enable Apache
sudo systemctl start httpd
sudo systemctl enable httpd

Server version: Apache/2.4.62 (Amazon Linux)
Server built: Jul 23 2024 00:00:00

The figure 30 depicts the successful loading of the file server.

14

It works!

Figure 30

2. Setting up the login page for File server

- Navigate to the web root directory where Apache hosts the files:
cd /var/iwww/html

- Creating the login.html file by sudo nano login.html

- The HTML code for login page can be seen in the figure 31-

[J B ec2-user@ip-172-31-31-45;/va X

GNU nano 5.8 login.html

Employee Login

body { font—family: Arial, sans-serif; text-align: center; }

.container { margin-top: 1@0px; }

input[text], input[password] { padding: 1@px; width: 8@%; margin: 5px; }
button { padding: 1@px 20px; font-size: 16px; }

Login to Access Files

Figure 31

Login page hosted on the file server is presented in the figure 32-

15

Login to Access Files

Login

Figure 32
3. Setting up the dashboard for the file server so that it replicates as a companies’ crucial
asset
- Navigate to the web root directory where Apache hosts the files:
cd /var/www/html
- Creating the dashboard.html file by sudo nano dashboard.html
The HTML code for employee machine can be seen in the figure 33-

J B ec2-user@ip-172-31-31-45;/va X

GNU nano 5.8 dashboard. html

Employee Dashboard

Welcome to the Employee Dashboard
Select a file to access based on your permissions:

All Employee File
Employee One File
Employee Two File

Figure 33

Dashboard page hosted on the file server is presented in the figure 34-

<« > C A\ Notsecure 98.83.82.139/dashboard. html

Welcome to the Employee Dashboard

Select a file to access based on your permissions:

All Employee File
Employee One File
Employee Two File

Figure 34
The three files were created in the index.html for each of the mentioned directories i.e.
employee_all, employee_one, employee _two. Hence clicking on any of the above will give
the foll. Results shown in the figures 35, 36 and 37.

16

C A Notsecure 98,83.82.139/employee two/index himl

Confidential file for Employee Two only.

Figure 35

G ANotsecure 98,8382.139/employee onefindex html

Confidential file for Employee One only.

Figure 36

C A Notsecure 96.83.82.139/employee all/indexhtml

Welcome, all employees!

Figure 37
4 Setting up the Attacking Machine

This section would demonstrate the configuration done on the Attacking machine to setup
and launch the two simulated attacks- DDoS and phishing.

1. Simulating DDoS attack
- As this attack was launched through a docker instance first docker was installed
using the command sudo yum install docker -y. Then it was started and enabled
by sudo systemctl start docker & sudo systemctl enable docker resp.
- Then we need to run the container, pull the image and name the container using
the command- sudo docker run -it --name attack_container ubuntu
Below figure 38 represents the active state of the docker.

17

eset: disabled)

e driver

Figure 38

- Then we need to install the hping3 inside the docker container through the below
commands-
apt update
apt install hping3 -y

- We can now start the ddos attack by attacking the file server on port 80 using the
command hping3 -S -p 80 --flood 98.83.82.139. This will flood the network
traffic of the file server eventually generating the logs we need for further
analysis on Suricata IDS. Figure 39 shows the attack initiation through the

command.
: 98.83.82.139

HPING 98.83.82.139 (eth® 98.83.82.139): S set, U0 headers + @ data bytes

hping in flood mode, no replies will be shown

~C

-—— 98.83.82.139 hping statistic ——

2195272 packets transmitted, @ packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
root@59+67d529812: /#

Figure 39

2. Simulating Phishing attack
This attack will be targeted to employee machine, wherein the attacking machine would host
a webpage cloned through social engineering toolkit (SET). The process for the same is
explained below-

- For installing SET, we will first need to update the system through: sudo yum
update && sudo yum upgrade -y

- Then install the pre-requisites for SET: sudo yum install git python3 python3-pip
-y

- Then we will have to clone the SET from its GitHub repository:
git clone https://github.com/trustedsec/social-engineer-toolkit.git

- Once its cloned and available we will move to its directory: cd social-engineer-
toolkit/

- Then we’ll run the setup script to install SET: sudo python3 setup.py install

- Then we can finally start the SET using- sudo setoolkit

18

https://github.com/trustedsec/social-engineer-toolkit.git

Figure 40 depicts the homepage of the SET.

———— - -~ OOOO=EHZO

Maverick

://www.trustedsec.com

https://github.com/trustedsec/ptf

Select from the menu:
1) Social-Engineering Attacks
2) Penetration Testing (Fast-Track)
3) Third Party Modules

4) Update the Social-Engineer Toolkit
5) Update SET configuration

Figure 40

- Once the SET is ready, we can create a phishing page by navigating through the
menu SET has to offer

- Choose the attack type by selecting the Option 1- Social Engineering attacks.

- Then choose Website Attack Vectors (Option 2).

- Then select Credential Harvester Attack Method (Option 3).

- From the menu presented now, select Site cloner (option 2).

- Now we will have to provide the POST-Back IP address which is the attacking
machine’s IP address. But as our attacking machine has a dynamic IP address it
will be changing every time it restarts. Hence through NO-IP, | have created a
hostname attackingmachine.ddns.net which will be hosting the phishing page.
Figure 41 shows the NO-IP page showing the above information.

Hostname = Last Update 1P/ Target Type DDNS Key

a Dec 1, 2024 8.234.136.11¢ Modify %

Help with Hostnames

Figure 41

19

- Now that we have the hostname, we can enter it in the POST-back setup

- Then we will have to input the URL of a known website which is available for
testing purposes. (NOTE. The URL’s open for public use for research purposes
are/should only be wused for this cloning setup). We have used
http://example.com/ as the website for cloning.

- Thus, now SET is all ready to clone the website and host it.

But this cloning of website through SET being a powerful action was not feasible for long
term use as SET uses a lightweight python HTTP server which is only capable of hosting a
website when SET is actively running, and once SET is terminated the hosted website also
gets inaccessible. However, for phishing simulation it was very necessary to have a stable and
persistent website being hosted on the web which could be accessed by the employee
machine continuously during the testing phase. Therefore, for overcoming this problem and
to minimize the impact of SET’s limitation, Apache was selected for hosting the cloned
website through which the cloned phishing page would be available as long as the hosted
server i.e. EC2 instance is running.

Transitioning the cloned content to Apache-

- Once SET successfully clones the website, the cloned files are stored and
available in the directory /var/wwwi/social-engineer-toolkit

- Using the command below the files from SET directory are copied to Apache
sudo cp -r /var/www/social-engineer-toolkit/* /var/www/html

- Hence the Apache is ready for hosting the cloned website now.

- Through the below Figure 42 it is confirmed that the cloned phishing website is
active and accessible at: http://attackingmachine.ddns.net/phishing-page.html
(when the attacking machine server is up and running).

C /\ Notsecure attackingmachine.ddns.net/phishing-page.html

Please review your account security: Click here

Figure 42

5 Setting up the employee machine server

This section would demonstrate the configuration of employee machine so that it can interact
with the above phishing link created in the attacking machine.

As the phishing page is accessible at http://attackingmachine.ddns.net/phishing-page.htmi
through a dynamic domain name service (DNS), it could only be accessed through a script

20

http://example.com/
http://attackingmachine.ddns.net/phishing-page.html
http://attackingmachine.ddns.net/phishing-page.html

from the employee machine as currently there is no graphical user interface (GUI) access of
the employee machine. The following procedure was used to create a script which would
automate the interaction between employee machine and phishing link.

- A bash script named click_phishing_link.sh was created on the employee
machine through ‘nane’ command.

- The script is designed in a way that it pings the phishing link with HTTP requests
every 30 seconds using the ‘curl’ command. The script logic can be seen through
the figure 43.

) B ec2-user@ip-172-31-39-47:~

GNU nano 5.8 click_phishing_link.sh

true
curl http://attackingmachine.ddns.net/phishing-page.html
"Phishing URL accessed!"
sleep 30

Figure 43

- Once the script file was created it was made executable using the command-
sudo chmod +x click_phishing_link.sh

For a periodic run of the script without any interruption the ‘nohup’ command was used
making sure that the script runs, even if the ssh session is disconnected and terminates only
when the process is killed. Figure 44 shows the detailed command for running the script.

[ec2-user@ip-172-31-39-47 ~]$ sudo nohup ./click_phishing_link.sh &

[1] 3694

Figure 44

As the script accesses the phishing link on attacking machine, HTTP requests are generated
and this traffic is received on the IDS due to the mirroring session done previously, as
depicted in the figure 45-

21

{"timestamp":"2024-11-13T715:39:21.390113+0000" "flow_id" :545238742824792 "in_iface": "src_ip":"172.31.39. ’-J7" "sxc

st_ip":"35.153.200.8", "dest_port":80, "proto”:"TCD”,”pkt src":"vxlan encspsulatlon" 8 alluwﬁd",” g

":2,"signatur INFO DYNAMIC_DNS HTTP Request to a *.ddns .net Domain","category i

lient_and_Server™] reated_at":["2022_12_14"] "deployment":["Perimeter"], "mltle _tact

chnique_id": "mitre_technique_name”: [*Dynamic_Resolution"], "performance_impac

03_e2"1}}, "src_ip”:"172.31.39.47 port":65497, "dest_ ;Lp" 72.31.31.

T {*hostname i Mattac ingmachine.ddns.net" " /phlshlng page.html", "http_user. agEnt“: curl/8.5.0", "http_ content_type":

tocol":"HTTP/1.1", "status":208, "length":161 "http response_body" : l‘(‘(NlIHJldledyBSbB\leGF]V291banc"V)dXdeHkéIthIGhwa‘lgIthdHAﬁLyull‘IlUSMCuxN]cuUDAch

hpc7hpbmcthFnZS5adGlsI]5DbGIJayEoZKJ1PC Pg "app_proto": _server", "fl kts_toserver":4, "pkts_toclient":3

,"bytes_toclient":514, "start":"2024-11-13T15: 39 21 389092+0000" , ”src : .39.47", "dest_ip 5.153.200.8", "src_port":37636, "dest _port":80}

"ROVUICBuaGlzaG'LuZylw\Wd'LLthbngSFRUUCSxL]ENCkhvc Qé[GFOdGF]aHuF1hV2hpmeuZGRucySuZXQrICl\JzZXIthd'LbnQﬁlﬁrﬂcmvaCuleANCkFJV2deDogK1quQoNCg

1}

{"timestamp":"2024-11-13T15:39:51.403901+0000" , "flow_id" :2013177457406998, "in_iface i 1'72 31.39.47", "src_port":51090,"d
ip":"35.153.200.8", "dest_port":80, "prote": "TCP", "pkt_src":"vxlan encapsulation" 0,"alert": {"action": “allowed B "s:gnatule id":2042806,
,"signature":"ET INFO DYNAMIC_DNS HTTP Request to a *.ddns .net Domain", "catego Putentlally Bad Traf ri metadata"'{”atta:k target'

Client and_Server"], "created_ at":["2022_12_14"], "deployment":["Perimeter"] "mitre_tac _id":["TA@O11"], "mitre_tactic_name" ommand_And_Control"], "mitre_t

echnique_ ique_ ic_Resolution"], "performance_impact”:["Low"], "signature_severity": ["Informational"], "updated_at": ["2023

_03_02"11}, "tunnel": {"src_ .31.39.47", "src_port":65416, "dest_ip":"172.31.31.86", "dest_por 789, "proto": "UDP" , "depth" :1, "pkt_srch : "wire/pcap"}, "http

":{"hostname":"attackingmachine.ddns.net" "url phishing-page.html" "http_user_agent":"curl/8.5.0" "http_content_type":"text/html", "http_method":"GET", "pr

otocol":"HTTP/1.1", "status":260, "length":101, "http_response_body" : "UGxLYXNLIHI1dnl1dyB5b3VyIGF{Y291bnQgc2VjdXJpdHkBIDxhIGhyZWYOInhodHAGLyB1MiUSMCUXN jcu

Ghpc2hpbmetcGFnZS50dG1sIj5DbGljayBoZXILPCOhPgo="}, "app_proto":"http", "direction":"to_server", "flow":{"pkts_toserver":U, "pkts_toclient":3, "bytes_toserver":32

2, "bytes_toclient":514 "start":"2024-11-13T15:39:51.463193+0000" , "src_ip":"172.31.39.47" "dest_ip":"35.153.200.8","src_port":51090, "dest_port":80}, "payload"

:"ROVUICIwaGlzaGluZylwYWd1lLmh®bWwgSFRUUCBxXL jENCkhvc3Q6IGFOdGF ja2luZ21hY2hpbmUuZGRucy5uZXQNC1VzZXItQWd1lbnQ6IGNI cmwvOCH1L JANCKF jY2VwdDogKi8qDQoNCg==" "stream"

:13

{"timestamp":"2024-11-13T15:40:21.4260789+0000" "flow_id":1490697059100134 "in_iface": "enX0" "src_ip! 172.31.39.47", "src_port":50216,"d

est_ip":"35.153.200.8", "dest_port":80, "proto":"TCP", "pkt_src":"vxlan encapsulation", "tx_ "alert"’{"actlon”'“allnwgd“ "gi. 's)gnature id":2042806

v":2, "signature":"ET INFO DYNAMIC_DNS HTTP Request to a *.ddns .net Domain","category Potent:ally Bad Traffic", "severi: 821 metadata :{"attack_ targe:

Client_and_Server"], "created_at":["2022_12_14"],"deployment" : ["Perimeter"] , "mitre_tacti :["TAGO11"], "mitre_tactic_name" onmand_And_Control"],

echnique_id":["T1568"], "mitre_technique_nal ["Dynamic_Resolution"], "performance_impact":["Low"],"signature_severity":["Informational"], "updated_at": ["2023

_03_02"13}}, "tunnel":{"srec_ip":"172.31.39.47", port":6546U, "dest_ip":"172.31.31.86", "dest_por 789, "proto": "UDP "depth":l,"pkt,src":“\.'fire/pcap”},"http

":{"hostname": "attackingmachine.ddns. net r1":"/phishing-page.html" "http_user_agent":"curl/8.5.0" "http_content_type":"text/html", "http_method": "GET" "

otocol":"HTTP/1.1", "status":200, "length":101 http_respense_body":"UG:('L‘IXN'[IHJ'I.dm'L'ldyBSb?VyIGF]V291angc7\/JdXJdekéIDxhIGhwaVQIthdHA&Lyﬁll‘IlHSMCHxNjcu

Ghpc2hpbmetcGFnZS50dG1sI135DbGljayBoZXILPCO9hPgo="}, "app_proto" http“,"d ectlon‘ "to_server", "flow": {"pkts_toserver":4, "pkts_toclient":3, "bytes_toserver":

2, "bytes_toclient":514, "start":"2024-11-13T15:40: 21 412615+0000" , "src_. "des _ij 35.153.200.8", "src_port":50216, "dest_port":80}, "payload“

:"R@VUICQW&G'LZaG'LLLZylwlUdleh@bWugSFRUUCS(L]ENCkhchQﬁIGFQdGF]aTluZ’ththmeuZGRucySuZ(QNC'LVZ7X[tQWdlthéIGNlcmquCdlLJANCkFJV”VWdDogKlanQcHCg”" "stream"

:13
=% |

Figure 45

Hence the IDS logs confirm the connection between the employee machine and the phishing
link.

6 Setting up the IDS server

This secction will present the process of setting up the Suricata and Filebeat on the IDS
server.

Setting up Suricata- IDS:
Step 1: Installing Suricata

- Before installing the suricata it is necessary to update all the required packages, for this
the following commands were used-
sudo apt update && sudo apt upgrade -y
sudo apt install software-properties-common python3-pip -y

- Next up is adding the suricata repository, the below command adds the official suricata
repository to get the latest version of the IDS.
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update

- Once the repository is added the suricata installation can be initiated using the command
sudo apt install suricata -y

- The successful installation can be confirmed through veiwing the installed version in the
figure 46.

suricata —-version
suricata: unrecognized option '--version'

Suricata 7.0.7
USAGE: suricata [OPTIONS] [BPF FILTER]

Figure 46
Step 2: Configuring Suricata

The default configuartion file for suricata is available at /etc/suricata/suricata.yaml

22

Before performing any changes in the Suricata yaml file it is necessary to download the
Emerging threat (ET) ruleset and place it in the correct directory for Suricata to access. This
was done using the below commands-

cd /tmp/

curl -LO https://rules.emergingthreats.net/open/suricata-7.07/emerging.rules.tar.gz
sudo tar -xvzf emerging.rules.tar.gz

sudo mv rules/*.rules /etc/suricata/rules

sudo chmod 640 /etc/suricata/rules/*.rules

Through this we make sure that the Suricata has the latest ruleset from the ET including rules
for different attacks, especially DDoS and phishing which is required for this research’s case.
The figure 47 shows the rules have been extracted and loaded successfully.

Figure 47

For further configuration, we need to modify the suricata yaml file. The following steps were
inculcated for the modification in different areas.

- For accessing the file the below command was used
sudo nano /etc/suricata/suricata.yaml

- The foremost thing to be done was changing the network interface, by specifying this
Suricata would make sure to monitor that particular network. In this case the network
interface is the one assigned to the server which hosts the IDS (EC2 instance) and that is
enXo.

- The changes need to be made in the af-

Linux high speed capture support
af-packet:
- interface: enXe # your interface
Number of receive threads. "auto" uses the number of cores
#threads: auto
Default clusterid. AF_PACKET will load balance packets based on flow.
cluster-id: 99
Default AF_PACKET cluster type. AF_PACKET can load balance per flow or per hash.
This is only supported for Linux kernel > 3.1
possible value are:
* cluster_flow: all packets of a given flow are sent to the same socket
* cluster_cpu: all packets treated in kernel by a CPU are sent to the same socket
* cluster_gm: all packets linked by network card to a RSS queue are sent to the same
socket. Requires at least Linux 3.14.
* cluster_ebpf: eBPF file load balancing. See doc/userguide/capture-hardware/ebpf-xdp.rst for
more info.
Recommended modes are cluster_flow on most boxes and cluster_cpu or cluster_gm on system
with capture card using RSS (requires cpu affinity tuning and system IRQ tuning)
cluster_rollover has been deprecated; if used, it'll be replaced with cluster_flow.
luster-type: cluster flow
Figure 48

packet section which is shown in the figure 48-

#
#
#
#
#
#
#
#
#
#
#
#
C

- Furthermore, we need to specify the home net(internal or trusted network which is to be
monitored and protected; in this case the file server and employee machine) and externel
net(any untrusted network e.g Internet) in the config file. Here the home net is assigned

23

https://rules.emergingthreats.net/open/suricata-7.07/emerging.rules.tar.gz

with 3 IPs i.e. IDS’s public IP, File server’s private IP and employee machine’s private IP
figure 49 confirms the same. Even though the traffic mirroing is setup assigning this IPs
would ensure complete monitoring of the network.

vars:
more specific is better for alert accuracy and performance
address-groups:
HOME_NET: "[54.82.178.224, 172.31.31.45, 172.31.39.47]"

EXTERNAL_NET: "!$HOME_NET"
EXTERNAL_NET: “any"

Figure 49
- Next up is specifying the default rule path and including all the rules which we
have just downloaded using the previous steps. Below is the config screenshot
(figure 50) for the same

default-rule-path: /etc/suricata/rules

rule-files:

- "¥_ rules"
##

Figure 50

- Once this changes are made the file can be saved and exited and we can check if
there is any error in the configuration using the below command
sudo suricata -T -c /etc/suricata/suricata.yaml -v

Step 3: Starting Suricata
Suricata now needs to be enabled and started as a system service through the commands-

sudo systemctl enable suricata
sudo systemctl start suricata

Figure 51 shows the active state of the suricata along with the status check command-

:~$ sudo systemctl status suricata
suricata.service - LSB: Next Generation IDS/IPS
Loaded: loaded (/etc/init.d/suricata; generated)
Active: since Mon 2024-12-02 06:21:45 UTC; 1min 19s ago
Docs: man:systemd-sysv-generator(8)
Process: 679 ExecStart=/etc/init.d/suricata start (code=exited, status=0/SUCCESS)
Tasks: 7 (limit: 1130)
Memory: U439.5M (peak: 443.7M)
CPU: 24.793s
CGroup: {iystem.slice/suricata.service

:45 ip-172-31-31-86 systemd[1]: Starting suricata.service - LSB: Next Generation IDS/IPS...

:45 ip-172-31-31-86 suricatal[679]: Starting suricata in IDS (af-packet) mode... done.

:45 ip-172-31-31-86 systemd[1]: Started suricata.service - LSB: Next Generation IDS/IPS.
:~$

Figure 51
Step 4: Veiwing logs

The generated logs in suricata are stored in the /var/log/suricata, figure 52 confirms the
same-

r/log/suricata

certs core eve.l.json eve.2.json eve.3.json eve.json fast.log files stats.log suricata-start.log suricata.log

Figure 52

24

Out of the above log files, eve.json and fast.log are the prominent ones as the former includes
the detailed JavaScript object notation (JSON) formatted logs (essentially used in our setup)
while the latter represent the summarized alerts of the events.

Figures 53 and 54 show the logs both in fast.log as well as eve.json through the ‘tail -f’
command, confirming that the IDS is working accurately and the logs are getting generated.

Forbidden [**] [Classifica
Flood [#*] [Classification: Attempted Denial of Ser 1]

Possible N Flood [#*] [Classification: Attempted Denial

=

Possible N Flood [**] [Classification: tempted Denial

Flood [**] [Class ation: Attempted Denial

@

Flood [*#*] [Classification: Attempted a F rvi 2] {TCP} 5
N Flood [##] [Classification: Attempted Denial of Servicel [Pr: y {TCP} 5

SYN Flood [##] [Classification: Attempted Denial Service] [Priorit {TCP}

2
2
134
.us
3
y
:3
4
3
y
3
y
3
.u
3
y
3
.u

e SYN Flood [#*] [Classification: Attempted Denial Service] [Priori 2] {TCP}

SYN Flood [##] [Classification: Attempted Denial Service] [Priority: 2] {TCP} 5

Figure 53

: \p[lme
pDLL,uﬂtﬂ

ersion":@, "too_
_header_length":0,"

Setting up Filbeat-

Filebeat is an extremely crucial component of the entire log pipeline as it ships the log from
source (Suricata) to the destination (SIEM- Logstash).

Step 1: Installing Filebeat

- Downloading and installing filebeat was done by
sudo apt-get update
sudo apt-get install filebeat -y
Below is the figure 55 showing the installed version of filebeat

filebeat version 7.17.25 (amdé4),

libbeat 7.17.25 [ef6584bc5cb524dfe5000d367f8d775dc7e82473 built 2024-10-15 15:24:12 +806€@ UTC]

Figure 55

Step 2: Configuring the Filebeat

25

There are numerous modules readily available in filebeat, Suricata is amongst them. This
modules are diabled by default and should be enabled as per the requirements. Thus suricata
module is enabled in our setup through the command-

sudo filebeat modules enable suricata

Once the module is enabled there are some changes which need to be done in the Suricata
module configuration file which is located in the /etc/filebeat/modules.d/suricata.yml
The changes include setting up the input location of the logs, so that the filebeat can access
the same. Here the input location as stated in the Suricata section is
Ivar/log/suricata/eve.json which is updated in the var.paths as shown in the figure 56-

o B ubuntu@ip-172-31-31-86: ~ p B Administrator: Windows Power X

GNU nano 7.2 /etc/filebeat/modules.d/suricata.yml

: suricata

Figure 56

While the filebeat gets the input point for collecting data it is also important to specify the
output for this data. For setting this, the main configuration file for filebeat needs to be
edited. This file is available at /etc/filebeat/filebeat.yml and through the ‘nano’ command
we can open the same.

Setting Logstash as the output: As logstash is configured to listen on port 5044 at the SIEM
end, this needs to be specified in the filebeat config file as stated in the figure 57.
Note: The IP stated here is the SIEM server’s public IP.

output.logstash:

The Logstash hosts
hosts: ["3.228.185.88:5044"]

Figure 57
Step 3: Starting Filebeat

Filebeat now needs to be enabled and started as a system service through the commands-

sudo systemctl enable filebeat
sudo systemctl start filebeat

Figure 58 shows the active state of the filbeat along with the status check command-

26

or directly to EL
ed; pr

164.8M)

ce/filebeat.service

ing and startl

Figure 58

7 Setting up the ELK stack server

The installation and configuration of Elasticsearch, Logstash and Kibana (ELK) stack will be
explained in this section.

Step 1: Installing and Configuring Elasticsearch

- For installing the elasticsearch first we need to add the elastic GPG key and
repository through the below commands-

wget -q0 — https://artifacts.elastic.co/GPG-KEY -elasticsearch | sudo apt-key add —

echo “deb https://artifacts.elastic.co/packages/7.x/apt stable main” | sudo tee -a
[etc/apt/sources.list.d/elastic-7.x.list

sudo apt update
- Finally, the installation command for the setup is-
sudo apt install elasticsearch -y
- For enabling and starting the elasticsearch as a service the given commands are
used
sudo systemctl enable elasticsearch

sudo systemctl start elasticsearch

The figure 59 shows the successful installation of the elasticsearch confirming its active state.

vendor preset: enabled)

che.tt1=60 -Des.networkaddress.cache.negative.ttl=18 -XX:+Alwayl
ontroller

ocale.provider TOV. rAdapter <clinit>
11 be removed in a future release

Figure 59

The elasticsearch configuration file is saved by default at /etc/elasticsearch/elasticsearch.yml

27

https://artifacts.elastic.co/GPG-KEY-elasticsearch
https://artifacts.elastic.co/packages/7.x/apt

The following key changes were done explicitly in the same to suit the requirements of the
setup.

- Setting the discovery node to single node to avoid multi-cluster complexity and
making the elasticsearch as a standalone instance.

- Enabled xpack.security.enabled as it activates the built-in security features for the
service. Enabled application programming interface (API) keys through the
xpack.security.authc.api_key.enabled which is used in authenticating the
requests. (This was crucial for setting up the usernames and passwords for the
services in the SIEM setup). The changes made are visible in the figure 60 from
the config. file

Security

#¥% WARNING *%*

Elasticsearch security features are not enabled by default.

These features are free, but require configuration changes to enable them.

This means that users don't have to provide credentials and can get full access
to the cluster. Network connections are also not encrypted.

To protect your data, we strongly encourage you to enable the Elasticsearch security features.
Refer to the following documentation for instructions.

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/configuring-stack-security.html

iscovery.type: single-node

xpack.security.enabled: true
xpack.security.authc.api_key.enabled: true

Figure 60

- Once these changes were implied the service was restarted using the command
sudo systemctl restart elasticsearch

- Once the system was up and running with the changes the below command was
used to set the superuser’s password as well as Kibana’s password.
sudo /usr/share/elasticsearch/bin/elasticsearch-setup-passwords interactive

- Through this command an interactive prompt is launched wherein we need to
input the password of one’s choice.

- Through the curl command in the figure 61, the successful setup for the
elasticsearch can be confirmed.

28

:~$ curl -u elastic:walnut -X GET "localhost:9200"

"name" : "ip-172-31-17-20",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "q@cLYSIVRMKb1CKfvBTU5g",
"version" : {

"number" : "7.17.25",

"build_flavor" : "default",

"build_type" : "deb",

"build_hash" : "f9b6b57d1d0f76e2d14291cOUfb50abeb6U2ctb+",
"build_date" : "2024-10-16T22:06:36.904732810Z",
"build_snapshot" : false,
"lucene_version" : "8.11.3",
"minimum_wire_compatibility_version" : "6.8.0",
"minimum_index_compatibility_version" : "6.0.0-betal"
¥,
"tagline" : "You Know, for Search"
1
3

Figure 61
Step 2: Installing and Configuring Logstash

As the elastic repository and GPG key are already added, we just need to install the logstash
service now using the command- sudo apt install logstash -y
Once logstash was installed it was enabled and started as a service using the commands

sudo systemctl enable logstash
sudo systemctl start logstash

The figure 62 shows the successful installation of the logstash confirming its active state.

ndor preset: enabled)
n ago

1[INFO 1L
JLINFO][
JLINFO 1L
[INFO][

1 Pipelines r
1[INFO][org .beats.Server] [main] [d726

Figure 62

Logstash is put in place to listen the logs from filebeat and structure them to the elasticsearch
in indices. For setting up this functionality firstly we have to make some changes in the
pipelines.yml file located at /etc/logstash/pipeline.yml

Opening it through ‘nano’ command the path.config was set to location wherein the
configuration files are saved for logstash. The figure 63 represents the same

29

O ¥ ubunwe@ip-172-31-17-200: ~ X 2 Administrator: Windows Powe X

GNU nano 6.2 /etc/logstash/pipelines.ymL

Figure 63

Then it was necessary to create a pipeline configuration file and this was created using the
command- sudo nano /etc/logstash/conf.d/filebeat-suricata.conf

In this file, a detailed description of the functionalities expected from logstash are mentioned,
right from listening on port 5044 for the input from filebeat up to the indexing output for
elasticsearch. Filtering section is also added to ensure that only the relevant logs are
processed further and these were categorised as alerts. The file configurations can be seen in
the figure 64

C‘ 2 ubuntu@ip-172-31-17-200: ~ X ®' Administrator: Windows Power X

GNU nano 6.2 /etc/logstash/conf.d/filebeat—suricata.conf

if [event_type] == "alert" {

}
}

output {
elasticsearch {
hosts => ["http://localhost:9200"]
user => "elastic"
password => "walnut"
index => "suricata-logs-%{+YYYY.MM.dd}"

Figure 64
The following figure acts as a confirmation that the elasticsearch is receiving the indexed logs

from the logstash, validating the log pipeline Suricata-> Filebeat-> Logstash-> Elasticsearch
working seamlessly. The command for fetching the indices is also given in the figure 65.

30

: astic:walnut -X Gl 113.22 i
health status inde: i nt docs.deleted store ze pri.
oNvxumBWQQO1lg: A 1 e 20 8 6. 4mb
1

) KZYFtK9hTJy

oW 0 ricata 0 jiIBgMNPQEW!
ow del i
ow o

green

open
open
open
open
W open

tions
endpoint.metadata_current_default
green
green open .kibana_7.17.25_801
yellow open . eneric-default-2624.11.07-000001
open
n fle
yellow open ml-predictions-2024.11.28 2ETnaNpTToGS3aG8difKy
yellow open ml-prediction .11, sMnTRC_1kMvGLCQUg
green o - X rting-2020-11-24 U { (4] 0 8 30.3mb
0 .11.29 3 VSpTSEYA 1.7mb
green open .m endpoint.metadata_united_ B ; c 227b

Figure 65
Step 3: Installing and Configuring Kibana

Installation of kibana was done through the command- sudo apt install kibana -y
Once kibana was installed it was enabled and started as a service using the commands

sudo systemctl enable kibana
sudo systemctl start kibana

The figure 66 shows the successful installation of the kibana confirming its active state.

status kibana.service

enabled; ve : enabled)
21:42 UTC; i

2 /kibana/bi /src/cli/dist --logging.d fvar/log/kibana/kibana.log --pid.file=/run/k{

tly running with legacy OpenSSL pr enabled! For ils and instructions on how to

Figure 66

The configuration file for kibana is available at /etc/kibana/kibana.yml

Once we open the config file through ‘nano’ command authentication credentials for the
elasticsearch service were provided, through which kibana user can access the elasticsearch.
the figure 67 shows the same.

If your Elasticsearch is protected with basic authentication, these settings provide
the username and password that the Kibana server uses to perform maintenance on the Kibana
index at startup. Your Kibana users still need to authenticate with Elasticsearch, which

is proxied through the Kibana server.
elasticsearch.username: "kibana_system"
elasticsearch.password: "walnut"

Figure 67
Moreover, the settings shown in the figure 68 were incorporated for encryption and reporting
enhancements, enabling additional encryption for sensitive data as well as optimizing the

report exporting settings from the Kibana’s discover tab

31

xpack.encryptedSavedObjects.encryptionKey: "uydvgbhjbduhdbhvhfhvbr

xpack.reporting.csv.maxSizeBytes: 104857660
xpack.reporting.csv.scroll.size: 160ee

xpack.reporting.queue.timeout: 680608

Figure 68

The following figures 69 & 70 (login page and discover tab resp.) shows that the kibana is
available and functioning as expected

& elastic

«
L/
.O

Welcome to Elastic

Username

Password

o] ®

Figure 69

+ Add filter

suricata-logs-* s ¢= 577 hits

Q0 Search field names

Available fields 634

Options New Open Share Inspect 2 save

koL Last 15 minutes Show dates

Chart options

e o - n_l Illll 0.1 l 1.1 _sual ll

Popular
@timestamp
. Time

J

= Dec 2, 2824 ©

dex

_score

type

agent.ephemeral_id Dec 2, 2024
agent hostname

agent.id

agent.name

agent.type

06:44:42.217

® B6:44:38.037

6:29:44.873 - Dec 2, 2024

Document

Stimestamp: Dec 2, 20824 @ B6:44:42.217 @version: 1 agent.ephemeral_id: 88e6a342-ca@-45c8-04c6-cab339b79baa
agent.hostname: ip-172-31-31-86 agent.id: ed9eed6c-6841-4b30-94c9-883be7fe522e agent.name: ip-172-31-31-86

agent.type: filebeat agent.version: 7.17.25 cloud.sccount.id: 662231714784 cloud.availsbility_zone

s-gast-1d

cloud.image . id 8866a3cB686eaceba cloud.instance.id: 1-850e06413e26b7876 cloud.machine.type: t2.micro cloud.provider:

cloud.region: us-east-1 cloud.service.name: EC2 destination.address: 169.254,169.123 destination.ip: 169.254,169.123

ftimestamp: Dec 2, 2824 @ B6:44:38.837 @version: 1 agent.ephemeral_id: 88e6a342-caB8-45c8-94c6-cab339b79baa

agent.hostname: 2-31-31-86 agent.id: eddeed6c-6841-4b30-94c9-883be7fe522¢ agent.name: ip-172-31-31-86

t agent.version: 7.17.25 cloud.account.id: 66223 24 cloud.availability_zene: us-east-1d

0866a3cB686eaceba cloud

agent.type: fi

cloud.image .id: stance.id: 1-859e06413e26b7876 cloud.machine.type: t2.micro cloud.provider:

cloud.region: us-east-1 cloud.service.name: EC2 ecs.version: 1.12.8 event.created: Dec 2, 2024 @ 86:44:48.899

Figure 70

32

aws

aws

8 Setting up the ML Model server

In this section, the detailed steps for training the ensemble learning models (Random Forest
and XGBoost) and using them for fetching the logs and indexing back to elasticsearch are
explained-

1. Training the Models (Random Forest and XGBoost)

Dataset Preparation: Firstly, it was important to collect the data on which the training and
testing was to be done. This dataset was acquired from the elasticsearch itself to avoid
any feature mismatch issue in the later stage of the implementation wherein the trained
models will actually be making the predictions. This dataset was extracted using the
‘curl’ command from elasticsearch. The logs are exported from the specific index which
IS suricata-logs-* as this is the index where the suricata logs are placed given their
generated timeline. These logs are saved as JSON files in the local machine. The figure
71 depicts the same process of data extraction.

Figure 71

Importing necessary libraries: The libraries given in the table below were used in the
training process due to their mentioned reasons.

Table 1

Libraries Working

Pandas For data manipulation and creating data
frames

NumPy For numerical and array operations

Json For parsing the Json files which contain the
raw log data.

Sklearn For handling the preprocessing steps,

splitting the data into training and testing
the ML models, standard scaling, label
encoding, loading the Random Forest

model
XGBoost For implementing the XGBoost model
Joblib For saving and loading the models

The figure 72 shows the imported libraries in the process.

33

‘, # Importing libraries for data handling and numerical computations
import pandas as pd
import numpy as np

Importing libraries for data preprocessing
from sklearn.preprocessing import LabelEncoder, StandardScaler

Importing libraries for data splitting and model training
from sklearn.model selection import train_test split

from sklearn.ensemble import RandomForestClassifier

from xgboost import XGBClassifier

Importing libraries for evaluation and saving models
from sklearn.metrics import accuracy_score, classification_report
import joblib

Figure 72

Loading and Parsing the extracted dataset: The raw logs extracted from the elasticsearch
are loaded here. Here pandas are used to parse and load the dataset (JSON logs) into a
Dataframe structure. The nested structure of JSON fields such as hits and _source are
handled so as to extract only the necessary relevant fields. The figure 73 is the code
snippet for the same.

© +# Load the raw JSON logs
import json

Load the JSON file
with open('/content/drive/MyDrive/exported logs.json') as file:
data = json.load(file)

Check the root keys and inspect a sample of data to find the correct path
print("Root keys:", data.keys())

Assuming the data you need is under 'hits' -> 'hits' -> '_source’
records = [hit['_source'] for hit in data['hits']['hits']]

Convert to DataFrame
df = pd.DataFrame(records)

Display first few rows to verify
print("Initial DataFrame:™)

print(df.head())

Figure 73

Output for the above code in figure 74-

rRoot keys: dict_keys(['took’', 'timed_out', '_shards’', 'hits'])
Tnitial DataFrame:

input A\
9 {‘type': 'log'} {'hostname’: 2-31-31-86",
1 {"type': 'log'} {'hostname’ 2-31-31-86",
2 {'type': 'log'} {'hostname -31-31-86",
3 {'type': 'log'} {'hostname’: -31-31-86",
A {'type': 'log'} { hostname': 31-31-86", °
@timestamp \
@ 2024-11-12T21:28:36.7787
1 2024-11-127T21:28:36,7832
2 2024-11-12T21:28:36.7832
3 2024-11-12T21:28:36.783Z
4 2024-11-12T21:28:36.783Z
log A\
@ {'file': {"path’: */var/log/suricata/eve.json’...
1 {'file': {'path’: ‘/var/log/suricata/eve.json’...
2 {'file': {'path’: '/var/log/suricata/eve.json’...
3 {'file': {'path’: ’/var/log/suricata/eve.json’...
4 {'file': {'path': ‘/var/log/suricata/eve.json’...
host \

@ {'hostname’: 'ip-172-31-31-86", {'kernel...
1 {'hostname’: 'ip-172-31-31-86", ‘kernel. ..
2 {'hostname’: 'ip-172-31-31-86", {"kernel...
3 {'hostname’: 'ip-172-31-31-86", {'kernel...
4 {'hostname’: 'ip-172-31-31-86", {"kernel...

event dns
@ {‘original‘: ‘{" 11-12T21:28:3... NaN
1 {‘'original': ‘{" -11-12T21:28:3... NaN
2 {'original': ' ~11-12721:28:3... NaN
3 {'original®: '{"ti -11-12T21:28:3... NaN
4 {'original': '{" -11-12T21:28:3... NaN

Figure 74

34

Data cleaning and feature extraction: The code presented in the figure below handles the
preprocessing of raw logs making sure that the missing or incomplete keys are handled
appropriately in the nested JSON structure. the main focus of this preprocessing step was
to extract the necessary features required for training the model ahead. This included
fields such as event_type, src_ip, dest_ip, src_port, dest_port, user_agent and hostname.
The Python’s json.loads() function is used to parse the event field that contains a nested
Json structure, the extracted fields are then compiled in a dataframe structure for easier
handling in the future manipulation of the data. Figure 75 shows the code snippet for the
same-

Extract relevant details from the ‘event' field's nested JSON structure, handling missing keys

df['event_type'] = df['event’].apply(lambda x: json.loads(x['original']).get('event type') if isinstance(x, dict) else None)
df['src_ip'] = df['event'].apply(lambda x: json.loads(x['original']).get('src_ip') if isinstance(x, dict) else None)

df['dest_ip'] = df['event'].apply(lambda x: json.loads(x['original']).get('dest_ip') if isinstance(x, dict) else None)

df['src_port'] = df["event'].apply(lambda x: json.loads(x['original']).get('src_port') if isinstance(x, dict) else None)

df['dest_port'] = df['event’].apply(lambda x: json.loads(x['original’]).get(dest_port") if isinstance(x, dict) else None)

df['user_agent'] = df['event’].apply(lambda x: json.loads(x['original']).get('http user agent', None) if isinstance(x, dict) else None)
df["hostname’] = df["host'].apply(lambda x: x.get('hostname') if isinstance(x, dict) else None)
Figure 75

Tagging the attacks: Here the events are tagged as attacks for further predictions that is
phishing and DDoS while the normal traffic is categorised as other. Mainly two
approaches are used for the tagging logic which are condition-based tagging
(tag_phishing_logs) and row-wise tagging (tag_event). This dual approach tagging helps
in tagging each and every event correctly without missing out on potential attacks. Firstly,
in tagging phishing logs specific conditions like event type must be an alert, destination
port should be either 80 or 443, http_content_type should be indicating the HTML
content whereas http_user_agent should contain either curl or wget which would mean
that the automated tools were used for accessing the links and finally http method should
be GET were used. Once any event is meeting these conditions it is tagged as phishing.
Next up, in the row-wise tagging which basically works in a broader classification to tag
each row individually. The DDoS tagging works mainly on three parameters, as the
commonly targeted ports in a ddos attack are 53 (DNS), 123 (NTP), 80 (HTTP) and 443
(HTTPS), any event coming at these ports were suspicious, along with that when a
event_type is flow it generally would signify multiple connections attempts resembling
ddos attack, furthermore if the src_ip and dest_ip are differing indicating external traffic
targetting a specific resource it would also contribute in marking the event as suspicious.
When all these parameters are fulfilled by any event it will be tagged as ddos. For
phishing, the dest_port and the src_ip are used for categorising the event. Moreover, any
event or log entry which doesn’t meet the requirements set in the above parameters is
tagged as ‘Other’. The approach used here for tagging the events try to replicate the real-
world scenario, marking precise detections in a controlled environment. The figures 76
and 77 state both the tagging logics used in the training.

35

© def tag phishing logs(df):

Define conditions for identifying phishing logs

phishing_conditions = (
(df["event_type'] == 'alert’) &
((df['dest_port'] == 88) | (df['dest _port'] == 443)) &
(df["http_user_agent'].str.contains("curl|wget”, case=False, na=False)) &
(df["http_content_type'].str.contains("text/html", case=False, na=False)) &
(df["http_method'] == 'GET")

)

Apply the conditions to create a 'label' column for phishing
df["label'] = 'Normal® # Default label
df.loc[phishing_conditions, *label'] = 'Phishing® # Tag phishing logs

return df

Figure 76

o def tag_event(row):
Tagging logic for phishing
if row['dest_port'] in [8e, 443, 8e80] and row['src_ip'].startswith("172.31."):
print(f"Tagging as phishing - src_ip: {row['src_ip']}, dest_port: {row['dest port']}")
return 'phishing”

Tagging logic for ddos (multiple requests to the same destination IP and port)

elif row['dest_port'] in [53, 123, 80, 443] and row['event type'] == "flow" and row['src_ip'] != row['dest_ip']:
print(f"Tagging as ddos - src_ip: {row['src_ip']}, dest_ip: {row['dest_ip']}, dest_port: {row['dest_port']}")
return ‘ddos’

Default tag
else:
return 'other'

Apply the updated tagging function
df['tag'] = df.apply(tag_event, axis=1)

Display the updated DataFrame to verify the tags
print(df[[‘@timestamp’', 'hostname’, "event_type", 'src_ip', 'dest_ip’, 'src_port’', 'dest_port', 'tag']].head(20))

Figure 77
Output for the above in figure 78-

dest_ip src_port dest_port tag
2] 3.228.185.88 39998.@ 5044.0 other
1 169.254.169.123 53558.@ 123.0 ddos
2 169.254.169.123 42588.0 123.0 ddos
3 172.31.31.86 65410.@ 4789.0 other
4 162.252.172.49 55007.0 123.0 ddos
5 169.254.169.123 35290.0 123.0 ddos
6 169.254.169.123 58278.0 123.0 ddos
7 169.254.169.123 34378.0 123.0 ddos
8 169.254.169.123 50087.@ 123.9 ddos
9 54.90.191.9 36828.0@ 123.9 ddos
190 169.254.169.123 48420.0 123.9 ddos
11 169.254.169.123 50159.@ 123.0 ddos
12 169.254.169.123 35930.@ 123.0 ddos
13 54.90.191.9 41027.0 123.0 ddos
14 44.201.148.133 51066.0 123.0 ddos
15 169.254.169.123 47406.0 123.0 ddos
16 169.254.169.123 402560.0 123.0 ddos
17 54.81.231.214 53790.@ 80.0 phishing
18 None NaN Nan other
19 172.31.31.45 46097.0 22.9 other

Figure 78

Dataprepocessing: In this step, the dataset was cleaned for feeding the ML model.
Standardization was applied to the numerical feature columns as it ensures that all the
features in the dataset contribute equally in process of training the model. This was done
after encoding the categorical data. So initially, features such as src_ip, dest_ip, src_port
and dest_port were encoded into the numerical format using the LabelEncoder. It was
used to convert the catgorical data such as the IP addresses into integers. After this, the
numerical values were standardized to have a mean of 0 and a standard deviation of 1.
This process standardised the feature distribution in a way that was more appropriate for
the machine learning algorithms such as Random Forest and XGBoost that require
features to be standardised for the model to work effectively in some cases. After all this
the transformed data was split into training and testing sets. In this case, the training
dataset confirms that the model is trained or learning appropriately and the testing data set

36

determines the ability of the model in delivering its output on new data. The figure 79
shows the dataprecossing code used-

° # Define feature columns (X) and target column (y)
X = df[['src_ip’, 'dest_ip', 'src_port®, "dest_port’']].copy() # Create a copy to preserve the original DataFrame
y = df['tag']
Initialize Labelkncoders for categorical features
label encoder_src_ip = LabelEncoder()
label_encoder_dest_ip = LabelEncoder()
label encoder_y = LabelEncoder()
Apply label encoding to features
X['src_ip'] = label_encoder_src_ip.fit_transform(X[‘src_ip'])
X["dest_ip'] = label_encoder_dest_ip.fit_transform(X['dest_ip'])

Encode the target column
y = label_encoder_y.fit_transform(y)

Handle missing values (if required)
X.fillna(e, inplace=True) # Default value for missing entries

split the dataset into training and testing sets (80%-20% split)
X_train, X_test, y train, y test = train_test split(X, y, test size=0.2, random state=42, stratify-y)

Standardize the features

scaler = StandardScaler()

X _train_scaled = scaler.fit_transform(X train)
X_test_scaled = scaler.transform(X_test)

Verify the scaled data
print(“"sample of scaled training data (first 5 rows):")
print(X_train_scaled[:5])

Figure 79

Training the models: Followed by the preprocessing step, comes the training phase which
involves two ensemble learning models- Random Forest and XGBoost. The
RandomForestClassifier was initialized with a fixed random_state. This helps in making
sure there is results obtained are consistent. While this process combines multiple
decision trees in order to reduce overfitting and improve the overall prediction accuracy
the other model which is XGBoost uses XGBClassifier was configured with parameters
like use_label _encoder=False for avoiding deprecation warnings and
eval _metric="mlogloss’ for optimizng the multi-class log loss during the training. The
random_state was also set for the XGBoost so that it maintains the consistency across
different testcases. The entire training process was carried out on the fit method, where
the preprocessed training dataset (X_train and y_train) was given as the input for the both
the models. This step assisted the model to identify patterns within the data hence
improving the performance of the model. The figure 80 depicts the code for the trained
models.

rf_model = RandomForestClassifier(random state=42)
xgb model = XGBClassifier(use label encoder=False, eval metric="mlogloss’, random state=42)

rf_model.fit(X _train, y train)
xgb_model.fit(X_train, y train)

Figure 80
Saving the models: The models were stored in .pkl format through the joblib.dump
function. These models were downloaded in the local machine so that it could be
exported to the ML model instance wherein they can be used as the detection mechanism.
The figure 81 shows the joblib code

° joblib.dump(rf_model, 'random_forest_model.pkl")
joblib.dump(xgb_model, 'xgboost_model.pkl")

Figure 81

2. Realtime prediction in the ML model instance

37

Firstly, the trained ML models which were saved in the earlier section were loaded in the
instance using the command-

scp -i "F:\ml models.pem™ "F:\xgboost_model.pkl™ *F:\random_forest_model.pkl*
ubuntu@54.81.145.37:~

Through the ‘IS’ command we can verify if the trained models are imported successfully. The
figure 82 is the confirmation.

output.log predictions.py random_forest_model.pkl realtime predict.py realtime_prediction.py ve xgboost_model.pkl

Figure 82

Before starting with the prediction’s setup, it was important to install python on the instance
to support the required libraries and scripts. The following procedure was used in doing the
same

- Python was installed using the below commands (version 3.10.12 was used)
sudo apt install -y software-properties-common
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt update
sudo apt install -y python3.10
sudo apt install -y python3.10-venv python3.10-dev

- Installing the python package manager (pip) to handle the library dependencies
through the command- sudo apt install -y python3-pip
- The libraries which were crucial in this setup such as Joblib, pandas, scikit-learn,
xgboost, etc were installed using the pip command-
pip install pandas scikit-learn xgboost elasticsearch Joblib numpy
Finally, after completing all the dependencies, a new file named as realtime_predict.py was
generated through a ‘nano’ command in the home directory. This file can also be viewed in
the screenshot shared above. This script file contained the detailed steps for fetching the logs,
preprocessing them, making predictions and sending them back to the elasticsearch in
indexed format. The detailed explanation of the file is stated below along with the code
snapshots

e Importing the necessary libraries:

Table 2

Libraries Working

from elasticsearch import Elasticsearch Connection with the elasticsearch

from joblib import load Load the pre-trained models

Json Handling JSON formatted logs

pandas Preprocessing the log data

Numpy Handling numerical operations and missing
values

socket Handling IP related conversions

from elasticsearch.helpers import bulk Optimizing the bulk operations

struct Performing binary conversions

from datetime import datetime Comparing the timestamps between the
processed logs

38

| import time | Putting sleep time or trial attempts

The figure 83 depicts the libraries imported in the script

from elasticsearch import Elasticsearch
from joblib import load

import json

import pandas as pd

import numpy as np

import socket

from elasticsearch.helpers import bulk
import struct

from datetime import datetime

import time # For real-time loop delay

Figure 83

Loading the trained models: Here the trained models are loaded in to the memory which
will predict the attacks. The figure 84 shows the code for the same

Load models
rf_model = load('/home/ubuntu/random_forest_model.pkl")

xgb_model = load('/home/ubuntu/xgboost_model.pkl")

Figure 84

Connecting to the Elasticsearch: The script establishes a connection with the elasticsearch
a vital component of the SIEM to fetch the raw logs. All the necessary credentials and
SIEM IP are provided for the same, this is depicted in the figure 85-

Connect to Elasticsearch
es = Elasticsearch([{"host": "3.228.185.88", "port": 9280, “"scheme": "http"}],

basic_auth=("elastic", "walnut"))

Figure 85

Converting IP address into numercial format: Here the IP addresses are converted into the
numerical format using the ip_to_int fucntion. If an Ip is missing or has an invalid input
np.nan is returned. While socket.inet_aton() function converts an IP address into the
binary format which then is converted to integer through struct.unpack(“!I”, ...), this is
depicted in the figure 86-

Convert IP address to a numerical format
def ip_to_int(ip):
if ip is None:
return np.nan # Return NaN if IP is None
try:

return struct.unpack("!I", socket.inet_aton(ip))[@]
except socket.error:
return np.nan # Return NaN if IP conversion fails

Figure 86

Fetching logs: Once the connection with elasticsearch is established, the ml model
instance has to fetch the recent logs which the suricata is indexing in the SIEM. The
fetch_new_logs function is used here which queries the elasticsearch database for logs
that are recent than the last_timestamp. This minimizes the redundancy of the system and
makes it more dynamic by processing only the unprocessed logs. The figure 87 depicts
the code for the same.

39

Fetch only new logs using a timestamp filter
def fetch_new_logs(index_name, last_timestamp, size=90e@):
query = {
"query": {
“range": {
"@timestamp": {
"gt": last_timestamp # Fetch logs newer than the last processed timestamp

response = es.search(index=index_name, body=query)
return response['hits']['hits']

Figure 87

Preprocessing: In this section of the script, the raw logs are cleaned while the relevant
fields are extracted for predictions. IP addresses are also converted to numerical formats
here for making sure that they are compatible with the models. Relevant fields such as
src_ip, dest_ip, src_port, dest_port and event_type were extracted. NaN was assigned for
any missing or invalid data, while the ip_to_int function handles the conversion of IP into
numerical format even through this conversion process has taken place before it is crucial
to be repeated as it maintains the consistency making sure that the potential variations in
the raw data are handled successfully and not resulting in the pipeline crash during the
live data flow. The figure 88 is the code snippet for the same.

Preprocessing function with IP conversion

def preprocess_logs(log_data):
extracted_data = [log['_source'] for log in log_data]
df = pd.DataFrame(extracted_data)

def extract_fields(row):
try:
event = json.loads(row['event']["original'])
row['src_ip'] = event.get('src_ip')
row['dest_ip'] = event.get('dest_ip"')
row['src_port'] = event.get('src_port')
row['dest_port'] = event.get('dest_port')
row['event_type'] = event.get('event_type')
except (KeyError, json.J]SONDecodeError, TypeError):
row['src_ip'] = np.nan
row['dest_ip'] = np.nan
row['src_port'] = np.nan
row["dest_port'] = np.nan
row["event_type'] = np.nan
return row

df = df.apply(extract_fields, axis=1)
df['src_ip'] = df['src_ip'].apply(ip_to_int)
df['dest_ip'] = df['dest_ip'].apply(ip_to_int)

processed_logs = df.dropna(subset=["src_ip", “dest_ip", "src_port", “"dest_port"”, “event_type"])
return processed_logs

Figure 88

Making predictions: This is an important where the features from the pre-processed
functions are passed on to the models for making the predictions. The predict_proba
function is used to generate the probability for each log while the combined_scores gives
the classification result from both the models. If the combines score is greater than 0.7 it
is termed as phishing (due to the high confidence in malicious behaviour), if the score is
less than 0.3 it is tagged as DDoS (due to the low confidence mostly representing
volumetric attack), while the logs with a score between them are classified as Benign.
These thresholds and the entire code for the predictions is mentioned in the figure 89-

40

Define the prediction function

def make_prediction(logs):
features = logs[["src_ip", "dest_ip", "src_port", "dest_port"]
features = features.fillna(@)

rf_predictions = rf_model.predict_proba(features)[:, 1] # Probability score for positive class
xgb_predictions = xgb_model.predict_proba(features)[:, 1] # Probability score for positive class

combined_scores = (rf_predictions + xgb_predictions) / 2

final_ fication = []
for scores in combined_scores:
if scores > 3
final_c

else: -
final_classification.append(“Benign")

return final_classification

Figure 89

Saving the predictions: Once the models determine the scores and the predictions are
made, this data is saved and sent back to the elasticsearch with a dynamic index name
which separates the logs as per the dates. The predictions are attached under a prediction
field in the original logs. A dynamic index name ml-predictions-YYYY.MM.DD is used
for structuring the logs for each day on the SIEM. Figure 90 shows the code snippet for
the same-

Generate dynamic index name based on date

def get_index_name(base_name="ml-predictions™):
current_date = datetime.now().strftime("%Y.%m.%d") # Format: YYYY.MM.DD
return f"{base_name}-{current_date}"

Save predictions in JSON and send to Elasticsearch
def save_predictions_to_elasticsearch(log_data, classifications):
output_data = []
index_name = get_index_name() # Generate index name dynamically
for log, classification in zip(log_data, classifications):
log["_source"]["prediction"] = classification
output_data.append({
"_index": index_name, # Use dynamic date-based index name
"_source": log["_source"]

i)

bulk(es, output_data)
print(f"Predictions saved to Elasticsearch under index '{index_name}'.")

Figure 90

Real-time Execution: This script is designed to fetch the logs, process it, make the
predictions and save it back continuously. Thus, it starts with the timestamp now-1m and
processes the logs in 5-second interval time. Even if the script faces error, it waits for 30
seconds before reattempting. The figure 91 shows the code for the same-

Main function for real-time predictions
if __name_ == "_ main_ ":
last_timestamp = "now-1m" # Start with logs from the last minute
while True:
try:
logs = fetch_new_logs("suricata-logs-*", last_timestamp, size=90@0)
if logs:
print(f"Fetched {len(logs)} new logs.")
last_timestamp = logs[-1]["_source']['@timestamp’] # Update last processed timestamp

processed_logs = preprocess_logs(logs)
if not processed_logs.empty:

classifications = make_prediction(processed_logs)

save_predictions_to_elasticsearch(logs, classifications)

print("Predictions processed and sent to Elasticsearch.")
else:

print("No logs to process after filtering.™)

else:
print("No new logs found.")

time.sleep(5) # Wait for 5 seconds before fetching new logs
except Exception as e:

print(f"Error: {e}")

time.sleep(3@) # Wait for 3@ seconds on error

Figure 91

41

So as the realtime predict.py script is ready for functioning it is executed using the ‘nohup’
command which ensures that the process for ml predictions works continuously without any
interruption, until the user decides to terminate it. The figure 92 shows the command and its
input-

$ nohup python3 realtime_predict.py > output.log 2>&1 &

Figure 92

9 Setting up the Kibana alerts and dashboards

This section will explain about the configurations done in the GUI end of the SIEM that is
Kibana.

Step 1: Creating Index patterns

Index patterns are very crucial for Kibana to recognize the logs stored in the elasticsearch,
however it already has the data from the elasticsearch, the index patterns need to be explicilty
defined on kibana so that it can categorise the events. Two main index patterns which need to
be defined here are suricata-logs-* and ml-predictions-*. The following steps were used for
creating these indices. (The procedure remains the same for both of them except for their
names).

- Navigating to the Index pattern section through Stack Management -> Index
Patterns.

- Clickin on “create index pattern”.

- In the name bracket we need to input the same name which is given in the
elasticsearch index section (in this case the names are suricata-logs-* and ml-
predictions-*). This makes sure that all the with names starting from the suricata-
logs- and ml-predictions- are indexed in each of them respectively.

- Selecting the timestamp field (@timestamp) from the drop down menu.

- Click on “Create index pattern” button now for the index to be created.

- The figure 93 is a sample showcasing the creation of suricata-logs-* index

Create index pattern “ Your Index pattern matches 5 source

~~~~~~

7
£

4.11.28 Indax
0

suricata-logs-2024.12.02

Rows per page: 10

Figure 93

42



After the indexes are created, they can be checked in the ‘Index pattern’ tab, as seen in the

figure 94-

Index patterns

Create and manage the index patterns that help you retrieve your data from Elasticsearch.

Q Search...

Pattern T
suricata-logs-* Default
logs-*
logs-generic-default*
metrics-*
ml-predictions-*

mi_predictions

Figure 94

Step 2: Creating Rules for generating alerts

For creating the rules, it is crucial for defining the connectors first. As the connectors specify
exactly where the alerts are to be sent. Connectors can be of different types which defines
how the alerts will be processed whether they will be sent through email or slack or write
them in a specific index. Here as we are using the open-source license for ELK we only have
the access to Index connector. For this setup we need 2 customised rules mainly for DDoS
and phishing, thus | have created 2 connectors for the same. The process for creating the
connectors again remain the same except for their names-

Navigate to Connectors section through Stack Management -> Rules and
Connectors-> Connectors

Click on “Create connector” button.

Choose Index as the connector type

For configuring the connector, provide a distinctive name for the connector (in
this case DDoS and Phishing is given). After that specify the index name where
the alerts would be stored (in this case ddos-alerts and phishing alerts name is
provided).

Toggle the Refresh index to ON so that the index is refreshed when the alerts are
written.

Finally click the “Save & test” button to check if the connector is properly
workings. Once saved the connector will be appearing on the connectors window
in Rules and Connectors section

A sample creation of Connector can be seen through the figure 95.

43



B Index connector
dex data into Elasticsearch.

Cannector name

DDoS

Cannector settings

Write to index

aaaaa

Figure 95

Now we can move on to the Rule creation part. Rules are basically the logic behind the
generation of alerts, once a certain log meets the entry requirements set in a particular rule an
alert is triggered against it. For this setup, | created 2 custom rules which will be detailed in
the below section, but before the custom rules the rules provided by the ELK were imported
in our system to enhance the rules list and criteria’s majorly to understand the structure of a
well-defined rule which could possibly help in setting new rules. For this, firstly navigate to
Kibana -> Security -> Alerts -> Rules and by clicking on ‘Manage Rules’ button, there is
an option for ‘Load Prebuilt Detection Rules’ popping up and thus the pre-built rules are
integrated in the system. Now that we are already in the rules section the following process
can be adapted for creation of custom rules. (both the rules created will be explained in the
same setting but with different parameters as per their requirements).

- Once in the Rules section, click on ‘Create Rule’.

- Name the Rules. (in this case DDoS and Phishing).

- Select the rule type, here I have selected ‘Custom Query’. Through this we can
enter a customised query which will trigger the rules. The query was extensively
tested on the ‘Discover’ section of the kibana to understand the logs structure and
what exact fields can possibly trigger the attacks.

- After this add the index pattern ‘suricata-logs-*’ is the index pattern which
contains all the network traffic/logs generated by IDS thus inputting this in the
index pattern section makes sure that the rule is fetching the results from this
section.

- After this, we need to input the custom query in a KQL (Kibana query language)
format. The queries used both for Ddos and Phishing are listed below-

DDoS: suricata.eve.event_type:“alert” AND suricata.eve.alert.signature:“Possible SYN
Flood” AND suricata.eve.alert.category:“Attempted Denial of Service”

Phishing: suricata.eve.event_type:“alert” AND suricata.eve.http.url:*“/phishing-
page.html” AND  suricata.eve.http.hostname:“attackingmachine.ddns.net” AND
suricata.eve.alert.signature:“ET INFO DYNAMIC_DNS HTTP Request to a *.ddns .net
Domain”

The figure 96 acts an edit page while creating the DDoS Rule.

44



@ elastic

= . Security  Rules  Create ML job settings ~ B Add integrations

UsE CVEnTWuETy Languaye UNE T T g

(EQL) to match events, sources to detect matching

o Security generate sequences, and stack events and alerts.

data

Qverview
Select Select
Detect Index patterns Reset to default index patterns
Alerts
apm-*-transaction* x traces-apm® auditbeat-* endgame-* X filebeat-* x 0gs-* X packetbeat-* X
Rules
gbeat ta-log
Exceptions
Explore
Custom query mport query from saved timeline

Hosts
Network [E) ~ suricata.eve.event_type:"alert” AND suricata.eve alert signature:"Possible SYN Flood" AND KaL

suricata.eve.alert.calegory:"Attempted Denial of Service”

Investigate

Timelines Timeline template

Cases None ~

Manage Quick query preview

Endpoints Last hour v Preview results

Trusted applications

& Untitled timeline

Figure 96

After this we need to input the brief of the rule, such as setting the Severity, Risk
Score and Tags (if any).

After this set the alert frequency specifying how often the query should run (here
| have specified it every 1m, this can be changed as per the requirements).

Then select the index connector which we configured earlier (ddos-alerts and
phishing alerts for respective rules) so that the alerts can be saved in the indices.
Using the ‘Preview Results’ button the query or the rule can be tested on the
available logs whether it is fetching the results.

Lastly save the rules and move to the ‘Alerts’ tab to check if the rules are
working properly. The figure 97 displays the alerts generated through the rules

Alerts Manage rules
m Acknowledged Closed Updated 1 second ago
Count Stackby  signal.rule.name ~ Trend Stackby  signal.rule.name ~
signal.rule.name Count - ® DDoS
® Phishing
DDoS 82
Phishing 67 w0

November 03 November 10 November 17 November 24 December 01

Figure 97
Step 3: Creating dashboards for visualising the data on SIEM

This is a very important step in setting up the SIEM server as it enables the end user to see
the data in order to protect the IT infrastructure. We can create as many as dashboards as per
the requirements with different visualisations but for this setup majorly 3 dashboards can be
created depicting the ml predictions, rule-based predictions and lastly a combined graph for
both the predictions. The detailed steps for these 3 dahsboards are stated below-

45



1. Dashboard 1: Machine Learning based Predictions

- Go to ‘Dashboard’ tab on the Kibana and then click on ‘Create Dashboard’.

- Go to the “Visualize Library’ on the dashboard.

- Here | have created a pie-chart in order to show the predictions, so just select the
‘Pie chart’ option after clicking the button ‘Create Visualization’.

- Selecting the accurate index pattern is important here as it would specify the
service to fetch the data from there. The ML predictions are loaded in the ‘ml-
predictions-*’. Thus we will select this.

- Next, in the buckets section we need to split the slices by selecting the
prediction.keyword field. This will visualise the data as per the DDoS, Phishing
and Benign as classified by the ML models.

- We can check the view of the visualisation and adjust any display of the labels
for more clarity.

- Finally the visualisation can be saved and named as Pie-chart for ML predictions.

- Thus the visualisation is stored in the dashboard which can also be saved once the
changes are done. The figure 98 depicts the pie-chart created on kibana.

DDosS 61.01%

“
Figure 98

2. Dashboard 2: Rule-based Alerts visualisation

- Go to ‘Dashboard’ tab on the Kibana and then click on ‘Create Dashboard’.

- Go to the “Visualize Library’ on the dashboard.

- Click the ‘Create visualisation’ button and sleect the required type of the graph.
Here I have selected ‘Bar vertical stacked’.

- Choose the index pattern which is ‘suricata-logs-*’ in this case.

- In the horizontal access section, select the field @timestamp, on the vertical axis
section, ‘Count of records’ can be selected.

- Finally to classify the data, in the ‘Break down by’ section select the
‘suricata.eve.alert.signature.keyword’.

The figure 99 is the graphical representation of the steps explained above-

46



siss Bar vertical stacked ~ ]

suricata-logs-* N~
Horizontal axis

@timestamp [1] x
Vertical axis

= Count of records [1] x

@ Add or drag-and-drop a field

Break down by

Top values of suricata.eve.alert.
signature.keyword

%

Figure 99

- Finally the graph can be saved by clicking ‘Save and return’ and thus the
visualisation is created on the dashboard.

3. Dashboard 3: Combined ML and Rule based predictions.

In this dashboard a ‘Bar vertical stacked’ graph is used to show the combination of both the
detection types. By repeating the same procedures from the Dashboard 2 creation, the graph
can be created which includes the rule-based detections and for adding the ML predictions in
it, we need to select the ‘Add layer’ at the bottom right corner of the page. This can be seen
through the figure 100.

+ Add filter

mi_predictions sis} Bar vertical stacked § L

‘‘‘‘‘‘‘‘‘‘‘‘‘

v [ suricata-logs-*
Q) Saarch fieid name
Filter by type 0 v Possible SYN Flood H stimestamp [1
# Records * Be H -
o hvaiable ek s 2 * boos .
g Count of records
@limestamp 3
P @ 3 ) irag-and
@ &
t ag word
t a r
| o Topvs .
b ¥ signat
* ag o
' ag

mmmmmmmm ' per 30 minutes

> Suggestions

Figure 100

Once the additional layer is added, select the ‘ml-predictions-*’ index pattern, choose
@timestamp field in the horizontal axis, while ‘Count of records’ in the vertical axis and in
the ‘Break down by’ section select the prediction.keyword field. This steps can be
represented through the figure 101.

47



sit! Bar vertical stacked v

p

mi-predictions-* ~

Horizontal axis

@timestamp x

Vertical axis

@ Count of records X
@ Add or drag-and-drop a field

Break down by

B Top values of prediction.keyword X

Figure 101

Thus the final graph including both the predictions can be viewed in the figure 102.

b

@timestamp per 10 minutes

Figure 102

Other
Possible SYN Flood
@ ETINFODYNAMICDNS ... §
® Benign
® Phishing
# DDoS

Count of records

This was the entire configuration manual for replicating the entire real-time security detection
setup.

48



References

Argonzo, R. (2019) Emerging Threats PRO/OPEN Ruleset for Suricata 7.0.3 Now Available.
Available at: https://forum.suricata.io/t/emerging-threats-pro-open-ruleset-for-suricata-7-0-3-
now-available/4714 [Accessed 14 October 2024].

Elastic (2024) Elasticsearch Guide. Available at:
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/index.html [Accessed 17
October 2024].

Elastic (2024) Filebeat quick start: installation and configuration. Available at:
https://www.elastic.co/quide/en/beats/filebeat/7.17/filebeat-installation-configuration.html
[Accessed 17 October 2024].

Elastic (2024) Kibana Guide. Available at:
https://www.elastic.co/guide/en/kibana/7.17/index.html [Accessed 17 October 2024].

Elastic (2024) Logstash Reference. Available at:
https://www.elastic.co/quide/en/logstash/7.17/index.html [Accessed 17 October 2024].

Emerging Threats (2024) ET OPEN Ruleset Download Instructions. Available at:
https://rules.emergingthreats.net/OPEN_download_instructions.html [Accessed 14 October
2024].

GitHub  (2024) Installing Suricata IDS on Ubuntu Server. Available at:
https://github.com/Oxrajneesh/Suricata-IDS-Home-L ab/blob/main/installing-suricata.md
[Accessed 10 October 2024].

49


https://forum.suricata.io/t/emerging-threats-pro-open-ruleset-for-suricata-7-0-3-now-available/4714
https://forum.suricata.io/t/emerging-threats-pro-open-ruleset-for-suricata-7-0-3-now-available/4714
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/index.html
https://www.elastic.co/guide/en/beats/filebeat/7.17/filebeat-installation-configuration.html
https://www.elastic.co/guide/en/kibana/7.17/index.html
https://www.elastic.co/guide/en/logstash/7.17/index.html
https://rules.emergingthreats.net/OPEN_download_instructions.html
https://github.com/0xrajneesh/Suricata-IDS-Home-Lab/blob/main/installing-suricata.md

