

Optimizing IoT Secure Data Processing and Using Azure Edge

Computing Solutions

MSc Research Project

MSc in Cyber Security

Raju Burolla

Student ID: X23245131

School of Computing

National College of Ireland

Supervisor: Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Raju Burolla
………

Student ID:

X23245131
………..……

Programme:

Cyber Security
………………………………………………………………

Year:

2024
…………………………..

Module:

MSc Practicum 2
…….………

Supervisor:

Michael Prior
…….………

Submission
Due Date:

12.12.2024
…….………

Project Title:

Optimizing IOT Secure data processing and using Azure Edge
Computing Solutions
…….………

Word Count:

7139 20
……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Raju Burolla
……

Date:

12.12.2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Optimizing IoT Secure Data Processing and Using

Azure Edge Computing Solutions

Raju Burolla

X23245131

 Abstract

This research investigates an Azure IoT Edge-enabled solution that could collect

telemetry data, store, and analyze it in real-time. The study focuses on designing an

integrated architecture with the integration of Azure IoT Hub, Logic Apps, and Azure

Monitor for seamless processing of data to address emerging demands for effective IoT

pipelines. IoT Edge devices were provisioned, and the modules configured to start

ingesting and processing data. The implementation entailes a variety of workflows

relating to the analytics of telemetry. Evaluations emphasize key metrics, such as

message latency, data throughput, and system reliability to ensure there is a functional

IoT pipeline where measurable improvements could be identified in data handling-

despite issues in connectivity and module configuration at the beginning. These results

confirm the scalability and reliability of the proposed solution but also point out certain

areas for further improvement, such as enhanced configuration automation. The work

done here provides a good base for future projects that might deal with advanced

analytics or scaling up multi-cloud support and boasts considerable academic and

commercial potential.

1 Introduction

1.1 Background

The sudden expansion of IoT has caused huge growth in the volume of telemetry data

generated by connected devices. These data may reveal huge potential for actionable insights,

operational efficiency, and real-time decision-making. However, there are a lot of challenges

in the efficient management and processing of this data, especially under conditions of low

latency with scalability and strong connectivity between edge devices and cloud platforms.

This paper is aimed at designing and implementing a capable IoT data pipeline on

Azure IoT Edge. The research work also touches upon the adoption of Azure IoT Hub, Logic

Apps, and Azure Monitor to connect the edge devices to the cloud for real-time data

processing and analytics. A simulated telemetry generates test data; the system tests under

realistic conditions to find a reliable pattern of data ingestion, transformation, and storage.

The importance of this research is that its results may help in the improvement of the

scaling and reliability of IoT deployments. While industries are moving towards solutions for

IoT, there is a real need to enable new opportunities through efficient and effective

processing and analysis of telemetry data. This paper contributes to solving these challenges

2

by implementing and evaluating a modern IoT architecture that clearly forms the basis for

future improvements in this area of research.

Figure 1: IoT Edge-based data processing workflow

1.2 Motivation

The study emanates from the increase in demand for effective real-time data processing and

security in front of the ever-expanding ecosystem of IoT. The exponential growth of devices

within IoT across industries like Healthcare, Manufacturing, and Smart Cities necessitates

immediate need for solutions based on edge computing that offer minimal latency with

assurance of reliability. Traditional cloud-based models fall short of expectations owing to

high latency and bandwidth constraints in applications that require instant decision-making

with strong data handling. This paper proposes a hybrid edge-cloud framework for optimized

data processing, real-time insights, and secure data transmission using Azure IoT Edge,

Azure IoT Hub, and Azure Monitor. The objective of this research work is to simulate

telemetry data, integrate Azure services, and provide a scalable, efficient, and secure IoT

solution for critical real-time applications.

1.3 Research Problem and Questions

This research has endeavored to investigate the efficient and safe processing in real-time of

the immense volume of telemetry data produced by IoT devices. Classic cloud-only

architectures face latency and bandwidth bottlenecks, limiting the timeliness with which data

3

is processed and reacted to. More generally, edge computing also brings added challenges

regarding data consistency and security in distributed environments. This research seeks to

explore how these challenges can be solved by Azure IoT Edge when integrated with both

Azure IoT Hub and Azure Monitor in developing a scalable, secure, and high-performance

hybrid architecture. The investigation is informed by the following research questions:

How would Azure IoT Edge improve real-time data processing compared to traditional

cloud-based models?

What are the advantages and limitations of using Azure IoT Hub for managing large-scale

IoT deployments?

1.4 Research Objectives

The research is targeted at the implementation of IoT Edge computing using Azure IoT Edge

and Azure IoT Hub to process telemetry data securely in real time. The objectives of the

research are as follows:

o Building an efficient Hybrid Edge-Cloud architecture on Azure IoT Edge, ingesting,

transforming and routing the data.

o Telemetry data will be simulated and utilized to test the IoT Edge pipeline for

performance and reliability in real-world scenarios.

o A detailed analysis of efficiency by Azure IoT Hub in making out device

communications and telemetry routings.

o Identifying strengths and limitations regarding the implemented framework, therefore,

suggesting some recommendations that might be set into operation at some time in the

future.

1.5 Scope and Limitations

The focus of this research was the implementation and performance evaluation of the IoT

Edge-based solution using the Azure ecosystem, namely, Azure IoT Edge, IoT Hub, and

Azure Monitor. It studies telemetry data processing, routing, and analysis while assessing

performance metrics related to latency, accuracy, and scalability. The limitation is that the

study is solely performed on Azure tools; therefore, findings would be most applicable for

organizations that adopt Azure-based solutions. Besides, the implementation was performed

in a controlled environment and hence cannot represent an industrial IoT deployment on a

large scale. Constraints include hardware limitations and lack of advanced real-world security

threat simulations.

1.6 Structure of the Report

The report is organized in such a way that it allows for an in-depth view of the entire research

process. Chapter 1 introduces the background of the research, motivation, objectives, and

scope, and sets the scene for this study. Chapter 2 critically reviews existing literature related

to IoT Edge solutions, Azure IoT Hub, and associated technologies, pointing out the gaps in

research that have been addressed by this study. The design of the research, setting up the

experiment, methods of data collection, and the ethical consideration are discussed in Chapter

3. Chapter 4 provides design specifications, mainly focusing on the architecture and

components of the proposed Azure IoT Edge solution. Chapter 5 is devoted to explaining the

4

process of implementation; thus, it explains how to configure and test IoT Edge modules,

telemetry pipelines, and workflows. Chapter 6 evaluates the solution on performance metrics

supported by visual and statistical analysis, while Chapter 7 concludes with a summary of the

findings, contributions, limitations, and recommendations for future research.

2 Related Work

2.1 Overview

Edge computing is a kind of distributed computing paradigm that processes data closer to the

source of its origin, instead of transferring it to a remotely located centralized data center or

cloud. With this, latency is drastically reduced and real-time processing is improved, without

unnecessarily wasting bandwidth on data centers. According to Babar et al. (2022) this form

of computing, therefore, becomes of utmost importance for applications needing fast and

reliable data insights. This model, in general, is inefficient and, in several occasions, just not

practical when considering the need to continuously send sensor data or device data to the

cloud for processing in IoT settings. This is addressed by edge computing through the

localization of data processing, which improves performance and enhances data security with

sensitive information being analyzed and stored only locally and not across vulnerable

networks. Bajaj et al. (2020) argues that the importance of edge computing is particularly

evident in sectors going from autonomous vehicles, where milliseconds could make a

difference in safety decisions, to smart manufacturing where real-time analytics are crucial to

understand how to optimize operations.

Azure Stack HCI is the solution from Microsoft to extend cloud computing benefits to on-

premise data centers and edge locations for a seamless hybrid environment. On the

architectural level, Azure Stack HCI embodies an integrated compute, storage, and

networking hyper-converged infrastructure that reduces complexity and increases

performance. Research conducted by Lv (2021) notes that the key features of Azure Stack

HCI include the ability to run virtualized workloads efficiently, support for containerized

applications, and integration with Microsoft Azure services by design. This platform is

designed to be used with Azure to empower users to take advantage of Azure capabilities-

Azure Backup, Azure Monitor, and Azure Update Management-while maintaining data

locality and compliance. In addition, Azure Stack HCI integrates with both Azure IoT Hub

for advanced device management and Azure Security Center to monitor its security, further

positioning it as more critical in driving efficient, scalable, and secure edge computing

solutions for the deployment of an organization. Providing a bridge between cloud agility and

on-premise control further makes Azure Stack HCI very critical in optimizing data processing

for IoT and other latency-sensitive applications.

2.2 Existing Solutions and Technologies

Edge computing has been one of the fastest-moving fields, with the construction of various

platforms to meet the need for effective and timely data processing (Mohon and Grolinger,

2020). Among the few solutions available in edge computing today are AWS Outposts,

Google Anthos, and providers of traditional premises infrastructures. AWS Outposts extends

Amazon Web Services infrastructure to on-premise environments, enabling users to run AWS

5

services locally with consistent cloud-native tools. It is particularly well-suited for

applications that need low latency, local data processing, or data residency. Google Anthos

provides a hybrid and multi-cloud solution that supports containerized workloads across

Google Cloud and on-premises environments, placing Kubernetes as a core technology

(Zhang, 2024). Anthos represents an incredibly powerful orchestration and management

capability that makes it fit for an enterprise workload that is modernizing applications with a

microservices architecture. Both products emphasize frictionless integration into their

respective cloud ecosystems, unified management experiences, and a rich set of capabilities

such as automated updates, security features, and scalability.

Comparatively, each of these platforms is fighting its own demons. For example, AWS

Outposts demands high dependence on the AWS ecosystem-a potential weakness for

organizations with extensive multi-cloud strategies. While Google Anthos is designed to

bring flexibility across a wide range of cloud environments, this can be complex to deploy

and manage, especially for teams not used to Kubernetes. By contrast, Azure Stack HCI

offers a hyper-converged infrastructure-a far more simplified way of managing by

consolidating compute, storage, and networking into one solution-and provides native support

for Windows Server and a familiar interface for organizations already using Microsoft

technologies. In fact, with tightly integrated Azure Stack HCI with Azure services, benefits

abound in hybrid cloud strategy. Other technologies put the edge in context, including

traditional edge devices running custom Linux distributions or specialized platforms from

such companies as Cisco Edge and VMware Edge. While these solutions are beneficial in

certain scenarios, they lack the comprehensive integration and scalability found with

platforms such as Azure Stack HCI, AWS Outposts, and Google Anthos (Ramona, 2024).

Ultimately, the appropriate edge computing platform for an organization would depend on

critical considerations such as latency requirement, manageability, and integratability with an

organization's current IT setup.

2.3 Azure IoT Hub and Security Center

Azure IoT Hub is a cloud service that lets one connect, monitor, and manage IoT devices by

acting as the central hub for IoT devices. It provides reliable and secure bi-directional

communication between millions of IoT devices and the cloud. Multiple messaging patterns

allow Azure IoT Hub to work seamlessly with any IoT ecosystem for device-to-cloud

telemetry, cloud-to-device commands, and more. Pre-device authentication and authorization

are provided as a service through its per-device security credentials, which are leveraged by

the hub in ensuring that only authorized devices can communicate with it. Furthermore,

device provisioning, monitoring, and carrying out automatic updates are other feature sets

provided through Azure IoT Hub to help an organization scale its IoT deployment with much

more efficacy. Integration with other Azure services, such as Azure Stream Analytics and

Azure Functions, adds much value to complex IoT solutions by providing advanced data

processing and automation (Liu et al., 2019).

It provides unified security management and advanced threat protection for hybrid

cloud workloads and edge computing environments, supplementing Azure IoT Hub. Azure

Security Center finds vulnerabilities through constant security assessments and provides

recommendations on the steps a customer needs to take to remediate those issues to ensure

6

the security posture of IoT/Edge devices. It uses machine learning and advanced threat

intelligence to take action in real-time against potential security threats. For edge computing,

it enhances the security monitoring and compliance management features to proactively help

protect distributed infrastructure. Besides that, Azure Security Centre does integrate well with

other Azure services to realize a singular security experience offering just-in-time access

control, adaptive application controls, as well as network security recommendations (Ots,

2021). Azure Security Center plays a vital role in securing the Edge Computing deployment

by providing insight and control over cloud and on-premise resources related to security.

To put into perspective against the different offerings of competitors, Azure IoT Hub

and Azure Security Center come across as greater focus on integration and management of

security in a holistic manner. AWS IoT Core, for example, will comprise similar qualities to

that of Azure IoT Hub, enabling secure and scalable communications between things and the

cloud. AWS IoT Core is often lacking in symmetry but could be seen to have real strengths

regarding depth of integration with other AWS services for real-time processing and

analytics, such as AWS Lambda and Amazon Kinesis. By contrast, Google Cloud IoT offers

a more integrated suite of services-a range from Cloud IoT Core to Cloud IoT Edge-focused

on ease of integration with Google analytics and machine learning platforms. For security,

AWS has equivalents in AWS Security Hub and AWS IoT Device Defender for monitoring

and threat detection, tailored to IoT. While these services offer amazing capabilities,

enterprises that have invested in Microsoft technologies often find what Azure offers

appealing, since integration throughout the Azure ecosystem makes for easier management

and productivity boosts. Summing up, IoT Hub and Azure Security Center provide a

balanced combination of device management and real-time communication with advanced

security tailored for hybrid cloud and edge computing environments.

2.4 Strengths and Weaknesses of Current Solutions

Various works on integrating edge computing with cloud services demonstrate a set of

advantages that make this approach quite attractive for any form of real-time data processing

applications. According to (Koo, 2021) probably the most critical advantages of this kind of

approach are the important reduction in latency due to the processing of data at the edge,

which enables applications such as autonomous driving or industrial automation. The faster

response times can be achieved since data is processed at the edge rather than being sent to

centralized cloud servers. Besides, several works prove the scalability and flexibility of

hybrid models, issues that combine Edge Computing with resources provided by the Cloud.

These models enable dynamic workload distribution wherein less time-critical tasks are done

in the cloud and mission-critical processes remain at the edge. The capability to leverage

cloud resources for large-scale data analytics and storage, combined with the use of edge

nodes for such immediate computations, is seen as one of the major advantages in

environments that go through high volume with variability in data streams.

However, previous research and implementations also expose certain limitations and

challenges while inhibiting seamless integration of edge computing with cloud services.

There is some weakness on the management complexity of distributed infrastructures, mostly

regarding ensuring security and consistent data governance over multi-nodes. Some research

has pointed out that the edge environment is more vulnerable to cyber-attacks and data

breaches due to its decentralized nature. It is, therefore, paramount that robust security

7

frameworks be implemented at the edge, although challenging. Data synchronization and

consistency between edge and cloud environments still remain an issue. Network reliability is

another challenge; unstable connectivity might disrupt data flow and dampen the overall

performance of the system. Other limitations have included, but are not limited to, the cost

and energy consumption emanating from maintaining many edge devices, particularly for

wide-scale deployments. As much as hybrid cloud-edge model advances have shown some

promises, more research is needed toward addressing the above-mentioned limitations and

seeking far more efficient, secure, and manageable ways of integration (Yueli, 2020).

2.5 Research Gaps

Although edge computing has already gradually integrated with a cloud and passed several

milestones, there are still some non-negligible gaps in the existing literature. Among them,

the most important are related to the lack of comprehensive studies about the practical

deployment and performance evaluation of hybrid edge-cloud solutions by leveraging Azure

Stack HCI. While there is some research into general edge computing frameworks, few have

focused on how the unique capabilities of Azure Stack HCI may be leveraged for real-time

data processing and safe transmission in IoT environments. Additionally, little research has

been conducted regarding the integration between Azure IoT Hub, Azure Security Center,

and Azure Stack HCI to leverage device management and threat protection at the edge. This

makes further investigation even more important, since there has been a limited number of

empirical studies that assess how these integrated solutions perform, efficiently work, and

have security assurances within real-world situations.

This research presents ground and attempts to close it by implementing and running a

performance evaluation of a particularly edge computing solution on which Azure Stack HCI

relies extensively for tight integration with related Azure services. It makes the attempt to

address an urgent lack of detailed case studies and their performance analysis: thus, giving

insights and readers to understand all matters of benefits and difficulties on using Azure

Stack HCI concerning the purpose of making execution of edge computing for specific IoT

scenarios. Additionally, the research will investigate how well both Azure IoT Hub and

Azure Security Center are in a position to handle and secure data at the edge for extending

prior understandings around how these can be leveraged together. The justification of this

research study is based on the emerging trends that place a great reliance on real-time data

processing and where stringent security measures have become pivotal in a distributed

computing environment. This project will provide guidelines on how organizations can

actually decide on the adoption and deployment strategy for hybrid edge-cloud solutions,

through practical guidelines and performance metrics.

3 Research Methodology

The methodology undertaken in the research combines experimental and analytical methods

in implementing and testing IoT Edge solutions. This approach befits the stated objectives in

deploying, monitoring, and analyzing the performance of Azure IoT Edge modules while

targeting system performance and error diagnosis. A number of the insights gained in a

review of the literature relating to the imperatives of the right configurations and telemetry

8

validation across board from edge devices on cloud-connected systems form the basis for this

approach.

3.1 Scenario Design

A number of test cases are developed that will help benchmark the performance and

resiliency of the IoT Edge setup in normal operations and when failures and recoveries occur.

For these, some use cases have been developed, given the utilization of IoT Edge predefined

modules that contain a SimulatedTemperatureSensor to measure its installation and overall

functioning.

Figure 2: Simulated Sensor Module

Moreover, the scenarios included understanding how telemetry data is sent from the

different edge devices to Azure IoT Hub and how data can be kept reliable and accurate

during this process. Controlling aspects were also investigated in order to find useful methods

and strategies to deal with run time exceptions and connectivity interferences, as well as

descending how the system was capable of coming back from such breaks. Scenarios chosen

should address some real-life problems at a deployment site for IoT, while scalability and

preparedness against integration with the real world is also assured.

3.2 Techniques Applied

These have been achieved through various techniques applied systematically in carrying out

the research. IOT Edge modules were used that are provisioned separately through Azure

portal and PowerShell in order to set the device and module settings. Prominent error

diagnostics were employed to solve runtime errors and spatial connectivity failures; the logs

and diagnostics of IoT edge Azure were useful to solve the problems.

9

Figure 3: Device offline error

Monitoring and analysis also was always active with the help of Azure portal insights

to check runtime performance, as well as feed of telemetry data on the edge device to the

cloud. These techniques helped provide sound assessment of the system operability and

solidity of the foundation for evaluation of the possible shortcomings of implementation.

3.3 Data Collection

Data collection for the IoT Edge implementation analysis involved meticulous gathering from

various sources. Runtime logs captured from the IoT Edge device and its modules showed

comprehensive runtime statuses that gave elaborative error reports needed by the

identification and fixing of several operational issues. Other than the runtime logs, some

telemetry data had been collected from a simulated temperature sensor that would give some

insight into how a module could be made to create the data and send it to the cloud for further

integration. Connectivity diagnostics through network tests and also via PowerShell

commands added quite significantly to the dataset by pointing toward a number of network-

related issues. This multi-faceted approach to data collection made for a very robust

foundation to evaluate the performance of the system in order to find areas of improvement..

10

Figure 4: Activity logs

3.4 Evaluation Methodology

The methodology developed for the evaluation of this project focused on three critical

areas that will provide reliability and effectiveness for the implementation of IoT Edge: First,

runtime success, in terms of the deployed modules, is related to monitoring their operational

status, maintaining consistency in functionality, and making sure edgeAgent, edgeHub, and

SimulatedTemperatureSensor run without any interruptions. The second is through telemetry

accuracy, which was from the integrity of the data sent to IoT Hub. This involved cross-

checking for consistency in data where data was supposed to match the expected output of

the simulated temperature sensor. Last but not least, bug fixing was very instrumental during

the evaluation, especially how effective troubleshooting measures would be instituted for

runtime errors or connectivity issues. Each of these bugs was documented, analyzed, and

resolved systematically in improving overall system performance and reliability.

Individually, each contributed to a robust methodology that would be used in determining the

success of the IoT Edge deployment.

The methodology will be the systematic review to merge experimental operations with

analysis validation. The various tools and techniques adopted from the previous IoT Edge

deployments will further be shortlisted in the research based on the requirement for alignment

with the objectives of the research.

4 Design Specification

11

4.1 System Architecture

IoT Edge Implementation The IoT Edge implementation is based on the Azure IoT Edge

architecture, which is based on the following:

 Azure IoT Hub - Central hub for managing and monitoring IoT devices.

 Edge Device - A device running Windows Server 2019. It is configured to run IoT

Edge modules.

 Modules - Preconfigurated modules are edgeAgent, edgeHub and

SimulatedTemperatureSensor

4.2 Functional Requirements

The functional requirements of the system are centered on the ability to create a stable

runtime environment in which IoT Edge and Docker operate to make it possible to deploy

and run the modules as required.

Figure 5: Docker version

For real-time data exchange and telemetry update between the device and the Azure

IoT hub, the availability of the network has to be fully reliable and dependable. The system

also requires valid logging interface and diagnostic tools to watch the deployed modules in

IoT Edge and provide further clues for solving or easing the potential problems to enhance

the usage of IoT Edge. These requirements enhance the reliability, efficiency, and scalability

of the system in addressing certain project goals.

4.3 Framework and Techniques

This project depends on the Azure IoT Edge runtime for the basic framework because it will

take care of lifecycle management for the deployed modules to gracefully update and switch

to the cloud. Docker will deploy the module environments, which provides a robust and

scalable architecture for running IoT applications. This allows central configuration,

monitoring, and management from the Azure portal, along with system performance and

operational metrics insight. Therefore, this will be the perfect combination to fulfill all needs

that arise in development, deployment, and maintenance with diverse tools and techniques

put together in achieving IoT Edge applications.

4.4 Design Challenges and Resolutions

The design phase, too, presented different challenges that needed to be solved precisely to

make an effective and workable implementation of IoT Edge warranted. First was the proper

setup of DNS settings, which needed to be correctly set up for proper communication to

12

happen seamlessly from the edge device with the Azure IoT Hub. This was resolved

accordingly, based on recommendations from Azure, in configuring the DNS server for stable

network communications. The next concern was that of persistent storage directories, a path

for storage that had to be configured in a manner so as to retain and recover from such

disruption. Other challenges experienced during the deployment and running of modules

were runtime errors. The IoT Edge logs systematically debugged challenges and rearranged

their module settings to operate the device smoothly. Generally, such resolutions have

strengthened both the architecture of the system and its operability..

Figure 6: Analyzing Logs

4.5 System Validation

Specific attention has been given to the reliability of the IoT Edge implementation and its

proper functioning during the presented system validation. Ensuring that Telemetry data sent

by the SimulatedTemperatureSensor module is properly understood by Azure IoT Hub, the

following tests had to be done to check if data acquired by the

SimulatedTemperatureSensor module is the same as that which is going to Azure IoT Hub:.

In particular, special attention was given to modules like edgeAgent and edgeHub in order to

make sure they ran stably and kept the connections during runtime. The efficiency of the

system was also determined to see the effectiveness in design and primary functional

specification. With these steps in validation, we had obtained end-to-end validation of the

system and its ability to perform under practice application environments.

5 Implementation

Implementation dealt with the deploying and verification functionalities of the IoT Edge

Device and integration with Azure cloud services. This includes configurations needed for

the IoT Edge Runtime and deployed modules with actual movement of data across the

pipeline concerning telemetry ingestion, transformation, and storing into an appropriate

repository. Key tenets of the implementation methodology are highlighted below..

13

5.1 Outputs Produced

5.1.1 Simulated Telemetry Data

The SimulatedTemperatureSensor module creates a simulation of an IoT device that would

provide a stream of realistic temperature and humidity readings. The generated temperature

and humidity readings are sent in JSON format at regular intervals to Azure IoT Hub, hence

giving a simulation of real-world telemetry. The data ingested will then be persisted to Azure

Blob Storage for further downstream analytics and visualization to ensure seamless

integration in the collection and storage mechanisms of the data.

5.1.2 Transformed Data

The IoT Hub-incoming telemetry data went through a well-thought-out Logic Apps

workflow, which further enriched the incoming data with metadata, like a timestamp and

device identifier context, so that the data got optimized in shape and form for analysis. Also,

the transformation included some level of validation as part of transformation: ensure

correctness of data and whether data is ready to store or process.

5.1.3 Pipeline Configuration

A fully working, scalable data pipeline ingested, transformed, and stored telemetry data

without a hitch. It is designed to handle high-frequency streams of data and ensure reliability

and adaptability across a wide range of incoming loads. The design uses Azure services for

easy integrations that can be enhanced or extended further in the future to support more IoT

devices or analytical frameworks.

5.2 Tools and Technologies

• Azure IoT Edge Runtime - This is used for managing the edge devices and

deploying the modules such as edgeAgent, edgeHub, and

SimulatedTemperatureSensor.

• Azure IoT Hub - Served as the central communication point for receiving and

managing telemetry data from the IoT Edge device.

• Azure Blob Storage - This is configured to store telemetry data in JSON format for

further processing or visualization.

• Logic Apps - Used for workflows that transform and route telemetry from IoT Hub

to storage or other services.

• Visual Studio Code - For creating the deployment manifests and setting the module

routing rules.

• Docker - Containerized the IoT Edge modules to ensure portability and consistency

across deployments.

• Language - YAML for the deployment configurations; JSON for telemetry data.

5.3 Module Deployment

This is where IoT Edge modules' deployment was crucial in ensuring that the device can

ingest, process, and store telemetry data effectively. It includes the core system modules,

14

such as edgeAgent and edgeHub, besides a custom module, SimulatedTemperatureSensor,

used to generate simulated telemetry data.

5.3.1 Core Module Deployment

These two core modules, edgeAgent and edgeHub, were automatically deployed when the

IoT Edge runtime configuration was performed.

•EDGE Agent

This is in charge of the module lifecycle, while warranting that all modules of your

deployment manifest are running: initiated with the default container image supplied

by Microsoft, mcr.microsoft.com/azureiotedge-agent:1.1.

• EdgeHub

Enables the communication between IoT Edge modules and the Azure IoT Hub. The

default image is mcr.microsoft.com/azureiotedge-hub:1.1. Routing rules were set up

to enable telemetry data to flow across modules to the IoT Hub for further processing.

5.3.2 Custom Module Deployment

A custom module, SimulatedTemperatureSensor, was deployed to simulate telemetry

data. Also, this module generates temperature readings at predefined intervals,

sending them to edgeHub for routing to Azure IoT Hub. The actions performed were

in the following steps:

a) Module Image Acquisition - The container image of the

SimulatedTemperatureSensor module was pulled from the container registry

of Microsoft at mcr.microsoft.com/azureiotedge-simulated-temperature-

sensor:1.0).

b) Deployment Manifest Configuration - A deployment manifest was created,

listing the SimulatedTemperatureSensor module with its routing rules and

environment variables. The configuration ensured that telemetry data from the

sensor module was routed to both cloud endpoints and local storage for

analysis.

c) Deployment Execution - Manifest deployment was targeted at an IoT Edge

device through Azure IoT Hub. IoT Edge Runtime was used to instantiate the

container and interact with other modules.

5.3.3 Challenges and Resolutions

Some of the technical challenges were identified during the implementation phase and

required rigorous troubleshooting and resolutions to have a functional and reliable IoT Edge

deployment. These are discussed below:

 Connectivity Issues

The first challenge involved a connectivity problem between the edge device and the

Azure IoT Hub. The root cause was incorrect DNS configurations within the IoT Edge

runtime, where the device was unable to resolve the endpoints within Azure. Consequently,

no telemetry data could be sent to the IoT Hub. This was diagnosed by using diagnostic logs

and network utilities that indicated proper DNS server entries. Resolution requires the IoT

15

Edge configuration file be modified to include public DNS servers; such as 8.8.8.8 and

8.8.4.4. After doing this and restarting the IoT Edge runtime, we've managed to regain IoT

Hub connectivity.

 Module Status Errors

Testing showed a number of modules were failing to start and be put in action such as the

SimulatedTemperatureSensor and edgeHub. This problem was tracked down to out-of-date or

incompatible container images deployed on the edge device. The images were out of date,

lacking updates. In order to solve this problem, newer versions of the module images were

pulled from the Microsoft container registry, mcr.microsoft.com.

With the new images deployed, the modules were initialized without any hassle and

worked as expected. That then pinpointed the relevance of using updated container images

for properly working IoT Edge modules.

 Persistent Storage Configuration

The diagnostics showed warnings about not being mapped into a persistent file system

which meant data would be lost if the module restarted or failed. This has been fixed by

editing the IoT Edge configuration to define a host machine path for persistent storage.

The new configuration now ensured that the state and telemetry data of the edgeHub

module would survive restarts, making the system more reliable and resilient. This change

also allowed for better management of data for downstream analysis. This implementation

demonstrates the capability to simulate, process, and store IoT data in a structured and

scalable way, serving as a proof-of-concept for future deployments with real IoT devices. The

design is open to further requirements, including advanced analytics and reporting features.

6 Evaluation

This section evaluates the results of the study, presenting key findings with a critical analysis

of their academic and practical implications. Each experiment or case study is detailed,

providing statistical evidence and visual aids to support the research objectives.

6.1 Experiment: IoT Edge Connectivity Validation

6.1.1 Objective

The main objective of this experiment was to test the connectivity between the IoT Edge

device and Azure IoT Hub, which is important to ensure the reliability of the pipeline flow of

data from edge to cloud. Ensuring a consistent and low-latency connection was critical for

real-time data ingestion requirements of the system.

6.1.2 Methodology

Several steps to evaluate connectivity were performed, namely:

1. Diagnostics - The IoT Edge runtime diagnostic tool, iotedge check, is utilized to diagnose

the state of the edge device and its modules, then its connectivity to IoT Hub.

16

2. Simulated Data - This was achieved by deploying the SimulatedTemperatureSensor

module, which generates telemetry data at regular intervals, thus emulating how IoT devices

would behave in the real world.

3. Telemetry Data Flow - Telemetry messages were monitored to successfully arrive in Azure

IoT Hub as well as in the downstream endpoints. Analyzed application logs and diagnostic

metrics as part of the process so that no disruption in connectivity.

6.1.3 Results

The experiment results confirmed the success of the arrangement in connectivity:

A line chart over time was created to show the frequency of successful telemetry

transmissions over a 24-hour period. The graph reflects a very consistent data flow

with minimal disruption once the initial setup is done.

Figure 7: Telemetry transmission

The system achieved a 95% connectivity success rate, with an average latency of

43ms for data transmission. The latency remained well within acceptable thresholds

(<50ms) required for real-time applications.

6.1.4 Key Findings

Connectivity validation showed very good reliability of communication between the

IoT Edge device and Azure IoT Hub, with low latency. The edge device, after initial

issues in DNS configuration, stayed connected continuously with a success rate of

95%, while the latency measured at an average of around 43ms, hence promising a

stable and efficient data transmission suitable for real-time telemetry applications.

These results pinpoint the need for strong network configurations and diagnostic

testing in building a reliable foundation for IoT deployments.

The results ensure that the connectivity between the IoT Edge device and IoT Hub is

sound and capable of supporting real-time data ingestion; hence, a very reliable

foundation for further experiments and applications. This validation underlines the

17

importance of thorough diagnostic testing and proper network configurations within

an IoT deployment.

6.2 Experiment: Module Performance and Data Integrity

6.2.1 Objective

The main aim of the experiment is to validate the runtime performance of the deployed IoT

Edge modules and ensure the integrity of the telemetry data transmitted to IoT Hub by

analyzing the module uptimes, efficiency in routing, and data consistency against expected

benchmarks.

6.2.2 Methodology

Monitoring performed constantly the runtime status, and activity of the modules edgeHub

and SimulatedTemperatureSensor for performance evaluation. It gathered metrics on

Message Delivery Latency, Total data used, and Uptime percentage over message-delivery

latency, total data consumption, and uptime percentage respectively. Also, telemetry data

from Sensor module Temperature and Humidity in contrast with pre-defined expected ranges

would result in the validation of the data generated.

6.2.3 Results

The analysis revealed promising results:

6.2.3.1 Performance Metrics:

According to the graph below, the routing delivery averages around 1.09 seconds of latency.

A few peak values reached higher measures but fell within the ideal latency requirement for

IoT deployment.

Total device data usage during the experiment is equal to 156.1 KB, which testifies to good

efficiency of data transfer with no substantial overhead.

18

6.2.3.2 Data Integrity:

o Statistical validation of the telemetry data showed more than 99% data

transmitted fell into expected patterns and thresholds while less than 1% gave

errors.

o No corruption or loss of data was observed during transmission, which asserts

the reliability of the system.

6.2.4 Key Findings

The modules ran without glitches after updates and reconfigurations, ensuring consistent

uptime. The latency of routing delivery peaked occasionally but remained at a sufficiently

low level for all real-time data ingestion and analytics use cases. The accuracy and integrity

of the telemetry data further underline the robustness in both design and implementation of

the system.

6.3 Discussion

6.3.1 Critical Review

Once the initial configuration issues had been overcome, this IoT Edge pipeline proved to be

very robust and effective, integrating numerous Azure services in a powerful way, from IoT

Hub to storage and monitoring tools-all for the smooth flow of telemetry data from edge

devices up to cloud processing. It proves strength in the case of system real-time data

ingestion and processing, attested by an average routing delivery latency of 1.09 seconds.

Besides, the fact that telemetry data was more than 99% accurate spoke to the integrity of the

system.

Initial obstacles, especially regarding DNS configuration and persistence in storage

directories, underlined the deficit of pre-deployment testing. This delayed the start of

implementation due to manual problem-solving, especially in the very early phase of work.

Moreover, scalability tests had some limitations because of the constrained hardware

resources, which barred a comprehensive assessment of how the system was able to perform

when handling increased amounts of data.

6.3.2 Suggestions for Improvement

In the implementation phase, several challenges pointed toward some areas of improvement

related to the configuration and scalability of the system. First, automation of pre-deployment

validation checks reduces manual intervention and smoothes the deployment process.

Examples include DNS configurations and settings of the persistent storage path through

custom scripts or Azure resource templates to minimize setup errors and ensure consistency.

Besides that, comprehensive scalability testing should be included. This involves the

simulation with increasing telemetry frequencies and larger data payloads to assess the

scalability aspects of the pipeline, with respect primarily to metrics such as delivery latencies

and data accuracy.

It is recommended to implement high-level monitoring mechanisms using tools like Azure

Monitor, which would provide early warnings and real-time diagnostics for quick detection

and resolution of connectivity or performance issues for always-on operations. These

measures help enhance not just the robustness of the system but also provide valuable

insights into future deployments. In an aggregate manner, these enhancements address critical

19

bottlenecks and contribute to scalability and reliability in IoT solutions, enabling the system

to be better equipped in handling complex, large-scale applications.

6.3.3 Context in Previous Research

The results are aligned with the literature regarding the needs for a strong configuration on

the edge-to-cloud IoT pipelines. Similarly, connectivity and storage remain two of the most

mentioned variables reported in literature that affect system reliability. In the process, results

have confirmed hypotheses on efficiency regarding the use of Azure IoT solutions on real-

time telemetry scenarios by adding significant practical insights to this field.

6.3.4 Practical Implications

This research provides a validated framework for deploying Azure IoT Edge solutions

primarily for small-scale projects requiring real-time telemetry. Issues during deployments,

such as connectivity problems, module errors, and storage configuration, have been discussed

and resolved to make the deployment process even more robust. Resolutions like updating

DNS configuration and making use of persistent storage paths give some practical guidance

for future IoT projects. These insights go a long way in smoothing out the setup process and

acting as guidelines for system stability and reliability in similar implementations.

6.3.5 Academic Implications

From an academic point of view, this research contributes to the ever-growing literature on

IoT system deployments with a comprehensive look at challenges and solutions. The study

emphasizes the importance of pre-deployment testing and validation, highlighting how these

practices can mitigate potential issues and ensure seamless operations. It also emphasizes the

need for resolving real-world connectivity and integration issues, which may be taken as a

reference for further exploration or enhancements of IoT deployment frameworks in

academic and professional fields.

7 Conclusion and Future Work
This research work will, therefore, focus on the implementation and evaluation of Azure IoT

Edge to facilitate the efficient processing and analysis of telemetry data. The deployment of

Azure IoT Edge, simulation of telemetry data, and performing the ingestion, storage, and

analytics through Azure services addressed the proposed research question: How to achieve

easy real-time handling of telemetry data with an IoT-Edge-based architecture for overall

efficiency improvement in operations? Findings were made on the establishment of necessary

connectivity, proper routing of captured data, and proof that Azure IoT does bear great

potential in solving major pain points regarding the processing of telemetry information.

These findings also establish the effectiveness of the proposed solution in achieving its

objectives while providing actional insights for IoT deployments across similar contexts.

Despite such success, however, certain limitations have also been observed. Challenges

like configuration at the beginning, compatibility of versions between modules, or support for

persistent storage are perspectives into how additional refinement could scale up more

robustly.

Future work will leverage this foundation and focus on integrating, at the edge, advanced

machine learning models that offer predictive analytics to expand the capabilities of the

platform. Moreover, a more in-depth analysis of system performance under different network

conditions could drive further insight into optimization strategies. It holds a

commercialization potential while creating a customizable IoT Edge framework targeting

industry segments in both scalable and real-time analytics-as-a-service manner. In this way,

20

such a frame will increase the outreach of this research and new avenues in various IoT

applications.

References

Babar, M., Jan, M. A., He, X., Tariq, M. U., Mastorakis, S., & Alturki, R. (2022). An
Optimized IoT-enabled Big Data Analytics Architecture for Edge-Cloud Computing. IEEE
Internet of Things Journal, 1–1. https://doi.org/10.1109/jiot.2022.3157552

Bajaj, K., Sharma, B., & Singh, R. (2021). Implementation analysis of IoT-based offloading
frameworks on cloud/edge computing for sensor generated big data. Complex & Intelligent
Systems. https://doi.org/10.1007/s40747-021-00434-6

Koo, J. (2021). Internet of Things Security Case Studies and Internet of Things Core Service
Comparions. CSUSB ScholarWorks. https://scholarworks.lib.csusb.edu/etd/1321/

Liu, Y., Akram Hassan, K., Karlsson, M., Pang, Z., & Gong, S. (2019). A Data-Centric
Internet of Things Framework Based on Azure Cloud. IEEE Access, 7, 53839–53858.
https://doi.org/10.1109/access.2019.2913224

Lv, Z., Qiao, L., Verma, S., & Kavita. (2021). AI-enabled IoT-Edge Data Analytics for
Connected Living. ACM Transactions on Internet Technology, 21(4), 1–20.
https://doi.org/10.1145/3421510

Mohon, A., & Grolinger, K. (2020). Edge-Cloud Computing for Internet of Things Data
Analytics: Embedding Intelligence in the Edge With Deep Learning | IEEE Journals &
Magazine | IEEE Xplore. Ieeexplore.ieee.org.
https://ieeexplore.ieee.org/abstract/document/9139356/

Ots, K. (2021). Azure Security Handbook. In Apress eBooks. https://doi.org/10.1007/978-1-
4842-7292-3

Ramona, M. (2024). Azure Arc Systems Management. Google Books.
https://books.google.com/books?hl=en&lr=&id=4ekXEQAAQBAJ&oi=fnd&pg=PR5&dq=a
s+Azure+Stack+HCI

Yueli, W. (2020). Cloud-Edge Orchestration for the Internet of Things: Architecture and AI-
Powered Data Processing | IEEE Journals & Magazine | IEEE Xplore. Ieeexplore.ieee.org.
https://ieeexplore.ieee.org/abstract/document/9162084/

Zhang, J. (2024). Evaluation of Application Migration from Cloud to On-Premise. DIVA;
KTH Royal Institute of Technology. https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1896238

https://www.diva-portal.org/smash/record.jsf?pid=diva2:1896238
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1896238

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Problem and Questions
	1.4 Research Objectives
	1.5 Scope and Limitations
	1.6 Structure of the Report

	2 Related Work
	2.1 Overview
	2.2 Existing Solutions and Technologies
	2.3 Azure IoT Hub and Security Center
	2.4 Strengths and Weaknesses of Current Solutions
	2.5 Research Gaps

	3 Research Methodology
	3.1 Scenario Design
	3.2 Techniques Applied
	3.3 Data Collection
	3.4 Evaluation Methodology

	4 Design Specification
	4.1 System Architecture
	4.2 Functional Requirements
	4.3 Framework and Techniques
	4.4 Design Challenges and Resolutions
	4.5 System Validation

	5 Implementation
	5.1 Outputs Produced
	5.1.1 Simulated Telemetry Data
	5.1.2 Transformed Data
	5.1.3 Pipeline Configuration

	5.2 Tools and Technologies
	5.3 Module Deployment
	5.3.1 Core Module Deployment
	5.3.2 Custom Module Deployment
	5.3.3 Challenges and Resolutions

	6 Evaluation
	6.1 Experiment: IoT Edge Connectivity Validation
	6.1.1 Objective
	6.1.2 Methodology
	6.1.3 Results
	6.1.4 Key Findings

	6.2 Experiment: Module Performance and Data Integrity
	6.2.1 Objective
	6.2.2 Methodology
	6.2.3 Results
	6.2.3.1 Performance Metrics:
	6.2.3.2 Data Integrity:

	6.2.4 Key Findings

	6.3 Discussion
	6.3.1 Critical Review
	6.3.2 Suggestions for Improvement
	6.3.3 Context in Previous Research
	6.3.4 Practical Implications
	6.3.5 Academic Implications

	7 Conclusion and Future Work
	References

