

Real-Time Threat Detection in Open5GS
Networks Using Amazon GuardDuty

MSc Research Project

MSc. CyberSecurity

Ammad Ud Din Bajwa
Student ID: x23157526

School of Computing
National College of Ireland

Supervisor: Rohit Verma

National College of Ireland
Project Submission Sheet School

of Computing

Student Name: Ammad Ud Din Bajwa

Student ID: X23157526

Programme: MSc. CyberSecurity

Year: 2024

Module: MSc Research Project

Supervisor: Rohit Verma

Submission Due Date: 12/12/2024

Project Title: Real-Time Threat Detection inOpen5GS

Word Count: 8,027

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Ammad

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Y

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).

Y

You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy

y

on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Real-Time Threat Detection in Open5GS Networks
Using Amazon GuardDuty

Ammad-Ud-Din Bajwa

X23157526

Abstract

In today’s age of fifth-generation (5G) networks, which have revolutionized the
telecommunications landscape, offered amazing speeds, ultra-low latency, and huge
connectivity to support a number of applications have also been a great source of the
integration of open-source 5G core implementations like Open5GS including the cloud
infrastructures comes with no shock. This research study dives deep into the effectiveness of
Amazon GuardDuty which is a cloud-native threat detection service which is used in
identifying and responding to real-time security threats within an Open5GS-based private 5G
network deployed on Amazon Web Services (AWS) including the zero-day threats. In this
study a comprehensive experimental setup was created which simulates a private 5G network
environment using Open5GS tool for core network functions and srsRAN for radio access
network (RAN) and user equipment (UE) simulation. To use all these together, this network
was hosted inside a secured AWS Virtual Private Cloud (VPC) where all the subnets, security
groups, and routing were configured to emulate a realistic deployment. Amazon GuardDuty
was integrated without any of the custom configurations to use its default abilities like the
monitoring of the VPC Flow Logs, DNS logs, and AWS CloudTrail events for threat
detection. This study also simulates various network threats including port scans, SSH
brute-force attempts, denial-of-service (DoS) attacks, DNS exfiltration, and unauthorized API
calls. All of these to evaluate GuardDuty's detection performance and the evaluation metrics
which are the focus of this study and finds the detection accuracy, response time, false
positive rate, time-to-detection consistency, and performance overhead on each and all
network operations. The findings of the GuardDuty showed that the integration of GuardDuty
introduced in itself a minimal performance overhead along with almost no impact on CPU
utilization, network latency, and throughput. This ensured that the 5G network's efficiency
did not get affected by the GuardDuty’s resource needs. This research study concludes that
Amazon GuardDuty is very effective in both finding and responding to many real-time
security threats within an Open5GS-based private 5G network on AWS and this study also
shows that GuardDuty’s ability to work with machine learning and anomaly detection
techniques makes it good for monitoring of network activities as well as enhancing the
security of private 5G deployments.

Keywords: AWS GuardDuty, Open5GS, Real-Time Threat Detection, Private 5G Networks,
Network Security, Cloud-Native Security Services, srsRAN, Open-Source 5G Core Network,
Cybersecurity

1. Introduction
The rapid evolution of cellular networks has been an era-defining tech in this tech heavy
environment and that in this era of fifth-generation (5G) technology many promising
unprecedented speeds, ultra-low latency, and massive connectivity of various networks make
is so that it is easier to support a combination of applications from autonomous vehicles to
remote surgery. With such needs popping up in the enterprise environment, and as
organizations adopt private 5G networks to leverage these powers for their own custom
enterprise solutions, it is obvious that the security of these networks becomes very important.
Private 5G networks offer greater control and customization but they also fall short of
introducing a complex landscape of potential security issues due to their integration of
various cloud services and the Internet of Things (IoT). Open5GS is a tool which is an
open-source implementation of 5G core network functions and as open source research/tools
go, it has gained significant attraction for its flexibility and cost-effectiveness in the
deployment of the private 5G networks. Regarding this, the open-source nature of Open5GS
may very much expose these networks to a lot of security challenges which are not
completely foolproof and may not be addressed by traditional security mechanisms. The
integration of Open5GS with cloud platforms like Amazon Web Services (AWS) further
complicates things as the security posture is greatly affected with their joint junction which
makes it necessary to deal with the advanced threat detection and response strategies. To
counter that, we use the Amazon GuardDuty which is a threat detection service that can be
setup such that it continuously monitors for malicious activity and unauthorized behavior to
protect AWS accounts. And if we can also leverage machine learning, anomaly detection, and
integrated threat intelligence, we can enhance the GuardDuty to identify and prioritize
potential threats related to the zero-day threat and much more. While GuardDuty is
extensively used for securing AWS resources, its actual potential can be realized in the
context of private 5G networks, especially those using Open5GS and which have remained
underexplored. This research study tries to dive deep into the various capabilities of the AWS
GuardDuty and also seeks to bridge this gap by evaluating the potential of Amazon
GuardDuty in detecting real-time security threats within Open5GS-based private 5G
networks. This is done by simulating a complete 5G network environment, including core
and radio access network (RAN) components and in also generating various network threats
and attacks with which we aim to gauge the GuardDuty's capabilities and also check its
timings in identifying and responding to these threats. This study also involves integrating
additional open-source tools like srsRAN to simulate user equipment (UE) interactions and
also to generate various realistic network traffic patterns.

In the previous studies, they have focused on performance benchmarking and feature analysis
of open-source 5G core networks (Mukute et al., 2024; Lando et al., 2023) and also the
deployment challenges associated with open-source 5G infrastructures (Martin et al., 2023).
But there has always been a need for research to examine the security aspects of such
networks especially in the real-time threat detection context where they are also using the
cloud-native security services. This research study shows and dives deep into the various
insights which provide the practical application of Amazon GuardDuty and its security for
the Open5GS networks. It also tries to identify the various areas for improvement in threat
detection. In this research study’s later chapter, the methodology is to set up an AWS
environment with necessary permission policies and services to configure a small MVP
simulated 5G network using Open5GS and srsRAN and not only that but also the
implementation of the various network attack scenarios to test and check the detection
capabilities of GuardDuty. Various metrics are used including the metrics such as detection
accuracy, response time, detection rate, false positives, and time-to-detection.

1.1 Research Question
How effectively can Amazon GuardDuty detect and respond to real-time security threats
within an Open5GS-based private 5G network deployed on AWS, through analysis of network
traffic, DNS logs, and cloud activity logs?

To address this question in this study, this research will focus on the following sub-questions:

1. Can the GuardDuty accurately identify specific security threats such as port scans,
denial-of-service (DoS) attacks, data exfiltration attempts, malicious domain
communications, phishing attacks, and unauthorized API activities within this
simulated private 5G network environment?

2. What is the response time, i.e. various metrics, of GuardDuty in detecting and alerting
about these threats. How does it impact the overall security of the network?

3. Does the implementation of GuardDuty introduce any major performance overhead
issues on the network operations, and can they be avoided?

By exploring these questions and the solution to these answers, this research study will aim to
provide a comprehensive evaluation of Amazon GuardDuty's performance in securing private
5G networks built on open-source platforms like Open5GS alongside the AWS ecosystem.
Such findings of this research study will have practical impact for various enterprises and
their networks considering the deployment of private 5G networks which are relying on
cloud-native security solutions to protect their infrastructure.

2. Related Work
In today’s age, the combination of fifth-generation (5G) networks with cloud computing
platforms has introduced a new world of possibilities in network deployment and
management. This deployment has been ensuring flexibility, scalability, and
cost-effectiveness but this new seamless integration also presents many security challenges
and issues which then arise from such junctions and it also gives rise to the need for the
advanced threat detection and eventual mitigation strategies. This section of this research
study reviews all the major existing literature on open-source 5G core networks and on their
deployment challenges, performance benchmarking, and security considerations. This is
especially true for the integration of the cloud-native security services like Amazon
GuardDuty. Open-source implementations of 5G core networks like Open5GS,
OpenAirInterface (OAI), and free5GC are very famous and have gained so much attraction
because of their accessibility and adaptability in the academic research environment for
development purposes. Mukute et al. (2024) conducted a complex and complete performance
benchmarking & feature analysis of these popular open-source 5G core networks. Their study
evaluated the control plane performance which highlights the trade-offs between latency,
throughput, and resource utilization of the open source 5G networks but their findings also
showed that while open-source cores are better at testing and small-scale deployments, their
performance optimization drops a lot and that this is a critical area for their large-scale
commercial applications.

Similarly, Lando et al. (2023) conducted their research and evaluated the performance of
open-source software impacts of the 5G network core but their work focused on finding the

readiness and alertness of these platforms for production environments. This was done by
examining various metrics such as processing delay and packet loss and as such their study
showed that the need for further enhancements in the stability and efficiency of open-source
5G cores was needed to meet these strict requirements of 5G services. Deploying a stable 5G
standalone (SA) testbed comes with its several challenges. This is especially true when
concerning UE integration and network slicing as this has been the study done by
Mamushiane et al. (2023), who addressed these issues by using the srsRAN and Open5GS to
make a 5G SA testbed. Their research provided understanding into the troubleshooting
techniques for UE integration and the network slicing which is very important for the
allocation of the various network resources efficiently distributed in between the different
services and applications. In his study, Martin et al. (2023) presented Open-VERSO which is
a vision for 5G experimentation infrastructures but also presented the various hurdles and
challenges which came with deploying open-source 5G networks, especially the famous
interoperability issues, performance limitations, and security vulnerabilities which are the
core issues of deployment of the traditional open source 5G implementation. Their study
focused on the importance of collaborative efforts in the research community such that it may
overcome these various obstacles and issues which are related to the advance development of
open 5G infrastructures.

Bonati et al. (2024) introduces 5G-CT which is an automated deployment and over-the-air
testing framework for various important end-to-end open radio access networks (O-RAN) in
the development of the open source 5G networks. Their study also showed a unique approach
which streamlined the deployment process and also made sure the safety of the facilitated
testing of O-RAN components. This eventually resulted in contributing to the acceleration of
5G network development and deployment. It is known that the open-source nature of
platforms like Open5GS and srsRAN have various advantages for innovation and
customization but they also expose various networks they are working in to potential security
risks as shown in the study done by Linh et al. (2023) who also analyzed open-source 5G
core networks for TLS vulnerabilities and 3GPP compliance. In their study it is revealed that
there are several security gaps like improper implementation of encryption protocols and
deviations from standardized security procedures are actions which have been explicitly
outlined by the 3GPP. According to their study, such vulnerabilities could be used by
malicious users to manipulate the network integrity and confidentiality, and security.

Chepkoech et al. (2023) showed in his study the various uses of open-source software in
enabling OpenRAN-compliant 5G standalone campus networks and the various security
considerations which happened in deploying such networks giving rise to the need for strong
hand security mechanisms to protect against threats which comes during the open-source
deployments. As 5G networks have been using cloud infrastructures more and more,
integrating cloud-native security services becomes even more important. In that regard,
Amazon Web Services (AWS) offers several tools and services which provide enhanced
security posture for all of the AWS services including Amazon GuardDuty for threat
detection as discussed in the study by the Sharma and Saxena (2020), who also showed in
their study what these security best practices in AWS are and how they outline various
methods for securing cloud resources against various network attacks and threats. In their
study they highlighted the importance of continuous monitoring and the use of automated
threat detection tools to identify and reduce risks caused. Routavaara (2020), in one of their
studies, examined security monitoring in AWS public cloud environments and also in their
study showed the challenges of maintaining visibility and control over dynamic cloud
resources for which they also recommended the completion of the complex monitoring
solutions i.e. solutions which could use the machine learning and anomaly detection
techniques to better improve the network security.

Tykholaz et al. (2024) in their recent study explored incident response with AWS detective
controls where they showed that Amazon GuardDuty and AWS Security Hub could work in
union to improve the various abilities of these tools in the detection of the suspicious
malicious activities and whether or not such activities could be using rapid response to
security events. In this study they showed the integration of such security and behavioral
services in such a way that they enable these organizations to maintain a strong security
posture in the cloud. As is commonly known, the integration of open-source 5G cores with
cloud security services always come with their own issues and present various opportunities
for improving the network security through advanced threat detection using various ML and
behavioral techniques. But for that reason there is a lack of research specifically addressing
the potential of cloud-native security tools in the world of 5G networks and this has caused
the gap to be particularly obvious in the application of Amazon GuardDuty to detect threats
within Open5GS-based networks deployed on AWS networks and then to combat the various
threats therein. In that regard, Bhatt (2024) , in one of their recent studies, discussed security
and compliance for running important enterprise level systems on AWS. They particularly
mentioned the importance of combining the cloud security strategies with specific application
requirements such that the SAP systems could be integrated and its principles are applicable
to 5G network deployments.

Tan (2023) highlighted the importance of both reducing and increasing the security of the
insider threats in AWS from a zero-trust perspective which they used in their own study when
applying zero-trust principles to 5G networks which eventually enhanced their security by
ensuring that all network components be they on-premises or in the cloud are continuously
authenticated and authorized and thus safe from the various network level threats. In the
current tech environment the evaluation of the performance impact of integrating security
solutions like Amazon GuardDuty with 5G networks has been a topic of extreme importance
and thus it is critical to analyze and maintain and ensure that security postures of the
enterprise networks do not lower or adversely affect the network performance as discussed by
Villa et al. (2024) in his recent paper, where they also introduced X5G which is an open,
programmable, multi-vendor, end-to-end private 5G O-RAN testbed. In this research study
they have primarily focused on network performance and programmability which have
provided a foundation for using the additional services i.e. security monitoring tools which
may affect all the network operations simultaneously.

3. Methodology
In this research study’s chapter we employ a complete experimental approach to evaluate the
potential of Amazon GuardDuty in finding the real-time security threats inside the Open
5GS-based private 5G network deployed on Amazon Web Services (AWS). This
methodology consists of design and implementation of a simulated 5G network environment,
the integration of security monitoring tools, the simulation of various network threats, and the
eval of detection techniques using specific eval metrics.

Figure 1: Methodology overview illustrating the research steps from environment setup to
performance evaluation.

3.1 Environment Setup
To deploy the required resources which will be used in this study further in, an AWS account
with appropriate IAM permissions is very important to be set up firsthand. The following
AWS Identity and Access Management (IAM) policies have been attached to the subject user
account to guarantee enough privileges such that the various experiments go without any
issues:

● AmazonEC2FullAccess

● AmazonVPCFullAccess

● AmazonGuardDutyFullAccess

● CloudWatchLogsFullAccess

These policies allow for the creation and management of EC2 instances, VPCs, GuardDuty
configurations, and CloudWatch logs. In this study a dedicated VPC, named MVP-5G-VPC
was created to simulate the private 5G network. And this VPC was configured with an IPv4
CIDR block of 10.0.0.0/16. Two subnets were also created within the VPC to represent
respective core and radio access network segments:

● Core Subnet (MVP-5G-Core-Subnet): Assigned CIDR block 10.0.1.0/24.

● RAN Subnet (MVP-5G-RAN-Subnet): Assigned CIDR block 10.0.2.0/24.

An Internet Gateway (MVP-5G-IGW) was also created and attached to the VPC to enable
internet connectivity for the respective EC2 instances but they both shared the same one in
this research study. Route tables were also configured to direct incoming and outgoing traffic
appropriately:

● Core Route Table (MVP-5G-Core-RT) was associated with the Core Subnet and
configured with a route to the Internet Gateway for destination 0.0.0.0/0.

● RAN Route Table is, similarly, configured for the RAN Subnet for required external
connectivity.

An EC2 instance named MVP-5G-Core-Instance was also launched in the Core Subnet with
the following:

● AMI: Amazon Linux 2

● Instance Type: t2.micro (upgraded to t2.medium for Open5GS deployment)

● Security Groups: Allowed inbound SSH (port 22) and HTTP (port 80) traffic.

An EC2 instance named MVP-5G-RAN-Instance was launched in the RAN Subnet with the
following specifications:

● AMI: Ubuntu Server 20.04 LTS (to support srsRAN requirements)

● Instance Type: t2.micro (upgraded to t2.medium for Open5GS deployment)

● Security Groups: Allowed inbound SSH (port 22), SCTP (port 38412), and UDP
(ports 2152 and 8805) from the Core Subnet.

3.2 Network Security Groups
To ensure secure communication between the Core and RAN instances while reducing the
internet exposure, we configured the security groups such that the inbound access was
restricted to essential ports, and internal communication between subnets was also enabled.
Moreover the specific protocols required for 5G communication i.e. SCTP was configured to
simulate a realistic 5G network environment such that the Open5GS was respectively
installed on the Core Instance, and srsRAN was deployed on the RAN Instance. The
Open5GS source code was cloned from GitHub, built, and installed. MongoDB was started
and configured to run at boot, and a test subscriber was also added to the Open5GS database
to simulate a User Equipment (UE). Once these preparations were done the Open5GS core
network services were started.

On the RAN instance because of the resource requirements the system was updated such that
necessary dependencies were installed and the srsRAN software was cloned, built, and
installed. The gnb.conf file was also edited to point to the Core Instance's private IP address.
Finally, the UE simulator was started on the RAN Instance to make a connection with the
core network which ended up completing the setup of the simulated 5G environment.

3.3 Threat Simulation
To find out the detection ability of Amazon GuardDuty a complete series of network threats
were simulated between the RAN Instance and the Core Instance and in these simulations
stealth SYN scans using nmap were made to identify open ports on the Core Instance,
repeated SSH login attempts were made to mimic unauthorized access, and simple DoS
attacks were made to involve continuous HTTP requests. Additionally, DNS queries were
also directed to non-existent or malicious domains to simulate data exfiltration attempts
which made the attacking RAN instance have a bad repute which would further test the
system’s abilities and then attempts were made to access AWS metadata or unauthorized API
endpoints from the instances, and communication with known malicious IP addresses or

domains was also simulated.

To help the detection process, various VPC Flow Logs and Query Logs were enabled to
capture network traffic and DNS queries. This ensured that the captured data was also being
analysed by GuardDuty such that the Amazon GuardDuty was configured respectively to
monitor the AWS environment and detect the simulated threats. This involved enabling
GuardDuty via the AWS Management Console, navigating to the GuardDuty console,
selecting "Enable GuardDuty," and configuring it to monitor all available data sources,
including VPC Flow Logs, DNS logs, and CloudTrail events. After that to evaluate
GuardDuty's out-of-the-box capabilities, the default settings were used i.e. no custom threat
intelligence feeds or detection rules were added so that the native strength could be monitored
unhindered.

Using all of the above methods and by providing network traffic information between the
instances, capturing DNS queries made by the instances, and recording AWS API activity, a
complete dataset was generated to assess GuardDuty's effectiveness in detecting and alerting
on the simulated threats.

3.4 Data Collection and Analysis
To evaluate the various performances of Amazon GuardDuty a complete data collection and
analysis framework was made such that the data was gathered from multiple sources i.e.
GuardDuty findings, CloudWatch logs, and system logs on the respective Core and RAN
instances. GuardDuty findings provided important insights that the detected threats were also
monitored and used during and after the threat simulations where the key information
extracted from these subject findings included the classification of various threat (e.g.,
Recon:PortScan, UnauthorizedAccess:SSHBruteForce) for which the assigned severity level
(Low to High), the detection time, the involved instances, and recommended security actions
to enrich the analysis were also made. To better analyse the AWS CloudWatch was used to
sum up all the various logs from every source, including EC2 instances, Open5GS and
srsRAN services, and VPC Flow Logs because these subject logs provided valuable context
and insights into network traffic patterns.

This collected data had to go through a complete and thorough analysis process and for that
the Amazon Athena was used to query logs which were stored in the respective instances
which enabled effective data retrieval and efficient exploration. Moreover the custom Python
scripts were developed to parse and analyze logs for specific eval metrics such that the
performance of Amazon GuardDuty was evaluated using a combination of these eval metrics.
The accuracy of threat detection was measured by calculating the proportion of simulated
threats such that it was correctly identified by GuardDuty. The timeliness of detection was
assessed by measuring the elapsed time between the initiation of a threat and its detection.
The precision of the system was evaluated by analyzing the number of benign activities
incorrectly flagged as threats and then finally to assess consistency the distribution of
detection times across different threat types was examined such that the impact of GuardDuty
on network performance, including latency and resource utilization, was also calculated.

4. Design Specifications
In this research study we will explore the design which creates the simulated private 5G
network using Open5GS and srsRAN within the AWS environment and we will do this by
reviewing the primary objective which is to evaluate Amazon GuardDuty's ability in
detecting real-time security threats. This section also provides detailed information of the
network architecture, components, configurations, and the deployment of such security and

monitoring tools.

4.1 Network Architecture
In this study this network architecture emulates a virtual standard private 5G network. This
consists of a core network, a radio access network (RAN), and user equipment (UE). This
setup, which consists of these respective resources, is hosted within the isolated AWS Virtual
Private Cloud (VPC) environment. The VPC is named MVP-5G-VPC and it acts as the
primary network environment with a CIDR block of 10.0.0.0/16. This VPC consists of two
more additional subnets which are defined as the Core Subnet (MVP-5G-Core-Subnet) with a
CIDR of 10.0.1.0/24 and the RAN Subnet (MVP-5G-RAN-Subnet) with a CIDR of
10.0.2.0/24.

To provide the internet access for the above two EC2 instances within the VPC an Internet
Gateway (MVP-5G-IGW) is made such that the Core Route Table (MVP-5G-Core-RT) is
used for routing internet traffic through the Internet Gateway and similarly the RAN Route
Table is made to provide internet access for the RAN instance. These two also use their own
subject security groups’ configurations, CoreInstanceSG and RANInstanceSG, which are
there and made to ensure traffic flow to the Core Instance and RAN Instance. These security
measures provide better protection from unauthorized access and various potential threats.

4.1.1 EC2 Instances Specifications

Following two EC2 instances are used in this network simulation:

Parameter Open5GS-Core srsRAN-Node

AMI Ubuntu Server 20.04 LTS Ubuntu Server 20.04 LTS

Instance Type t2.medium t2.medium

Subnet MVP-5G-Core-Subnet MVP-5G-RAN-Subnet

Security Group CoreInstanceSG RANInstanceSG

Key Components Open5GS, MongoDB srsRAN gNB and UE

Storage 20 GiB gp2 20 iB gp2

4.1.2 Security Group Configurations

Security groups are configured to control inbound and outbound traffic, ensuring that only
necessary communication is allowed. Following are inbound rules whereas the outbound
rules are set to default:

Protocol Port Range Source Purpose

SSH 22 Admin IPs Secure SSH access

SCTP 38412 10.0.2.0/24 srsRAN communication

UDP 2152, 8805 10.0.2.0/24 GTP-U and other protocols

Following is the inbound rule for the RANInstanceSG:

Protocol Port Range Source Purpose

SSH 22 Admin IPs Secure SSH access

4.1.3 Open5GS Core Network Configuration

Open5GS is a powerful open source platform which provides the essential core network
functions used inside a 5G standalone network and then to establish a 5G network various
network functions, including the AMF (Access and Mobility Management Function), SMF
(Session Management Function), UPF (User Plane Function), AUSF (Authentication Server
Function), UDM (Unified Data Management), NRF (Network Repository Function), NSSF
(Network Slice Selection Function), PCF (Policy Control Function), and SCP (Service
Communication Proxy), are deployed.

Figure 2: Overview of the Core and Radio Access Network (RAN) instances used in the
simulation.

To configure these functions, specific parameters must be set. These parameters include the
PLMN (Public Land Mobile Network) ID, MCC (Mobile Country Code), MNC (Mobile
Network Code), TAC (Tracking Area Code), S-NSSAI (Single Network Slice Selection
Assistance Information), SST (Slice/Service Type), SD (Slice Differentiator), and APN
(Access Point Name). By using these configurations of these parameters, a strong and
efficient 5G network can be made.

4.1.4 Amazon GuardDuty Configuration

To configure the GuardDuty which actively monitors the AWS environment for potential
threats it is important to ensure complete coverage for which the various data sources are
enabled to also provide valuable insights. VPC Flow Logs are used to check and test the
network traffic within the VPC, while DNS Logs capture DNS queries Query Logs and the
AWS CloudTrail Logs track API calls and activities, which can provide a detailed audit trail.
To proactively and preemptively identify threats the AWS GuardDuty uses a complex threat
detection feature for Anomaly Detection which is later powered by machine learning, to

analyze various patterns to see the unusual behaviors that may represent the malicious
activity.

This monitoring of various resources of the respective instances is used across all AWS
regions and accounts associated with the VPC which ensures that no corner of the subject
environment is unprotected.

Feature Configuration

VPC Flow Logs Enabled for MVP-5G-VPC

DNS Logs Query Logs enabled

CloudTrail Logs CloudTrail management events monitored

Findings Export Findings exported to CloudWatch Logs and S3

4.1.5 Threat Simulation Design

A series of threat simulations were designed and executed and one of these is the scenario
which involved a stealth SYN scan using nmap on the Core Instance which tries to mimic a
reconnaissance phase in the network communication handshake. GuardDuty had generated a
"Recon:Portscan" finding in response to this activity. The second scenario simulated an SSH
brute-force attack by automating repeated login attempts with incorrect credentials. In this
case the GuardDuty generated an "UnauthorizedAccess: SSHBruteForce" finding.

Figure 3: Execution of a stealth SYN scan on the Core Instance using Nmap.

For the denial-of-service (DoS) attacks, the Core Instance was flooded with continuous
HTTP requests using curl and this may not trigger the GuardDuty to explicitly identify but it
identifies a specific DoS attack and it did so by expecting to detect anomalous// traffic
patterns which resembles such an attack. The fourth scenario focused on DNS exfiltration,
where DNS queries were directed to non-existent or suspicious domains using the dig tool
and in response the GuardDuty generated a "Backdoor:DNS" finding to signal this potential
threat. The final scenario simulated unauthorized API calls by attempting to access AWS
metadata service endpoints from the instances.

Figure 4: GuardDuty's identification of the Nmap SYN scan.

GuardDuty was anticipated to generate an "UnauthorizedAccess:EC2/Metadata" finding to
indicate this unauthorized activity. Each threat scenario was simulated independently to
isolate the detection capabilities of GuardDuty. To better analyze these logs were collected
during each simulation and in each simulation it was repeated multiple times to ensure better
consistency.

4.2 Monitoring and Logging Configuration
A better monitoring and logging architecture was made to ensure better performance and as
such the CloudWatch was used to monitor various metrics such as CPU utilization, network
traffic, and disk read/write operations. In case of any issue, various alarms were configured to
trigger appropriate notifications for any abnormal CPU or network usage issues.

CloudTrail was enabled to record all API calls and this made sure that there was a detailed
audit trail of system activity because it is known to enhance the performance and eventually
security of the system. Insight Events was utilized to proactively and preemptively monitor
for any strange API activity which could highlight any malicious activities and thus be
eventually logged in the AWS GuardDuty.

All logs were centralized in CloudWatch Logs for better analysis and troubleshooting. A
retention policy of 90 days was also made because it was needed to balance storage costs for
historical data. This complex monitoring and complete logging strategy gave us maximum
potential to better identify and address potential issues.

4.3 Performance Evaluation Metrics
To assess the performance impact of GuardDuty and threat simulations on the network, a
comprehensive set of metrics was collected. Network latency was measured using ping tests
between instances, while throughput was evaluated using iperf3. Additionally, CPU and
memory utilization were monitored on both instances to identify potential performance
bottlenecks. The time elapsed between threat initiation and detection by GuardDuty was also
meticulously recorded.

To facilitate data collection, AWS CloudWatch was employed to monitor system metrics, and
custom scripts were implemented to log specific application metrics. GuardDuty findings
were meticulously timestamped for in-depth analysis.

Robust security measures were implemented throughout the evaluation process. Access
controls were strictly enforced through the use of IAM roles and policies with least privilege
principles. SSH key management practices ensured secure access to instances. Data at rest
was encrypted using AWS-managed keys, and regular security patches were applied to all
instances to mitigate vulnerabilities. Adhering to AWS best practices for network and
instance configurations and considering regulatory standards like 3GPP security architecture,
even in a simulated environment, further strengthened the security posture.

5. Implementation
The implementation phase of this research involved setting up a simulated private 5G
network environment within Amazon Web Services (AWS), deploying open-source 5G core
network functions using Open5GS, configuring the radio access network (RAN) with
srsRAN, integrating Amazon GuardDuty for threat detection, and simulating various network
threats to evaluate GuardDuty's effectiveness. This section details the systematic process
undertaken to realize the experimental setup, highlighting the technical considerations and
configurations applied at each stage.

5.1 Environmental Setup
The foundation of the implementation was the creation of a secure and isolated network
environment within AWS. An Amazon Virtual Private Cloud (VPC) named MVP-5G-VPC
was established, encompassing the IP address range 10.0.0.0/16. Within this VPC, two
subnets were created to represent the core network and the RAN:

● Core Subnet (MVP-5G-Core-Subnet): Assigned the IP range 10.0.1.0/24, this subnet
hosted the Open5GS core network functions.

● RAN Subnet (MVP-5G-RAN-Subnet): Assigned the IP range 10.0.2.0/24, this subnet
contained the srsRAN components simulating the gNodeB (gNB) and user equipment
(UE).

An Internet Gateway (MVP-5G-IGW) was attached to the VPC to facilitate internet
connectivity for necessary updates and software installations. Route tables were configured to
direct outbound traffic from the subnets to the internet gateway, ensuring that the instances
could reach external repositories and services during setup. Security groups were
meticulously crafted to enforce strict access controls. The Core Instance security group
permitted inbound SSH (port 22) access from trusted IP addresses and allowed SCTP (port
38412) and UDP (ports 2152, 8805) traffic from the RAN subnet to support 5G signaling and
data transmission. The RAN Instance security group similarly allowed inbound SSH access
and necessary outbound traffic to communicate with the core network.

5.2 Deployment of Open5GS Core Network
The core network functions were deployed on an EC2 instance named Open5GS-Core. This
instance ran Ubuntu Server 20.04 LTS and was provisioned with sufficient computational
resources (t2.medium instance type) to handle the core network workload. The selection of
Ubuntu was informed by the compatibility and support for Open5GS dependencies. After
securing SSH access to the instance, system packages were updated to ensure the latest
security patches and software versions were applied. Essential development tools and
libraries were installed, including build-essential, meson, ninja-build, and various libraries
required for Open5GS compilation.

Figure 5: Command-line interface displaying Open5GS core network configurations.

The Open5GS source code was cloned from its official GitHub repository. The software was
compiled and installed using the Meson build system and Ninja. The installation was directed
to a local directory for ease of management. MongoDB was installed and configured as it
serves as the database backend for Open5GS, storing subscriber information and network
data. Network configurations were carefully adjusted to match the intended 5G deployment
parameters. The Public Land Mobile Network (PLMN) ID was set with a Mobile Country
Code (MCC) of 001 and a Mobile Network Code (MNC) of 01. Configuration files for each
network function (e.g., amf.yaml, smf.yaml) were edited to reflect the network topology and
to specify the IP addresses and ports for inter-component communication.

A test subscriber was added to the Open5GS database to simulate a UE. The International
Mobile Subscriber Identity (IMSI) was set to 001010123456789, and the authentication key
and operator codes were defined to enable proper authentication and registration processes.
Core network services were initiated by starting each network function in the background.
Logs were monitored to ensure that each component was operating correctly and ready to
accept connections from the RAN and UE.

5.3 Configuration of srsRAN for RAN and UE Simulation
On the RAN side, an EC2 instance named srsRAN-Node was launched within the RAN
subnet, also running Ubuntu Server 20.04 LTS. This instance simulated both the gNodeB and
UE using srsRAN, an open-source 5G software radio suite. System updates and essential
tools were installed, including Git and development libraries necessary for compiling
srsRAN. The srsRAN repository was cloned, and the software was compiled from source to
ensure compatibility and the inclusion of the latest features and fixes. Following is the
network security configuration details used for both:

Figure 6: Inbound and outbound rules for the srsRAN Node's security group.

Configuration files for the gNodeB (gnb.conf) and UE (ue.conf) were modified to align with
the Open5GS core network settings. The gnb.conf file specified the core network's IP
address, PLMN ID, and frequency parameters. Similarly, the ue.conf file included the IMSI
and authentication keys matching the subscriber data in Open5GS. With configurations in
place, the gNodeB was started, establishing a connection with the core network.
Subsequently, the UE simulator was initiated, attempting to register with the core network
through the gNodeB. Logs on both the RAN and core instances were closely monitored to
verify successful attachment, authentication, and session establishment. This setup effectively
emulated a functioning 5G standalone network within the AWS environment.

5.4 Integration of Amazon GuardDuty
Amazon GuardDuty was enabled to monitor the AWS environment for malicious or
unauthorized activities. The service was activated through the AWS Management Console,
ensuring that it had the necessary permissions to access VPC Flow Logs, DNS logs, and
CloudTrail events.

GuardDuty was configured to use its default settings to evaluate its out-of-the-box
capabilities. All available data sources were enabled, including:

● VPC Flow Logs: Capturing detailed information about the IP traffic going to and
from network interfaces within the VPC.

● DNS Logs: Monitoring DNS queries made within the VPC to detect suspicious
domain lookups.

● AWS CloudTrail Logs: Tracking API calls and user activities to identify unauthorized
actions.

No custom threat intelligence feeds or additional rules were added, focusing the evaluation on
GuardDuty's built-in detection mechanisms.

5.5 Data Collection and Monitoring
In this study, throughout the threat simulations, an extensive data collection was conducted so
that the GuardDuty findings were monitored in real-time through the AWS Management
Console. Each finding was documented, noting the type of threat detected, severity level,
affected resources, and timestamps. System logs from the EC2 instances were collected,
including system messages, application logs from Open5GS and srsRAN, and network traffic
logs. And also the AWS CloudWatch was used to sum these logs which also provided a
centralized repository for further analysis and because of that the CloudWatch Metrics were
also monitored to observe any performance impacts, tracking CPU utilization, network
traffic, and memory usage. Custom Python scripts were developed to parse and analyze the

logs, extracting key eval metrics such as detection times and resource utilization. These
scripts helped to sum all of the data over multiple simulation runs which further enhanced the
reliability of the evaluation.

5.6 Performance Overhead Assessment
In every research study, an essential part of the implementation is to assess the performance
and in this study it was to assess the performance overhead introduced/induced by GuardDuty
and the threat simulations. Such overhead usually ends up costing a lot of resources, but in
this system performance metrics were monitored to identify any degradation in network
latency, throughput, or resource utilization which was relatable to GuardDuty's operations.
The latency measurements were also conducted using ping and iperf3 to assess network
responsiveness and data transfer rates between the core and RAN instances. CPU and
memory utilization were also monitored on both of the respective instances to detect any
major resource consumption caused by these security monitoring processes because it ended
up to analyze the various implementation of GuardDuty did not negatively affect the
network's performance because it is critical in a 5G environment where low latency and high
throughput are necessary.

6. Evaluation
In this chapter of the research, the evaluation phase focused on assessing the effectiveness of
Amazon GuardDuty in detecting real-time security threats within the simulated
Open5GS-based private 5G network deployed on AWS because this assessment was
conducted using the predefined eval metrics of detection accuracy, response time, false
positive rate, time-to-detection, and performance overhead. This section consists of a detailed
analysis of the findings derived from the data collected during the implementation and threat
simulation phases.

Figure 7: Bar chart showing the distribution of GuardDuty findings across severity levels.

In the above figure the detection accuracy of Amazon GuardDuty was determined by
comparing the number of correctly identified threats to the total number of simulated threats.
A total of 350+ threat simulations were conducted including various attack vectors such as
port scans, SSH brute-force attempts, DoS attacks, DNS exfiltration, and unauthorized API
calls and the detection accuracy was found to be 93% accurate with a total 350 attacks being
correctly registered out of 375 total.

Figure 8: Pie chart illustrating the proportion of various threat types identified by
GuardDuty.

As from the above illustration, the breakdown of detection accuracy by threat type is as
follows:

● Port Scanning: Detected 100% of the port scan attempts. GuardDuty generated
Recon:EC2/port-scan findings quickly after each simulation.

● SSH Brute-Force Attempts: Detected 90% of the brute-force simulations and also in
some instances many such attempts were not flagged immediately. This could be
possibly due to threshold default settings within GuardDuty's anomaly detection
algorithms.

● Denial-of-Service (DoS) Attacks: Detected 80% of the simulated DoS attacks.
GuardDuty identified anomalous traffic patterns in most cases but did not consistently
generate findings for lower-intensity DoS simulations.

● DNS Exfiltration: Detected 100% of the DNS exfiltration attempts. GuardDuty
generated Trojan:EC2/DNSDataExfiltration findings upon detecting queries to
suspicious domains.

● Unauthorized API Calls: Detected 100% of the unauthorized attempts to access AWS
metadata services, generating UnauthorizedAccess:EC2/MetadataIPCaller findings.

Such variability in detection accuracy can be due to the nature of the threat and the analysis
mechanisms within GuardDuty. For example, the DoS attacks require a total of sufficient
anomalous traffic data before triggering a finding or triggering an action recording finding by
the GarudDuty. Overall, the response times and the detection accuracies were within
acceptable ranges for real-time threat detection which could be considered timely alerts and
potential mitigation actions.

Figure 9: List of high-severity threats detected by GuardDuty.

The impact of GuardDuty on network and system performance was found to be monitored by
resource utilization and network latency during the threat simulations and normal operation
as follows:

● Average CPU utilization increased during GuardDuty's active monitoring periods with
negligible or no additional impact on memory usage.

● No significant changes were observed in CPU or memory utilization in GuardDuty.

● Average network latency between the Core and RAN instances remained stable.

● Data transfer rates measured using iperf3 showed consistent throughput and as such
no bottlenecks were found.

Figure 10: Visualization of GuardDuty's findings related to critical unauthorized access
and DNS exfiltration.

The evaluation of Amazon GuardDuty within the simulated Open5GS-based private 5G
network demonstrated its efficacy in detecting and responding to diverse real-time security
threats. With a detection accuracy of 93%, the system effectively identified key threat types,
including port scans, SSH brute-force attempts, and DNS exfiltration, showcasing the
robustness of its machine learning and anomaly detection capabilities. However, variability in

detecting lower-intensity Denial-of-Service (DoS) attacks highlights the potential need for
fine-tuning its default sensitivity thresholds. Importantly, the integration of GuardDuty
introduced minimal performance overhead, maintaining stable CPU utilization, network
latency, and throughput, which ensures its practicality for 5G networks requiring low latency
and high performance. These findings underscore the potential of cloud-native security
solutions like GuardDuty in safeguarding private 5G deployments, while also identifying
opportunities for enhanced configuration and expanded threat coverage.

7. Conclusion and Future Work
In this research study we set out to evaluate the performance of Amazon GuardDuty and its
potential in detecting and responding to real-time security threats in an Open5GS-based
private 5G network deployed on AWS. In a thorough and comprehensive simulation of a 5G
network environment and the execution of various threat scenarios for the GuardDuty to be
evaluated in, this study provides valuable insights into its capabilities and limitations. These
subject findings show that Amazon GuardDuty can effectively detect and respond to a good
range of security threats within a private 5G network environment and experiments
conducted in the methodology section show that a detection accuracy of 93%, this GuardDuty
demonstrates strong capabilities even in its default state in identifying malicious activities
through the analysis of network traffic, DNS queries, and AWS CloudTrail logs. In this
study, the successful deployment and operation of GuardDuty in the simulated environment
highlights the inherent potential of cloud-native security services in safeguarding private 5G
networks. This integration required minimal configuration changes and did not introduce any
major performance overhead thus making it a practical solution for enterprise or
organizational network needs for deploying private 5G networks on AWS. This research also
underscores the importance of using the advanced threat detection services that utilize
machine learning and anomaly detection to be up to date with the ever changing threats in the
5G network world. GuardDuty's potential in detecting such network-level threats are
excellent as shown by the results of this research study and the need for such comprehensive
security strategies that encompass both infrastructure and application layers is of paramount
interest. Future research studies could build upon this by:

● Simulating more complex attacks including 5G protocol vulnerabilities.

● Using the custom GuardDuty configurations like threat intelligence feeds, and
adjusting detection thresholds.

● The combined effectiveness of GuardDuty with other security solutions, such as AWS
Security Hub or specialized 5G security tools.

● Deploying larger and more complex network topologies.

● Cost-benefit analysis of deploying GuardDuty and its impact on operational expenses
for private 5G networks.

This research contributes to the understanding of how cloud-native security services like
Amazon GuardDuty and its default potential can be used to enhance the security of private
5G networks deployed using open-source platforms like Open5GS for enterprise networks.
The positive results show that AWS's security offerings are capable of addressing the
challenges posed by the integration of 5G networks with cloud infrastructures and mitigating
the various network and cyber attacks.

8. References
Bhatt, S., 2024. Security and Compliance Considerations for Running SAP Systems on AWS.
Journal of Sustainable Solutions, 1(4), pp.72-86.

Bonati, L., Polese, M., D'Oro, S., del Prever, P.B. and Melodia, T., 2024. 5G-CT: Automated
deployment and over-the-air testing of end-to-end open radio access networks. IEEE
Communications Magazine.

Chepkoech, M., Modroiu, E.R., Mwangama, J., Corici, M. and Magedanz, T., 2023,
November. Evaluation of OSS-Enabled OpenRAN Compliant 5G StandAlone Campus
Networks. In 2023 International Conference on Electrical, Computer and Energy
Technologies (ICECET) (pp. 1-7). IEEE.

CHRISTOPHER, G., Joshi, K. and Patel, B., Navigating Data Protection Challenges in
Amazon Web Services: Strategies and Solutions.

Coppola, G., Varde, A.S. and Shang, J., 2023, October. Enhancing Cloud Security Posture for
Ubiquitous Data Access with a Cybersecurity Framework Based Management Tool. In 2023
IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON) (pp. 0590-0594). IEEE.

Lando, G., Schierholt, L.A.F., Milesi, M.P. and Wickboldt, J.A., 2023, May. Evaluating the
performance of open source software implementations of the 5g network core. In NOMS
2023-2023 IEEE/IFIP Network Operations and Management Symposium (pp. 1-7). IEEE.

Linh, A.B.N., Rupprecht, D., Poll, E. and Kohls, K., 2023. Analysing open-source 5G core
networks for TLS vulnerabilities and 3GPP compliance.

Mamushiane, L., Lysko, A., Kobo, H. and Mwangama, J., 2023, August. Deploying a stable
5G SA testbed using srsRAN and Open5GS: UE integration and troubleshooting towards
network slicing. In 2023 International Conference on Artificial Intelligence, Big Data,
Computing and Data Communication Systems (icABCD) (pp. 1-10). IEEE.

Martin, A., Losada, P., Fernández, C., Zorrilla, M., Fernandez, Z., Gabilondo, A., Uriol, J.,
Mogollon, F., Serón, M., Dalgitsis, M. and Viola, R., 2023. Open-VERSO: a vision of 5G
experimentation infrastructures, hurdles and challenges. arXiv preprint arXiv:2308.14532.

Mukute, T., Mamushiane, L., Lysko, A.A., Modroiu, R., Magedanz, T. and Mwangama, J.,
2024. Control Plane Performance Benchmarking and Feature Analysis of Popular
Open-Source 5G Core Networks: OpenAirInterface, Open5GS, and free5GC. IEEE Access.

Padmaraju, A.K., 2023. Future-Proofing Security: AWS Security Hub and ServiceNow
Integration. International Journal of Computer Trends and Technology, 71(4), pp.14-18.

Raheman, S.M., Anvitha, P., Pujitha, K., Thirupathi, P.N., Arjun, S. and Gangashetty, S.V.,
2024, April. Defending AWS Cloud Infrastructure Using Deceptive Defense. In 2024
International Conference on Expert Clouds and Applications (ICOECA) (pp. 302-306). IEEE.

Rehan, S., 2023. Cybersecurity with AWS IoT. In AWS IoT With Edge ML and
Cybersecurity: A Hands-On Approach (pp. 253-335). Berkeley, CA: Apress.

Routavaara, I., 2020. Security monitoring in AWS public cloud.

Sharma, P. and Saxena, R., 2020. Security Best Practices in AWS. NeuroQuantology, 18(8),
p.389.

Singh, A. and Aggarwal, A., 2023. Assessing Microservice Security Implications in AWS
Cloud for implementing Secure and Robust Applications. Advances in Deep Learning
Techniques, 3(1), pp.31-51.

Singh, A. and Aggarwal, A., 2024. Artificial Intelligence Self-Healing Capability Assessment
in Microservices Applications deployed in AWS using Cloud watch and Hystrix. Australian
Journal of Machine Learning Research & Applications, 4(1), pp.84-97.

Solanes Serrat, F., 2024. Deployment and integration of an advanced security system in a
cloud environment (Bachelor's thesis, Universitat Politècnica de Catalunya).

Stournaras, A., 2023. HackerGraph: Creating a knowledge graph for security assessment of
AWS systems.

Tan, K.H., 2023. Mitigating Insider Threats in AWS: A Zero Trust Perspective.

Tan, K.H., Mitigating Insider Threats in Amazon Elastic Kubernetes Service (EKS): A Zero
Trust Perspective.

Tykholaz, D., Banakh, R., Mychuda, L., Piskozub, A. and Kyrychok, R., 2024. Incident
response with AWS detective controls.

Väisänen, T., 2023. Security review of Cloud Application architectures.

Villa, D., Khan, I., Kaltenberger, F., Hedberg, N., da Silva, R.S., Maxenti, S., Bonati, L.,
Kelkar, A., Dick, C., Baena, E. and Jornet, J.M., 2024. X5G: An Open, Programmable,
Multi-vendor, End-to-end, Private 5G O-RAN Testbed with NVIDIA ARC and
OpenAirInterface. arXiv preprint arXiv:2406.15935.

Volotovskyi, O., Banakh, R., Piskozub, A. and Brzhevska, Z., 2024. Automated security
assessment of Amazon Web Services accounts using CIS Benchmark and Python 3.
Cybersecurity Providing in Information and Telecommunication Systems II 2024, 3826,
pp.363-371.

	Real-Time Threat Detection in Open5GS Networks Using Amazon GuardDuty
	Ammad Ud Din Bajwa
	National College of Ireland Project Submission Sheet School of Computing
	PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

	Real-Time Threat Detection in Open5GS Networks Using Amazon GuardDuty
	1.​Introduction
	1.1​Research Question

	2.​Related Work
	3.​Methodology
	3.1​Environment Setup
	3.2​Network Security Groups
	3.3​Threat Simulation
	3.4​Data Collection and Analysis

	4.​Design Specifications
	4.1​Network Architecture
	4.1.1​EC2 Instances Specifications
	4.1.2 Security Group Configurations
	4.1.3​Open5GS Core Network Configuration
	4.1.4​Amazon GuardDuty Configuration
	4.1.5​Threat Simulation Design

	4.2​Monitoring and Logging Configuration
	4.3​Performance Evaluation Metrics

	5.​Implementation
	5.1​Environmental Setup
	5.2​Deployment of Open5GS Core Network
	5.3​Configuration of srsRAN for RAN and UE Simulation
	5.4​Integration of Amazon GuardDuty
	5.5​Data Collection and Monitoring
	5.6​Performance Overhead Assessment

	6.​Evaluation
	7.​Conclusion and Future Work
	8.​References

