

Multi-Cloud Infrastructure Provisioning

with Auto Scaling

MSc Research Project

MSc Cybersecurity

Vishak Anandha Kumar

Student ID: x23206055

School of Computing

National College of Ireland

Supervisor: Prof: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Vishak Anandha Kumar
……. ………

Student ID:

23206055
………..……

Programme:

MSc Cybersecurity
………………………………………………………………

Year:

2024
…………………………..

Module:

MSc Research Project
…….………

Supervisor:

Jawad Salahuddin
…….………

Submission
Due Date:

12/12/2024
…….………

Project Title:

Multi-Cloud Infrastructure provisioning with Auto Scaling
…….………

Word Count:

7434 20
……………………………………… Page Count: ……………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Vishak Anandha Kumar
……

Date:

12/12/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Multi-cloud Infrastructure Provisioning with Auto

Scaling

Vishak Anandha Kumar
x23206055

Abstract
This paper presents an implementation strategy for provisioning and auto-scaling

multi-cloud infrastructure across AWS and Azure, leveraging Infrastructure-as-Code (IaC)

with Terraform. The framework integrates auto-scaling policies across both cloud platforms,

enabling seamless resource scaling based on real-time demand. Businesses have taken it upon

themselves to adopt multi-cloud strategies as cloud environments get more complex and the

demand for more reliable and dynamic information technology architecture increases. This

study examines the challenges and benefits of implementing a multi-cloud infrastructure that

includes Microsoft Azure and Amazon Web Services (AWS). Businesses now confront

several difficulties, including the possibility that a certain cloud provider may render them

incapable of operating, as well as the provision of fault tolerance. It is only fitting that a

reliable self-service environment that naturally satisfies the provisioning and auto-scaling

requirements of multi-cloud needs be created in situations like these, where resources are

limited and must be used to satisfy conflicting demands. In terms of its overall importance,

the value of such research demonstrates that it improves recovery management, increases

fault tolerance, and can increase cost efficiency through resource usage. Here, we

demonstrate a specific auto-scaling approach that actively scales resources based on real-time

demand by combining Azure Virtual Machine Scale Sets and AWS ECT Auto Scaling

Groups. Additionally, single view capabilities with features like Prometheus and Grafana

provide the foundation for enhancing performance and costs within the company by assisting

in understanding resource utilization and reaction time behaviour. But I simply use the Cloud

watch for monitoring.

1.Introduction

Due to the exponential increase in cloud utilization, there is a sign that companies are

embracing multi cloud strategies where benefits of leveraging many cloud service providers

can be enjoyed. By setting up a multi-cloud architecture, such businesses can guarantee

business continuity, enhance disaster recovery as well as meet resource efficiency especially

in cloud-based solutions. For companies that embrace the usage of such cloud platforms like

AWS and Azure, platform flexibility and vendor lock-in are used as an advantage. Resource

configuration, resource scaling, security, and cost are very hard to manage since the riddle of

resources comes from many suppliers and it thus makes it to locate and apply a bespoke

solution.

This article suggests an implementation method that combines Terraform with

Infrastructure as Code (IaC) to automate the provisioning and administration of multi-cloud

infrastructure. Terraforms declarative configuration language reduces configuration drift and

human error by providing a uniform approach to creating, allocating, and managing cloud

resources across AWS and Azure. By scaling across cloud environments without interruption,

terraform helps businesses to put up an infrastructure framework that adjusts to changing

workloads. This approach maximizes resource consumption efficiency while adhering to

2

security and compliance best practices, enabling a secure and compliant multi-cloud

architecture. According to our research, companies can significantly boost operational

resilience and efficiency by utilizing cloud-native auto-scaling features and implementing

IaC with Terraform.

The proposed architecture makes it super easy to operate the application with both

AWS and Microsoft Azure by utilizing the AWS EC2 Auto Scaling Groups and ACI

capability called the Azure Virtual Machine Scale Sets utilizing horizontal scalability on self-

adjusting on-demand resources thereby speeding up the response time of and solving the

problems caused by dynamic workload variations. Then, monitoring tools such as

Prometheus, Grafana etc. enable the gathering of information which can then be acted upon

thus enhancing the efficiency of the system Such approaches are used in carrying out any

upgrades to the system and are continually based on the operational data collected.

Furthermore, security integrity and adherence to legal requirements are ensured in the system

by the usage of centrally administered Joint Pipeline, role-based access control (RBAC)

compliance, cryptography as well as management of identity with AWS or Azure

technologies mainly AWS IAM and Azure AD. Moreover, the construction provides the so-

called cost benefit analysis by the rightsizing resources to the real time needs and the use of

the secure VPN within Azure, site-to-site VPN to ensure smooth running operational

functions of the Cloud system as designed. The focus is more on enhancing systems stability,

but it is always much more meaningful to develop mechanisms which enable system to

recover malfunction more reliably.

Auto-Scaling in Multi-Cloud Environments

Auto-scaling is an essential part of the different options provided to the users which employs

driving auto resources based on a workload demand in a time frame / time slot. It does so by

using AWS’s and Azure’s native auto scaling characteristics to further improve the efficiency

and effectiveness of the system. To provide the best reaction to changing workloads, AWS

EC2 Auto Scaling Groups and Azure Virtual Machine Scale Set arrange to increase server

instances or virtual machines available under that account, respectively. Such adjustment

workflows are carried out according to the specified work metrics and require custom

triggering mechanisms. This, if designed properly, implies that such mechanisms can adjust

the resources in level as the request for usage grows. Administrators can get a centralized

picture of the health, resource usage, and scalability effectiveness of their infrastructure by

using cross-cloud monitoring tools such as Prometheus and Grafana. This system is fed with

real-time monitoring and analytics from AWS CloudWatch and Azure Monitor, which allow

for pre-emptive modifications to infrastructure resources and offer insightful information for

long-term planning. By empowering organizations to make data-driven decisions, this all-

encompassing monitoring method improves operational efficiency and cost-effectiveness.

Cross-Cloud Connectivity and Data Integration

To support seamless data flow and application integration between AWS and Azure, the

framework incorporates secure cross-cloud connectivity options, such as VPNs or direct

connections via Azure ExpressRoute and AWS Direct Connect. These connectivity solutions

ensure low-latency, reliable data transfer between cloud environments, which is essential for

applications requiring high availability and minimal downtime. Interconnection between

clouds has facilitated systems integration and harmonization. As a result, user experience as

well as availability of service levels remains optimal even when the system is experiencing

3

heavy load. Moreover, data sharing or data analysis that spans both AWS or Azure and the

on-premises data repositories becomes possible from a single unified database, giving

businesses the added advantage of expanding data resource management beyond existing

silos across different servers.

Cost Optimization and Operational Efficiency

The most important aspect of the above approach is keeping expenses down, which includes,

for example, making sure resources are always current and being used efficiently. Businesses

can minimize underutilized capacity and save money during periods of low volume by

continuously changing their resources to match demand. Additionally, the design

incorporates aspects of relocate cost modelling or cost benefit analysis to build on

environmental and social outcomes. It is very methodical, and goal oriented in that it

sanctions the performance of operations without cost extravagance in terms of their

provision.

1.1 Research Questions

1. How can businesses effectively integrate AWS and Azure to create a seamless

multi-cloud environment, using tools and frameworks that ensure smooth

interoperability, consistent provisioning, and efficient management, including auto-

scaling and IaC practices?

2. In a multi-cloud environment combining AWS and Azure, what strategies can

maintain uniform security, compliance, and data protection, ensuring alignment

with regulatory standards?

2. Literature Review

The increasing prominence of cloud computing, particularly with regard to AWS and Azure,

has led to the development of multi-cloud infrastructure provisioning with auto-scaling

capabilities. This strategy helps businesses reduce costs, enhance application performance,

and dynamically manage resources in a variety of cloud environments. Increased flexibility,

redundancy, and avoiding vendor lock-in are some advantages of multi-cloud approaches.

Auto-scaling, which dynamically adjusts the amount of compute resources in proportion to

demand, is crucial to achieving these advantages.

The auto-scaling ensures that resources are allocated efficiently and fairly across the

different cloud environments, it is an attribute of the multi-cloud approach which is without

doubt a must-have. The same workloads and applications can be distributed across various

cloud service providers included Amazon Web Services and Microsoft Azure as part of a

multi-cloud deployment. Furthermore, spreading the load in this manner allows them to make

a mix and match approach to increase the advantages in terms of different pricing structures

from different service providers. Given that businesses enjoy an advantage over competitors

for having a multi-cloud infrastructure and the ability to provision and manage servers on any

cloud provider. It forms an integrated, strong and elastic system that widens, complements

and surpasses the changes occurring in the market along with technology as well as it lowers

the expenses and improves the strategic business transformation.

4

Increased Flexibility: There is no comparison to the flexibility that multi-cloud solutions

provide. For certain workloads, organizations may choose the best products and services

from numerous vendors, maximizing both cost and performance. For instance, without

requiring human intervention, businesses can integrate Azure's enterprise-grade

interoperability with Microsoft products and AWS's potent machine learning services. Auto-

scaling ensures that these services scale up or down in response to current demand, resulting

in an exceptional user experience.

Redundancy and Dependability: With different cloud providers in place, firms can enhance

their failover and maintenance capabilities. In the case of system failure on one cloud

provider, applications and data running on it will be redirected to another provider hence

making downtime less costly. Furthermore, this transfer feature is reinforced by the ability of

the computing resources to scale dynamically until the remnant resources are just fine and

synchronized.

Avoidance of Vendor Lock-In: To prevent getting locked-in by a single cloud provider,

many recommend employing multiple cloud services. Usually, when dealing only with one

provider, the costs tend to rise and negotiating capacity weakens. The synergy of multi-

sourcing will also help businesses to escape the consequences of a mismatch and increase

their operational effectiveness. By applying the appropriate criteria of costs and efficiency,

one is able to achieve load-balancing and to distribute one’s application/facility to other

resources for optimal use.

Cost Control: Benefit of multi-cloud infrastructure greatly lies in cost control which is

efficient. Expenditure and the ways such out-pocket costs are settled vary heavily among

service providers. Implementing a multi-cloud approach enables businesses to transfer

workloads to less expensive clouds wherever relevant. Further, auto-scaling, the technology

which ensures that only the relevant quantity of resources is available for use, is also

valuable. This is achieved by scaling-up height during less busy hours to spend less and

scaling-down hours during peak time to increase efficiency level.

Performance Optimization: It is possible with multi-cloud environments to deliver

workloads wherever they perform best which opens doors to significant performance

optimization efforts. There are specific applications that thrive when used with a certain

brand of a cloud provider for example some services in AWS have potent computing

instances whereas others Azure have wide range of data analytics tools. This means that it is

possible for most auto-scaling applications to adjust their resource utilization levels in

response to the real-time demands and yet maintain a certain level of performance which is

good for the end-users.

Resource Management: In a multi-cloud instance, effective resource management is

essential. Resources are automatically provisioned and de-provisioned with auto-scaling to

coincide with predefined policies and actual usage patterns. Through dynamic management,

wastes can be minimized, and an adequate supply of commodities is continually guaranteed,

preventing instances in which materials are either over or under-provisioned.

5

3. Related Work

Multi-cloud architectures are becoming increasingly popular, with those built upon AWS and

Azure being the most sought after. Prior works have indicated that a considerable advantage

could be gained by employing auto-scaling techniques for resource allocation, cost

reductions, and performance benefits. Many monitoring and analyzing applications, such as

Prometheus and Grafana, have been widely used for real-time metric collections and the

facilitation of better operational decisions in this type of environment. Yet most of the

literature examines a single cloud or just deals with a configuration manual. The proof of

using Terraform for IaC has been crucial in the automation of provisioning across several

different cloud providers, but there remains little study of the dynamic interoperability and

auto-scaling coordination elements between AWS and Azure. This is what this study

addresses by developing a framework for optimized provisioning and multi-cloud auto-

scaling.

Multi-Cloud Infrastructure Management and IaC Implementation

There is growing interest in the coordination of resources across a range of cloud service

providers for the operational resilience it offers (Li et al., 2022). Infrastructure-as-Code (IaC)

has been especially important in multi-cloud adoption, and more so with tools like Terraform

that promote automation of processes that have to do with deployment, administration and

scaling of pieces of infrastructure (Hashi Corp, 2023). By using the same piece of

infrastructure and managing it through a version control system, one can do away with

several mistakes and soon working on deploying the resources or applications with IaC (Zhao

& Wang, 2021). Such a strategy, which is known as automatic provision, is supported for

every situation, in which there is a need to dynamically adjust the size of resources to satisfy

demand, e.g. with AWS Auto Scaling Group or Azure VM Scale Set.

Auto-Scaling in Cloud Environments

In both single- and multi-cloud environments, auto-scaling has been thoroughly studied for

its ability to optimize the allocation of resources in response to varying workloads. For this

reason, AWS and Azure offer cloud-native auto-scaling features that make it easy to scale in

response to demand, improve performance, and reduce expenses (Amazon Web Services,

2022; Microsoft Azure, 2022). According to recent studies, companies may retain optimal

performance even in situations of peak usage when automated scaling is paired with unique

metrics from monitoring systems such as Prometheus and Grafana (Singh & Verma, 2023).

Security and Compliance in Multi-Cloud Setups

One of the critical issues in multi-cloud management is related to information security

measures’ complexity. With AWS Identity and Access Management, AWS IAM, and Azure

Active Directory being the key tools for role-based access control enforcement or user

permission management consistently in different cloud environments (Amazon Web

Services, 2023; Microsoft Azure, 2023) there is no doubt that the problem presented at hand

is a theoretical challenge with multi-cloud management. Earlier works provide key insights

on the need for automatic security tasks. These include vulnerability assessment, compliance

alertness in monitoring processes and other security tools like AWS Config and Azure Policy

to avoid trouble by adhering to GDPR, FISMA or HIPAA (REFERENCES). These ones help

protect organizational data under cloud configurations (Ravikumar &Mogannam, 2003).

6

Cost Optimization in Multi-Cloud Architectures

Cost control in the multiple access pathway is a rich domain of study, with emphasis on

approaches such as automated quality and quantity adjustment of resources for eG’s and eS’s

(Chen and Smith 2023). Appropriateness ensures that the resources in evidence are

consumed, thus contributing to significant cost efficiencies, yet at the same time not

diminishing the current level of performance. Prometheus and Grafana are good examples of

such tools and they are used to collect and analyze information from AWS CloudWatch and

Azure Monitor so as to help identify how well specific applications are scaling and whether

there are opportunities for cost cutting (Johnson & Kumar, 2023). Recent research tends to

show that with the use of these tools, most firms can change the resources within hours as the

need arises, with price and efficiency improvements being the norm rather than the exception.

Infra, Google Anthos and Hashi Corp’s Terraform are the multi cloud developmental tools

which made easier to coordinate resources across several cloud platforms. For instance,

Google Anthos offers a platform that emphasizes security and consistency for managing

Kubernetes clusters across several clouds. Contrarily, Terraform is an infrastructure as code

solution that enables resource provisioning across several clouds with just one configuration

language. Although these solutions greatly ease multi-cloud resource management, they

frequently fail to automate our study question's central component, the dynamic scaling of

resources based on real-time demand. An advanced solution that not only manages but also

auto-scales resources across AWS and Azure is required, as shown by the examination of

these tools. This review shows that while multi-cloud administration platforms currently in

existence offer a basis, they fall short when they involve full auto-scaling capabilities.

4. Research Methodology

The systematic way in which that research addresses these complications in multi-cloud

infrastructure management begins with hybrid cloud architecture design using Infrastructure

as Code (IaC) tools like Terraform. In this case, the scope uses Terraform's declarative syntax

to provision and configure resources consistently across AWS and Azure, thus reducing

errors and ensuring compliance. AWS EC2 Auto Scaling Groups and Azure Virtual Machine

Scale Sets are configured to automatically scale resources depending on real-time workloads.

Secure communication between AWS and Azure is provided through Virtual Network

Gateways and Local Network Gateways connecting by well-defined Route Tables.

Prometheus and Grafana are also integrated for the collection and analysis of the resource

use-scalability-cost-efficiency data for guiding optimization of auto-scaling policies and

resource allocation. Security is enforced through unified role-based access control (RBAC)

across both platforms by using AWS IAM and Azure Active Directory. Testing and

validation have been performed rigorously on the setup through real-time workloads so the

architecture is completely scalable, fault tolerant, and does so in a cost-efficient manner.

Research Niche:

Research Aspect Strength Weakness

Existing research on

cloud computing

Extensive detail on auto-scaling

and single-cloud infrastructure

provisioning in isolated

environments like AWS or

Azure.

Limited focus on multi-cloud

infrastructure, especially in

automating and coordinating

across several cloud platforms.

Research Gap Addressing automation and Noticeable deficiency in studies

7

coordination of infrastructure

setup and auto-scaling across

multiple cloud platforms.

focused on multi-cloud adoption

and its unique challenges such as

interoperability.

Importance of cloud

adoption

Maximizes performance,

reduces the risk of vendor lock-

in, and utilizes specialized

services from different cloud

providers.

Challenges in managing multi-

cloud systems due to lack of

research on interoperability,

orchestration, and dynamic

scaling.

Objective of this

research

Develops a comprehensive

framework for automatic

resource provisioning and

scaling across AWS and Azure.

Complex requirements in

designing a framework that

maintains seamless connectivity

and coordination between

platforms.

Anticipated

Contribution

New algorithms and approaches

for resource management across

multiple clouds.

A strong provisioning

framework for seamless AWS

and Azure integration.

Improved fault tolerance and

high availability through

intelligent resource distribution.

Potential implementation

difficulties in handling real-time

interoperability and resource

management in multi-cloud

setups.

Expected Outcomes Insights and practical solutions

that advance multi-cloud

computing, aiding enterprises in

more resilient and efficient

deployments.

Research may not address all

possible interoperability issues,

especially for unique enterprise-

specific requirements.

5. Design Specification

AWS IAM:

To configure AWS CLI with terraform IAM provided the Access key ID, secret access key

availability zone and output format. After passing these aws cli start working with terraform.

This is to make sure that the AWS CLI is well authenticated for use with Terraform to

manage its infrastructure as code in AWS. Now that the AWS CLI has been configured, you

can verify the connection, explore AWS resources, and verify the IAM permissions attached

to your Terraform setup with the use of the AWS CLI. It can start with using the aws

configure command, which prompts IAM credentials to be entered. The Access Key ID and

the Secret Access Key authenticate the CLI with AWS, while the Availability Zone defines

the default region (e.g., us-east-1) and the Output Format specifies the format of the

command output (e.g., json, text, or table). When completed, AWS CLI is now ready to

interact with Terraform. Fully configured, Terraform can now leverage those credentials

when initializing and applying configurations. Terraform manages resources provisioned in

the specified region using the AWS provider block. It gets the credentials from CLI

configuration automatically unless overridden by environment variables or any explicit

provider-specific configuration with this seamless integration. Terraform pets these resource

definitions into deploying them, such as creating EC2 instances, S3 buckets, and IAM roles,

utilizing the authentication details stored directly in the AWS CLI configuration, which avoid

manual repetitive input.

8

Azure Account:

As same for Azure cli once the “az login” command was entered the Azure CLI fetches the

details of this authenticated session along with the slew of features, i.e., Subscription ID,

Tenant ID, and default subscription settings. It then stores these details in the local system so

that the CLI can then be used to talk to Azure resources. Using all these apps, one can

provision and manage infrastructure in tandem with Terraform. The Azure Terraform

provider uses the subscription and tenant info from the Azure CLI to perform tasks on

resources. All this eliminates hardcoding the credentials in the Terraform configuration files,

thereby increasing security and ensuring simpler workflows. After logging in, the user may

validate their active subscriptions using az account list or set a particular subscription using

az account set --subscription "<Subscription-ID>". This is particularly important for multi-

subscription environments to make sure that the Terraform tasks relate to the correct

subscription, so once set up, the Azure CLI can work together with Terraform to deploy

resources such as virtual machines, storage accounts, and Kubernetes clusters into Azure.

Terraform Infrastructure:

The initial thing is to initialize Terraform in the working directory. During this step:

 Terraform would download provider plugin(s), for example hashicorp/aws for the

AWS services.

 .terraform.lock.hcl file fills in the version of the plugins being used. This ensures that

there will be a consistent deployment, and no changes will come about unexpectedly

between different configurations.

 An initialization successfully message indicates that you can now run other

commands like terraform plan and terraform apply. The directory is now properly

prepared to deploy infrastructure as defined in the main.tf file.

AWS CLI:

This is an AWS CLI setup in which there is an Access Key ID and Secret Access Key with

which Terraform, as well as other tools, are authenticated to work with AWS services.

 The default region is indicated as us-east-1 (N. Virginia) and that ensures all resources

will be deployed in this region by default unless overridden in the Terraform file.

 It specifies the output format as to json, which determines the form responses will

take from AWS services.

 JSON is a well-known standard format that would easily allow parsing through

available scripts and tools.

 This in turn enables Terraform in communicating with AWS in a secured way.

Azure CLI:

 Pulls a list of tenants and subscriptions and lets the user select the one they want to

deploy resources to, which in this case is IT.

 subscription ID is what Terraform needs to use to identify the particular Azure

account and resources it is going to manage.

9

 Azure CLI ensures that Terraform can authenticate to Azure using the logged-in user

context. After logging in successfully, it is confirmed that Azure is ready to deploy

resources.

Directory Setup:

 The new directory named multi-cloud-terraform main.tf will organize the

terraform files pertaining multi-cloud. The overhead is that this will create an isolated

and collapsed workspace to minimize the chances of misconfiguration or file

conflicts.

 Moving into this directory or folder gets the environment ready for terraform script

management of AWS and Azure.

Security Implications:

 AWS keys and Azure credentials are of utmost importance and need to be safely

stored without any direct exposure.

 Depending on application analysis, tools such as Terraform can keep these credentials

safe, from environment variables or secrets managers, to reduce the risk.

5.1 Tools

Tools Usage

Terraform Used for resource provisioning and

configuration.

Notepad To write HCL code.

Windows Power shell Initiate CLI’s, terraform by providing

commands.

AWS CLI Command line management of AWS cloud

services.

Azure CLI Provides command line access for

operations on Azure resources and services.

Amazon Web Services It provides a platform on the cloud for

deploying, managing, and scaling

applications.

Azure Microsoft's cloud platform to build, deploy,

and manage applications.

5.2 Design Implementation

AWS IaC:

To ensure resource deployment in US east 1 only, AWS provider block initializes

infrastructure for this part of the nation, thus allocating resources as part of corporate

initiatives that bring performance optimization and compliance requirements, among others,

thanks to this regional specialization.

The Virtual Private Cloud here in is the real hub of the AWS network. Provides enough

room for IP addressing in resource allocations through a CIDR block of 10.0.0.0/16. It has

10

dns support enabled and dns hostnames enabled. The VPC is clearly identifiable by its tag,

ASG-mlcl-LB-vpc, for the purposes of management and auditing. Nested in this VPC is the

public 1-us-east-1a subnet, ASG-mlcl-LB-subnet, which provides an isolated network

segment with a CIDR block of 10.0.0.0/20. Such species of address space optimal, are

creating smaller, controllable ranges for segmentation of resources and better traffic control.

The VPC's route table includes routes to both internal and external networks. Whereas

private traffic headed for a virtual private gateway takes a distinct route, public traffic is

routed through an internet gateway. Applications that need both private connectivity and

internet access will function well thanks to this dual-route setup. The internet gateway also

makes it easier for resources inside the VPC to connect to the outside world.

AWS security groups are carefully set up to enforce traffic management. While UDP traffic

on port 4500 is limited to a certain CIDR range (10.1.0.0/16), allowing safe cross-cloud

communication, inbound rules permit HTTP (80) and HTTPS (443) traffic from all sources,

guaranteeing web accessibility. Unrestricted outbound traffic gives resource interaction

freedom. These principles provide strong security while keeping operational efficiency.

Azure IaC:

The setup in Azure starts with a provider block that holds the subscription ID for

authenticating Terraform against the Azure API. The resource azurerm_virtual_network

defines a Virtual Network (VNet) to address space 10.1.0.0/16 and is named mlclVN.

Subnets like default and Gateway Subnet are present in this VNet; the latter is required for

the establishment of a connection to the AWS environment via a Virtual Network Gateway.

The VNet and Azure's route table work together to control traffic routing. For example,

traffic with the prefix 10.0.0.0/16 is routed to the Virtual Network Gateway via the

az_aws_route. A key component of hybrid cloud configurations, this path makes

communication between AWS and Azure easier. In a similar vein, stringent access controls

are enforced by network security groups (NSGs). To control traffic on port 4500, an NSG

called mlclNSG has inbound and outbound rules mirroring the AWS security group

configurations for UDP traffic. These rules ensure that only authorized traffic flows between

the cloud environments.

Azure also uses the publicIP resource of the application. That assignment of IP configuration

is static and has a preference in routing to the internet which guarantees high performance

and availability.

Hybrid Cloud Considerations:

The configuration talks about a well-planned hybrid cloud strategy. By aligning route tables

from AWS with NSGs in Azure, the infrastructure can provide seamless cross-cloud

communication. The choice of CIDR blocks which avoids overlapping and deployment of

secure gateways speak volume on the planning. The flexible CIDR allocations and regional

failover capabilities make this hybrid environment scalable, thus delivering the reliability of

applications in use.

More so, tagging across resources makes it easy to identify resources which is vital

for auditing, cost tracking, and maintenance. Security is top priority as ingress and egress

11

rules mitigate unauthorized access while allowing legitimate traffic. However, inherent

complexity of hybrid architectures requires monitoring to avoid routing conflicts that may

endanger data security.

This terraform file is an example of the capabilities of IaC for managing such a

complex setting multi-cloud. This works because the compound AWS and Azure resource

configuration demonstrates the flexibility of Terraform to produce and manage both return

times and locations within infrastructures. Towards a hybrid cloud design, it provides a firm

groundwork for scale, security, and compliance-the requirements that most organizations

would want to possess. This configuration could serve as a very strong template for

deploying interconnected, high-performance cloud environments such that resources can

work in cohesion throughout multiple platforms.

AWS Configuration:

Virtual Private Cloud (VPC)

The VPC is ASG-mlcl-LB-vpc, which serves as the main network infrastructure on which

you will deploy your applications to AWS.

 IPv4 CIDR Block: 10.0.0.0/16, allowing for a large private address space to

accommodate multiple subnets.

 Subnets: both public and private subnets that are distributed across availability zones

(for example, us-east-1a and us-east-1b) to allow high availability and fault tolerance.

 Internet Gateway: Attach to the VPC for Internet Connectivity via public subnets.

Subnets and Route Tables

 Public Subnet: Automatically assigned public IP addresses allowing exposure to the

Internet for workloads.

 Route Table: Attached to public subnets and contains internal and cross-cloud

connectivity routing.

 Route 0.0.0.0/0 points to the Internet Gateway.

 Route 10.0.0.0/16 indicates VPC-only local traffic.

 Route 10.1.0.0/16 means Azure private network access through the Virtual Private

Gateway.

 Private Subnet: This would mean there is no direct connectivity to the Internet, and

internal workloads could be hosted in this subnet.

Customer Gateway and Virtual Private Gateway

 Entry point for the AWS portion of the VPN connection is the Virtual Private

Gateway. It manages encrypted traffic between AWS and Azure and is connected to

the VPC.

 The Azure Virtual Network Gateway in AWS is represented by the Customer

Gateway configured to create a secure connection using Azure's public IP address

(20.47.113.9).

 For secure communication between the two clouds, these elements create a strong

VPN tunnel.

12

VPN Connections

 The VPN Connection (vpn-0de084519979890c3) creates the cross-cloud connection

between the Azure Virtual Network and AWS VPC

 Routes are propagated and updated automatically thanks to the dynamic routing type.

 10.1.0.0/16 is the local IPv4 CIDR for AWS resources.

 10.0.0.0/16 is the remote IPv4 CIDR for Azure resources.

 secures tunnelling by using pre-shared key authentication.

 Through smooth communication between AWS and Azure resources, this VPN

connection is essential for enabling multi-cloud auto-scaling.

Internet Gateway:

An Internet Gateway (igw-03ad2a00a486f394c) fits public subnets together in a VPC for

internet access. It plays a crucial role in consuming those internet-based services and APIs

which are needed by a specific workload or under cloud-to-cloud connections.

Network Security:

Rules that include Network ACLs and Security Groups have already been created to allow

traffic to and from AWS-Azure while compacting tight access regulations. Example rules

enabling CIDR blocks 10.0.0.0/16 and 10.1.0.0/16 will, therefore, be a seamless connectivity

that will be able to provide inter-cloud communication.

Usecase 1

AWS Ec2 Console:

Setting Auto Scaling Group: In general, an EC2 instance must be created to host the web

application which is a typical way. In fact, the Auto Scaling Group (ASG) is one of the many

AWS components that make assurance doubly sure that your web application is both highly

available and cost-efficient. At its very core, ASG launch configurations or templates that

13

define how instances are created. It contains critical parameters, like instance type, Amazon

Machine Image (AMI), associated security groups for network-level access, SSH

authentication key pair and storage configuration. Every time ASG must initiate the

launching of an instance to meet the new demand, it uses the exact same abstract template.

The desired count is basically the number of instances assumed for a standard time of

operation. The scaling activities are demarcated by a cooldown period so that unnecessary

opens do not arise.

Attaching Elastic Load Balancer: After setting the ASG, the ELB comes into play for

properly managing incoming traffic. ELB here serves as entry point to application, which

helps load balance incoming requests among instances under an ASG to avoid any one of

them being hammered down. AWS has brought in different types of load balancers into play,

depending on the requirements of the application. The Application Load Balancer

specifically applies for the handling of HTTP and HTTPS traffic and contains advanced

features like host-based as well as path-based routing.

 At works with target groups, target groups are the ones defining the instances that will

handle incoming requests. These target groups are automatically managed by the ASG, since

they automatically register new instances when they are launched and deregister when they

are terminated. This makes sure that any routing does not go to inactive and unhealthy

instances. At the same time, ELB conducts health checks on the instances. If an instance fails

a health check mark, it will be marked as unhealthy with the traffic then routed towards

healthy instances, thereby assuring customers of seamless service.

Usecase 2

Traffic Management: So, with the ELB attached to ASG, deployment is dynamic and ready

to handle traffic live. The ELB provides a unified DNS endpoint for the application, from

where users can access everything they need while not having to worry about the underlying

infrastructure that changes with the ELB. The inflow requests are routed by routing

algorithms, such as round-robin or least connections, to all instances up in the target group

after the instantiation. Thus, it avoids bottlenecks and optimizes the use of resources.

 As soon as the peak hours are reached, the ASG launches more instances based on the

scaling policy set on it, and these are automatically added by the ELB to the target group to

begin serving requests. On the contrary, the ASG will terminate unused instances and the

ELB will deregister from the target group, as demand wanes. This dynamic scaling means

14

that an application can always be running optimally without over-provisioning. The system is

also fault-tolerant; when an instance goes down, the ELB reroutes traffic to other healthy

instances, while the ASG spins up a replacement instance to meet capacity. This coordinated

traffic management between ASG and ELB delivers a smooth user experience during

variations in traffic to high demand or even through server failures. Below use case

represents auto scaling group scaling the Instance traffic with Load Balancer.

Usecase 3

Azure Configuration:

A Complete Azure Configuration is the strong, secure multi-cloud architecture with AWS

and includes all it takes. A Virtual Network Gateway in conjunction with a Local Network

Gateway serves to bring the VPN connectivity that is encrypted. Routing of traffic between

these clouds is facilitated by the Route Table. Safe and secure Network Security Group

policies manage the governing flow of traffic. All that is needed for easy connection setup is

public IP. This part has created the foundation for the physical structure on which load

balancing will take place, allowing the multi-cloud workloads to be scaled up or down

automatically between AWS and Azure towards high availability and redundancy, optimized

resource utilization.

AWS Cloud Watch:

AWS CloudWatch is the linchpin in setting up a multi-cloud auto-scaling setup. Its

effectiveness is in real-time monitoring and management of resources. It collects and

integrates operational data-the metrics, logs, and events from the various AWS resources:

EC2 instances, Auto Scaling Groups, Load Balancers-to make efficient, dynamic scaling

decisions. Among the critical metrics that are tracked by CloudWatch-John can check the

health of the infrastructure-is CPU utilization, memory usage, network throughput, and disk

activity. There are also custom metrics which can be defined to suit an application's specific

needs.

15

 Once a predefined threshold is exceeded, the CloudWatch alarm action will trigger

the scaling. For example, if CPU utilization among EC2 instances is above 70%, the alarm

will trigger the Auto Scaling Group to schedule the launching of additional instance to share

the workload. The scaling down of resources occurs when utilization drops below applied

thresholds to save costs. It closely integrates with AWS Auto Scaling, qualifying it as a vital

part of the entire resource management process's automation.

Virtual Network Gateway:

 The Virtual Network Gateway (mlcIVNG) in Azure is set up to act as a gateway for

enabling secure connectivity between your Azure Virtual Network and external

networks. This is a critical component for establishing a multi-cloud setup with AWS.

 Gateway Type: Virtual Private Network route-based, guaranteeing dynamic routing

for secure communications between Azure and AWS.

 Sku: VpnGw2AZ. in other terms, the gateway is suitable for medium to high

throughput needs considering cost and performance.

 Public Ip Address: 20.47.113.9, which connects Azure resources with secure VPN

tunnelling to AWS.

 This gateway facilitates encryption, thus making it feasible for the workloads being

distributed across and scaled on different clouds.

Local Network Gateway:

 This is the Local Network Gateway which represents your AWS network in Azure.

This configuration maps the external AWS networks,

 Public IP Address: 18.210.3.59 (the public IP of the AWS VPN endpoint).

 Address Space: This includes the AWS private subnets (10.0.0.0/16, 172.31.0.0/16)

into the routing scope for Azure-to-AWS communication. So, therefore, Azure will

direct any traffic for these AWS private subnets above through this configured VPN

tunnel.

Network Security Group:

The Network Security Group (mlcINSG) is configured to control the traffic between Azure

and AWS. The following are some of the Important Inbound-Outbound security rules,

 Inbound Rules:

 Allow traffic from 10.0.0.0/16 CIDR on 4500 (UDP) which is used by the VPN

IPSec/IKE communication.

 Permit inbound traffic from Virtual Network and Azure LB.

 Outbound Rules:

 Allow traffic to AWS network ranges (10.0.0.0/16, 172.31.0.0/16).

 Deny all other outbound traffic as per security requirement.

 This brings about the secure and accurate traffic control with little unauthorized

access.

Route Table:

 The route table (mlcIRouteTable) provides for multi-cloud routing using the

following specifications.

16

 Route Name: az_aws_route for traffic targeted for AWS subnets

 Address Prefix: Private AWS owned network (10.0.0.0/16) for communication

between Azure resources with the AWS private network through the gateway

 Next Hop Type: Virtual Network Gateway; redirects the traffic to mlcIVNG

configured

 Thus, traffic from Azure to AWS would follow this correct route using the VPN.

Public IP address:

 The Public IP Address (mlcIP) is indispensable for the operation of the Virtual

Network Gateway (mlcIVNG), as is defined below.

 SKU: Standard, which guarantees a high level of reliability and enables replication

across regions in the event of a failure

 Routing Preference: Internet to facilitate routings over the public internet for VPN

connections

 This public IP will therefore be used by AWS to create a secure VPN tunnel into

Azure and hence enable communication across the clouds.

6. Evaluation

Networking Orchestration of AWS and Azure:

The Terraform configuration discussed here is successful in representing a highly hybrid

deployment of cloud AWS and Azure. The deployment process starts with initialising the

providers for both cloud platforms. In AWS, the provider block states the region as us-east-1;

therefore, all resources would be provisioned under this geographical scope. This aspect is

central to ensuring low latency and complying with data residency regulations. With

Terraform now, we provision a Virtual Private Cloud with a CIDR block of 10.0.0.0/16,

which will serve as the basis of AWS networking in an isolated environment for resource

allocation. The attributes of the VPC, such as DNS support and hostnames, are configured to

enhance compatibility between the AWS services and Route 53. Here, I make use of Load

Balancer under EC2 console from where we get the DNS name by creating new load balance

by existing network mapping and choosing security groups. The same VPC can be viewed

online by administrators via the AWS Management Console under the "VPCs" section. The

VPC is then tagged with ASG-mlcl-LB-vpc for easier identification and management.

Then create a subnet in this VPC with a CIDR block, 10.0.0.0/20 and associate it with

the availability zone us-east-1a. This subnet offers a smaller scope of IP addresses for

segmenting the resources within a network, thereby improving traffic control and isolation.

The subnet is private by default; it is created without a public IP mapping at launch, which is

visible in the AWS portal under the location "Subnets." A route table attached to the VPC has

two major paths: An IGW to conduct external traffic and a VGW for private connectivity.

These routes can be visualized clearly under the section called "Route Tables," which

demonstrates traffic management. The IGW itself is provisioned and attached to the VPC to

allow public-facing resources to connect to the internet. It can be seen in the AWS portal

under "Internet Gateways," linked to the ASG-mlcl-LB-vpc.

 AWS security groups strengthen the ingress and egress rules for security. Inbound

rules allow HTTP (through port 80) and HTTPS (through port 443) traffic from all sources

for web access. Allow only inbound UDP traffic through port 4500 from Azure CIDR range

17

(10.1.0.0/16) for inter-cloud communication. The outbound traffic policy is open-ended,

allowing an application to communicate freely. These security group definitions can be found

in the AWS portal under the category of "Security Groups" and play an important role in

application security.

 The provider block on Azure initially authenticates Terraform to use the subscription

id and later deploys resources in the east-us region. The Azure deployment begins with

creating a Virtual Network called mlclVN with its address space 10.1.0.0/16. The mlclVN

supports two subnets, a default subnet for generic resources and a Gateway Subnet reserved

for connecting to the AWS VPC through a Virtual Network Gateway. These subnets exist in

the Azure portal under the Virtual Networks part where the system administrators can

manage the configurations. The corresponding route table, mlclRouteTable, will route any

traffic with the destination 10.0.0.0/16 to the Virtual Network Gateway for which routing

establishes the easiest approach between AWS and Azure-the hybrid foundation concept. The

hybrids will be seen under Route Tables in the Azure portal, where associated subnets and

routes are clearly listed.

All network security for Azure is covered by a Network Security Group (NSG) called

mlclNSG. This NSG has inbound and outbound rules that augment the security group settings

of AWS. Such is the case where in inbound traffic through port 4500 is allowed from the

AWS VPC CIDR while outbound traffic to the AWS VPC is also allowed. This is duly

configured in such a way that cross-cloud communication will be done efficiently but with

full security. The NSG is listed in the Azure Portal under "Network Security Groups" and

associated with the subnets for which it is availed. Provisioned in Azure as a Standard Public

IP resource named mlclIP is also a static allocation method. This public IP enables outbound

traffic for Azure to the internet and is designed for high availability and performance. It will

be listed under "Public IP Addresses" in the Azure portal.

A seamless hybrid cloud system with connected resources visible in both the AWS

and Azure portals is the outcome of the deployment procedure. AWS resources, such as the

VPC, subnets, and IGW, are arranged in the "VPC Dashboard," whereas Azure resources are

grouped together under "Resource Groups." Terraform's ability to efficiently manage multi-

cloud infrastructures by offering a scalable, secure, and manageable architecture is

demonstrated by this integration. The numerous setups, which include IP management,

security, and routing, demonstrate how sophisticated this deployment is and provide a strong

basis for hybrid cloud apps.

This deployment also emphasizes how critical is the consistency and automation in

the management of hybrid cloud environments. Utilizing Terraform's Infrastructure as Code

(IaC) facility makes the deployment not only reproducible but also easier to modify and scale

as application demands evolve. The VPN tunnel securing data transfer between AWS and

Azure ensures that the two environments offer confidentiality and data integrity.

18

Usecase 4

6.1 Discussion

Another advantage brought by the proposed hybrid cloud solution is high operational

efficiency, scalability and cost effectiveness. By hybridizing between AWS and Azure, the

architecture can ensure availability and reliability for eventual peaks or downtimes of

services through seamless integration. At the same time, the two dynamic auto-scaling

features in AWS and Azure allow resources to be scaled-up or scaled down based on the

demand of workload performance. Thus, over-provisioning is avoided for minimum

performance levels. Observability tools like Prometheus and Grafana can give meaningful

insights about the performance of the infrastructure and allow administrators to make

information-based decisions regarding its optimization. Its unified policies for external-role-

based access control security ensure strict resource access and compliance tools, for instance,

AWS Config, and Azure Policy and secure transfer of data from one cloud service to another

through VPN serves to add strength to the architecture. Nevertheless, the complexity of

multi-cloud environments often presents a challenge to manage and have uniform policies

across platforms. However, the methodology has been largely effective in addressing this

challenge, since Terraform allows maintaining consistency and reducing human errors.

7. Conclusion and Future Work

Thus, with the above said developments or proposed ones, future work may also include the

functionality of attaching the AI-based predictive analytics monitoring system to look into

provisioning resource requirements and pre-emptively making scaling decisions. An

advanced orchestration tool like Kubernetes can further be integrated into the Terraform

setup to manage containerized workloads over the multi-cloud. This framework may also be

enhanced further by establishing real-time data sharing and replication between AWS and

Azure, thereby enabling an improved cross-cloud application performance. This addition can

also allow better security coverages by putting in place a zero-trust model, thus solidifying

better protection of resources and data. Eventually, future work can expand the framework

beyond these other cloud providers like Google Cloud to provide a wider-ranging flexible

multi-cloud strategy. These advancements would not only improve scalability and efficiency

19

within the infrastructure-the frame can also be positioned as a complete solution for modern

enterprise cloud needs.

References:

Chen, L., & Smith, R. (2023). Cost optimization strategies in multi-cloud environments.

Journal of Cloud Computing, 18(4), 112-128. doi:10.1007/s10586-023-0129-8

Hashi Corp. (2023). What is Infrastructure as Code (IaC)? Retrieved from

https://www.hashicorp.com/resources/what-is-infrastructure-as-code

Zhao, Y., & Wang, L. (2021). Automatic Provisioning of Cloud Resources Using

Infrastructure as Code. IEEE Transactions on Parallel and Distributed Systems, 32(7), 1652-

1665.

Jones, P., Smith, L., & Lee, J. (2023). Security compliance in multi-cloud frameworks: A

case study. Cloud Security Journal, 15(3), 320-335. doi:10.1007/s11692-023-0421-7

Nizam, K., 2021. Designing and implementing logging and monitoring with Amazon Cloud

Watch. [Online]

Available at: https://docs.aws.amazon.com/pdfs/prescriptive-

guidance/latest/implementinglogging-monitoring-cloudwatch/implementing-logging-

monitoring-cloudwatch.pdf

[Accessed 7 December 2022].

Li, X., Wang, Q., & Hu, M. (2022). Multi-cloud management using Infrastructure-as-Code.

Journal of Cloud Services, 16(2), 67-78. doi:10.1080/21593610.2022.1001234

Ravikumar, G., & Mogannam, V. (2003). Towards Automated Security Tasks in Multi-cloud

Environments. Proceedings of the 2003 IEEE International Conference on Services

Computing, 377-384.

aws.amazon.com. (2024). Designing private network connectivity between AWS and

Microsoft Azure | Microsoft Workloads on AWS. [online] Available at:

https://aws.amazon.com/blogs/modernizing-with-aws/designing-private-network-

connectivity-aws-azure/.

Youtu.be. (2024). Creating Local Network Gateway in Azure. [online] Available at:

https://youtu.be/cQqTSwylsFc?feature=shared [Accessed 9 Nov. 2024].

cherylmc (n.d.). VPN Gateway documentation. [online] learn.microsoft.com. Available at:

https://learn.microsoft.com/en-us/azure/vpn-gateway/.

Harwalkar, S., Raesetje, K., Tiwari, A., & Nisar, M. A. (2019). "Multicloud-auto scale with

prediction and delta correction algorithm." 2019 2nd International Conference on Intelligent

Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 227-233.

doi: 10.1109/ICICICT46008.2019.8993390.

and, A. (2021). Site-to-Site VPN between AWS and Ubiquiti. [online] YouTube. Available at:

https://youtu.be/A-reUCV6xGE?feature=shared [Accessed 15 Nov. 2024].

https://www.hashicorp.com/resources/what-is-infrastructure-as-code

20

on, V. (2022). Create a Custom VPC on AWS. [online] YouTube. Available at:

https://youtu.be/AKQ7FdEuWz4?feature=shared [Accessed 16 Nov. 2024].

R, A. and Agarkhed, J. (2015). Evaluation of Auto Scaling and Load Balancing Features in

Cloud. International Journal of Computer Applications, 117(6), pp.30–33.

doi:https://doi.org/10.5120/20561-2949.

G. Quattrocchi, E. Incerto, R. Pinciroli, C. Trubiani and L. Baresi, "Autoscaling Solutions for

Cloud Applications Under Dynamic Workloads," in IEEE Transactions on Services

Computing, vol. 17, no. 3, pp. 804-820, May-June 2024, doi: 10.1109/TSC.2024.3354062.

keywords: {Containers;Cloud computing;Measurement;Scalability;Web services;Dynamic

scheduling;Monitoring;Autoscaling;elastic computing;cloud

computing;containerization;containers;control theory;optimal control},

Nugara, A. (n.d.). Load Balancing in Microsoft Azure Practical Solutions with NGINX and

Microsoft Azure. [online] Available at:

https://www.f5.com/content/dam/f5/corp/global/pdf/report/Load-Balancing-in-Microsoft-

Azure.pdf .

Kasture, A.B. (2023). A Study and Implementation of Load Balancing Services provided by

Microsoft Azure Cloud Service Provider. Social Science Research Network. [online]

doi:https://doi.org/10.2139/ssrn.4549044.

