

Network Traffic Anomaly Detection with

Deep Learning

MSc Practicum Part-2

MSc Cyber Security

Christy Alex

Student ID: 23160055

School of Computing

National College of Ireland

Supervisor: Mr. Rohit Verma

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Christy Alex

Student ID:

23160055

Programme:

MSc Cyber Security

Year:

2024-25

Module:

MSc Practicum Part-2

Supervisor:

Mr. Rohit Verma

Submission Due

Date:

29-01-2025

Project Title:

Network Anomaly detection using Autoencoder Models

Word Count:7711

Page Count:22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Christy Alex

Date:

29-01-2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

https://www.kaggle.com/datasets/vidhikishorwaghela/synthetic-network-traffic

Network Anomaly detection using

Autoencoder Model

Christy Alex

23160055

Abstract

The increasing rate in cyber threats makes a considerable threat to traditional security

features, which makes anomaly detection a crucial step in defending the network from

threats. Conventional rules-based Intrusion detection system and Intrusion prevention

systems most time fails to detect and prevent latest and evolving threats, which asks for

the adoption of more intelligent and adaptive techniques. This research explores the

implementation of a machine learning based approach based on autoencoder models to

detect the malicious traffic in the network by analysis the usual working the network.

The autoencoder model is trained exclusively on the regular traffic, allowing it to

distinguish between regular and malicious traffic. The Research through test results

suggests the use of encoder models with better thresholding for anomaly detection a

autoencoder model configured to work alone would only give reduced efficiency and

accuracy.

1 Introduction

The world is going though a digital transformation the inventions and improvements in technology

that was introduced in the past decade was never like before inventions like quantum computing and

advancements in Graphics Processing Units (GPU) and specialized chips allowed computes to

perform actions though to be impossible to achieve before. World have become more and more

interlinked where safeguarding infrastructure became paramount concern. Cyber-attacks like phishing

and Distributed Denial-of-Service (DDoS) posing critical threat to security mechanisms imposed. The

application of machine learning which advanced predominantly in the past decade is a promising way

to defend such a threat. A Traditional rules-based methods of prevention always false in short to

detect attacks because they are excessively depending on predefined signatures and while struggle to

evolving nature of network traffic. This study determines the relative efficiency of using an

autoencoder based model to determine the nature of the traffic.

The research question is:

How effectively can autoencoders trained on non-anomalous traffic identify anomalies in live network

data?

The study is intended to determine the relative advantage of an encoder-based model in defending

malicious traffic. Objectives of the papers also include development of a deep learning-based anomaly

detection model using autoencoders, test the model in live environment to see its practical

applicability. This work expected to contribute to fill the gap between the static anomaly detection

and adaptability needed for the dynamic nature to threats.

The paper is structured as follows:

Section Topic

Section 2 Related works
Section 3 Research methodology

Section 4 Design Specification
Section 5 Implementation
Section 6 Evaluation

Section 7 Conclusion

2 Related Work

This section gives you a critical analysis about some of the important past works of research done in this field

and advancements make in each. This analysis is focused on how each research the detection of anomalies in

traffic and performance achieved by each of the researchers.

2.1 Anomaly detection with Supervised Learning methods

A supervised learning model as the name explains need the manual supervision or

intervention in training the machine. The model depends on labelled datasets to classify

anomalies. Datasets like NSL-KDD and CICIDs are available for training. These datasets are

providing high accuracy when used with machine learning model like Convolutional Neural

Network (CNN) and Support Vector Machines (SVM) when sufficient labelled data is

available in both the categories. Deep learning models like Decision Trees offers more

understanding and interpretability to the results. Weaknesses to this learning method are

chances of overfitting and high dependency on the labelled data for the training.

Accumulating such labelled data is a time consuming and depleting task while covering all

attack types is not feasible since cyber security is a real of evolution and rapid changes. Using

a supervised model would fail in detect unfamiliar attack types it is trained to determine.

Malhotra et al. (2015)

The paper Anomaly Detection in Network Traffic using K-mean clustering is written by R.

Kumari, Sheetanshu, M. K. Singh, R. Jha and N.K. Singh. This paper explores through the

use of k-means clustering as a method for detecting network intrusions. The authors say that a

traditional signature-based intrusion detection system would have long response time, and it

won't be able to detect unknown attacks. The paper proposes a clustering-based approach

using Apache spark which is a fast and scalable cluster computing framework to prove the

effectiveness of the method. The methodology involves five steps which R data preparation,

K means clustering, choosing the value of K, visualization, labelling and entropy. The KDD

1999 Data set is used on Apache spark to preprocess the initial stage. A K-means algorithm

it's implemented in spark the group the data points into distinct groups. The optimal value for

K meet represents the number of clusters determined and is chosen on the next phase. The

visualization part is implemented with the use of R to gain valuable insights about the

structure of the distribution. Labelling and entropy are later implemented to evaluate the

quality of the clustering. The paper concludes by showing the effectiveness of the k-means

clustering model in the data set which greatly detects the anomalies. The paper proposes to

extend to other domains like financial data analysis and market basket analysis.

The paper "Network Traffic Anomaly Detection Using Recurrent Neural Networks" presents

the application of Long Short-Term Memory networks by Benjamin J. Radford et al. for

detecting anomalies that may appear in network traffic. The authors have underlined the

weakness of traditional intrusion detection systems based on predefined rules and signatures

and proposed unsupervised learning leveraging Long Short Term Memory (LSTM) to model

the usual patterns of network communication. They tokenize and compress netflow data into

sequences to enable the LSTM to learn the semantic structure of traffic. The prediction error

from the model acts like an anomaly score, with higher errors indicating a likelihood of

anomalies. On the ISCX IDS dataset, the LSTM model gives an impressive AUC of 0.84 for

unsupervised attack identification, hence proving that it works well even when trained on

mixed normal and attack traffic. The authors point out some directions for future research:

exploring other deep learning architectures and the development of real-time anomaly

detection systems.

2.2 Anomaly detection with unsupervised learning methods

The first paper “A Basis Evolution Framework for Network Traf c Anomaly Detection” is

authored by Hui Xia, Bin Fang, Matthew Roughan, Kenjiro Cho, and Paul Tune and

published in 2018 by Computer Networks. This paper research on the topic Network Traffic

Anomaly Detection. The aim of the paper is to find a more accurate and adaptive method to

detect anomaly that could be able to evolve over time to adapt to changes happening on the

nature of the network traffic pattern. The main motivation for this research is nothing but

limitations in the current anomaly detection methods. The papers say most of the current

methods are based on static basic functions which limits the ability of adopt to the nature of

changing traffic. The papers introduce a new framework that allows a more general function

that represents the network traffic which are constrained by invariant properties like diurnal

and weekly cycles.

The main contribution of the paper is Basic Evolution framework which is a more general

class of function to represent the network data and an adaptational mechanism that allows the

evolution of representations. The paper also suggests techniques to represent a group of

anomaly points to a single anomaly point event for the sake of classification and

identification.

 The paper follows a methodology that includes data cleaning process to get rid of the

anomalies in data, a basic generation and update process to initialize a basic function and

update the function in the event of time respectively. Robust principal component analysis,

orthogonal matching pursuit and principal component analysis are some of the methods the

paper uses to evaluate the method generated. The experimental part of the paper includes

usage of both synthetic and real-world data. The main finding in the paper is that a Basis

Evolution would outperform the other methods in term of accuracy and rate of false alarms.

The paper concludes with suggesting finding a more efficient algorithms for Basis Generation

and update to handle more complex anomalies. Application of the paper includes in

improving the IDS and giving more effective tools to network managers to better detect and

analyse the network problems. The paper also finds to connect other related research in

anomaly detection like works on subspace anomalies and multi-scale methods of detection.

This paper "Network Traffic Anomaly Detection Using Recurrent Neural Networks" by

Benjamin J. Radford et al. covers the application of Long Short-Term Memory (LSTM)

recurrent neural networks to unsupervised anomaly detection in network traffic. The authors

avoid the limitations of traditional signature-based methods by tokenizing and compressing

netflow data into sequences of "words" in a way that enables the LSTM to learn the semantic

structure of network communication. The prediction error of the model is taken as an

anomaly score, and therefore higher errors mean higher possibility of being anomalous. As

the paper demonstrates with ISCX IDS dataset, one can achieve an AUC of 0.84 for

unsupervised attack identification using this approach. Further areas of research that authors

will go ahead with include using other deep learning architectures, doing real-time systems,

and multi-scale methodologies for anomaly clustering.

The later paper “An Unsupervised Deep Learning Model for Early Network Traffic Anomaly

Detection” is written by Ren-Hung Hwang, Min-Chun Peng, Chien-Wei Huang, Po-Ching

Lin, and Van-Linh Nguyen and published in 2020 by IEEE Access. This paper explores an

unsupervised deep learning model to detect early anomalies in the IoT networks. The

motivation to conduct this research is the limitations that exist in the current detection

methods related to anomalies That are predefined in nature which doesn't depends on the

nature of the network. This paper introduces D-pack, which is novel based deep learning

model that learns about the packet from analyzing the first few nodes of each packet. The

paper highlights the importance of early detection of anomaly for better prevention and

volume of processing. The detection methodology mentioned is a three-step process which

includes preprocessing, traffic profile building and anomaly detection. A CNN model is used

to automatically learn about the traffic in the traffic profile building phase. Later an auto

encoder model uses the core for the anomaly detection phase. The datasets used in the

experiment includes USTC-TFC2016, Mirai-RGU, and Mirai-CCU. The performance is

calculated in terms of accuracy, precision, recall, and f1 score. The paper concludes by

suggesting exploration of new techniques in detecting anomalies using a multiscale method.

The paper "Network Traffic Anomaly Detection using Machine Learning Approaches" by

Kriangkrai Limthong and Thidarat Tawsook reviews the performance of some machine

learning algorithms, namely naive Bayes and k-nearest neighbor, in detecting anomalies

within network traffic. The authors pinpoint the shortcomings of traditional signature-based

methods that are usually unable to detect new kinds of attacks and point out that statistical-

based approaches can learn from experience under changing conditions. Their methodology

includes data collection, feature engineering focused on interval-based features, and training

the algorithms on the dataset. Tests show that K-Nearest Neighbors (KNN) generally

surpasses naive Bayes. The paper emphasizes feature selection, which increases the

performance of the model, and identifies further research on hybrid and deep learning models

to bring improvement in detection in complex network conditions.

The paper, "Anomaly Detection in Network Traffic Using Unsupervised Machine Learning

Approach," by Aditya Vikram and Mohana highlights the use of unsupervised learning model

isolation forest to detect anomalies in network traffic which especially concentrated on

intrusion detection. Key contributions of the research are use of unsupervised learning for

anomaly detection which address the limitation of traditional rule-based detection questions

to be replaced by an unsupervised learning model. The paper introduces isolation forest

classification to detect the malicious traffic. Data is preprocessed and features are engineered

to handle class imbalance redundancy. The paper uses evaluation metrics such as anomaly

score and AUC score do access the performance of the model. The data set used in the

research is KDD Cup 1999. The final stage in the methodology is visualization to gain

valuable insights keyboard performance. The paper claims to have achieved an AUC score of

98.3% and is able to detect common attacks like DDoS. The research suggests several

improvements like the use of a hybrid model that combines supervised and unsupervised

learning techniques and practical research in feature selection and feature normalization

techniques to improve the model accuracy. It also specifies the advantage of deep learning

techniques in anomaly detection that can handle continuously arriving data streams. Overall,

the paper provides valuable insights do the field of intrusion detection to the implementation

of random forest classification to detect anomalies in the network traffic.

The paper "Network Traffic Anomaly Detection using Machine Learning Approaches" by

Kriangkrai Limthong and Thidarat Tawsook explores the use of machine learning algorithms

to detect anomalies in network traffic. They compare two well-known algorithms, naive

Bayes and k-nearest neighbours, to identify effective interval-based features for different

types of anomalies and determine the best algorithm for specific network scenarios. The

authors highlight the limitations of traditional signature-based methods and the need for more

robust statistical-based approaches to detect novel attacks. Their research focuses on the

relationship between interval-based features and anomalies, aiming to provide insights for

researchers and network administrators in selecting appropriate features and algorithms for

their systems.

The paper “Network Traffic Anomaly Detection via Deep Learning," by Konstantina

Fotiadou, Terpsichori-Helen Velivassaki, Artemis Voulkidis, Dimitrios Skias, Sofia

Tsekeridou, and Theodore Zahariadis explores the use of a deep learning model in network

traffic anomaly detection. The authors use pfSense which is an opensource firewall software

to collect and analyze logs to identify threats. This paper proposes a deep learning

architecture supported by CNN and Long Short-Term Memory Networks (LSTM) to detect

threads and alerts in the network. This paper suggests SME supervised learning techniques

with labeled and unlabeled data to improve accuracy of that anomaly detection. The paper

follows a five-step methodology including data acquisition, data preprocessing, model

training, anomaly detection and evaluation. The model developed shows us high accuracy

(over 97%) in classifying network log. The paper represents the contribution of deep learning

in the field of intrusion detection systems in network traffic.

The paper titled “Arima Model for Network Traffic Prediction and Anomaly Detection” by

H. Zare Moayedi and M.A. Masnadi-Shirazi is research that explores the use of ARIMA

model for network traffic predictions and anomaly detection. The authors declares that since

network traffic this highly dynamic nature network provisioning and problem diagnostics

most often are crucial tasks. This paper adopts a methodology on isolating anomalies from

normal traffic variations to gain better predictions. The paper uses an ARIMA Model

fortnight work traffic prediction which is effective to predict both malicious and normal

traffic. Unlike many others this paper suggests classification of signal traffic into two parts

predictable normal variation that follows it pattern and unpredictable anomalies that are

pattern less. Three major predictability measures are introduced in the paper that are MSE,

NMSE and SER to measure the accuracy of ARIMA model in network traffic. The authors

have also done a simulation showing a random process and ARIMA process. This simulation

is used to evaluate the ability of ARIMA model in detecting outliers and to identify potential

troubles. The key improvement found in this paper is that the model developed is capable of

detecting volume of anomalies or outliers in network traffic. Overall newspaper is a valuable

contribution to the field of network traffic and anomaly detection that Concentrates on

efficiency of an ARIMA model.

2.3 Anomaly Detection with Other methods

This paper by “PCA-Based Network Traffic Anomaly Detection” is written by Meimei Ding

and Hui Tian, which proposes a Principal Component Analysis (PCA) -based method in

detecting anomalies in network traffic . The main motivation for the project is lack of

traditional methods that struggle to detect high volume network traffic. This PCA-based

method that is used here can effectively analyze the higher-dimensional data by extracting the

key features and reducing dimensionality. This model is peculiarized by having higher

accuracy and efficiency for single-node and multi-node anomalies alike. The authors also

suggest that more research is needed to combine PCA based methods with other techniques

for more robust detection and analysis.

The authors of the paper “PHAD: Packet Header Anomaly Detection for Identifying Hostile

Network Traffic” are Matthew V. Mahoney and Philip K. Chan. This paper introduces a

novel IDS called PHAD which relies on detection of network anomalies by analyzing the

packet headers of each packet in the network unlike traditional methods like IP address and

port number related. PHAD works in a way this it learns the range of values for 33 packet

header field across various protocols and then assign score to each of the packet the travels

based on the probability for the packet to be malicious. This strategy is tested with 1999

DARPA intrusion detection dataset and found two have detected most of the malicious

packets. The authors suggest to how suggests making more research to be done on single pass

version of PHAD for better tokenization and techniques.

Paper “Learning Rules for Anomaly Detection of Hostile Network Traffic," by Matthew V.

Mahoney and Philip K. Chan suggests the use of LERAD which is an algorithm to detect

anomalies in network traffic. LERAD is designed to identify rare events in network traffic

and learn rules associated with that. The key motivation for the other two developing such a

model is the inability of novel based models in detecting fast spreading worms. This model

was designed to detect attacks from various sources like HTTP, SMTP and DNS. The design

phase of the LERAD algorithm consists of two phases which are rule generation and rule

training and validation. For future work the authors suggest the room improvements

including development of a single pass version of LERAD and research into better

tokenization techniques.

Paper "Network Traffic Analysis based on Collective Anomaly Detection," by Mohiuddin

Ahmed and Abdun Naser Mahmood space on the need of accurate network anomaly

detection systems to address challenges of denial-of-service attacks in network. The orders

follows in method of collective anomaly detection with x-mean mean clustering which

identifies the anomaly classic cluster of anomalies having similar nature. The efficiency of

this approach is validated with DARPA dataset, which showed greater improvements in

detecting denial of service attacks. The paper concludes by concentrating on the need to have

more advanced clustering algorithms and multi-scale ones for handling complex anomalies

"Network Traffic Anomaly Detection," by Hong Huang, Hussein Al-Azzawi, and Hajar

Brani, it's giving a complete lecture on non-signature-based anomaly detection in network

traffic. It follows 3 approaches PCA-based, sketch-based, and signal-analysis-based. This

paper also talks about a framework to integrate these 3 approaches. In the paper many times

the authors stress the need to increase the importance of network security and improved

mobility detection systems. This paper reading served as a valuable insight to understand

deeply about various anomaly detection systems and its implementations.

Federico Simmross-Wattenberg, Juan Ignacio Asensio-Pérez, Pablo Casaseca-de-la-Higuera,

Marcos Martín-Fernández, Ioannis A. Dimitriadis, and Carlos Alberola-López and published

“Anomaly Detection in Network Traffic Based on Statistical Inference alpha-Stable

Modeling” in 2011 at IEEE transactions on Dependable and Secure Computing. Study aims

to find is robust and accurate but there to detect the dirt traffic anomalies. The main

motivation for this research is the limitations in existing anomaly detection methods that are

most often depends on gamma distribution and Poisson model. This paper introduces a new

anomaly detection Mora based on alpha-stable distributions and statistical hypothesis testing.

The practical involves 4 steps data acquisition, data analysis, inference and Validation. In the

inference stage A generalized likelihood ratio test (GLRT) is used to classify the traffic into

anomaly or normal. The validation phase is characterized using Receiver Operating

Chatacteristic (ROC) curves. This method Is shown to be outperforming the traditional

anomaly detection methods in terms of accuracy and detection rates. The paper suggests the

use of more robust and efficient algorithms for alpha-stable parameter estimation. Potential

applications after research includes improved accuracy and reliability of intrusion detection

systems and empower the network managers with more advanced tools for detection.

3 Research Methodology
The research approach adopted for the study on which this thesis is based is outlined below

by describing the processes, techniques, and tools utilized. This section also entails the

analysis and assessment of scientific soundness of the data collected.

3.1 Research Process
Objective: To detect anomalies in network traffic using autoencoders.

Steps followed:

1. Literature Review: The study of related work has been extended to identify proper

methodologies for setting a baseline.

2. Data Collection: The collection of network traffic data for normal and malicious

traffic was obtained using publicly available datasets like ‘synthetic_network_traffic’

and live network capture tools like Suricata in a virtual environment.

3. Data Preprocessing:

• Filtered normal traffic for autoencoder training.

• Encode categorical features into numerical representations for protocol type,

service, and flags.

• Scaled numerical features (e.g., bytes, packets) using Standard Scaler to

ensure uniformity.

4. Model Design: Designed the PyTorch deep autoencoder model that is supposed to

regenerate normal traffic.

5. Training: The Autoencoder is trained only on normal traffic data to minimize the

reconstruction error.

6. Testing the model by utilizing mixed data against anomaly thresholds defined by

reconstruction errors.

7. Validated: The model's performance is compared to baseline methods.

3.2 Apparatus Used
Software:

• Programming Language: Python.

• Libraries: PyTorch, NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn.

• Dataset Used: Synthetic Network Traffic Anomaly Detection Dataset, Live collected

Dataset from Suricata.

Hardware:

• Host Machine running the Windows 11.

Specifications:

o Processor: Intel i5 CPU.

o RAM: 16 GB.

o Storage: SSD, 500 GB.

• Virtual Machine running Kali Linux

Specifications:

 Storage:50GB

 RAM Allocated: 8 GB

 No of Processors Allocated: 8 CPU

3.3 Data Collection and Preparation
Source:

• Publicly available datasets containing labelled traffic data labelled Is Anomaly or

regular

• Captured live network traffic with tools like Suricata.

Data Size: Approximately 1 million records of network traffic flow from public dataset and

50,000 sample live collected form Suricata tool.

Preprocessing Techniques:

Cleaning:

• removal of missing irrelevant data.

• Encoding of categorical data as one hot vectors.

• Normalization of numerical features for better model performance.

• Normalization of Anomalies to numerical features.

3.4 Experimental Arrangement
Training Scenario:

Dataset Split: 80% Training, 10% Validation and 10% Test Sets. .

Training of the model is exclusively done on normal traffic as encoders learn from normal

traffic to detect anomaly traffic.

Threshold Selection:

Threshold on the reconstruction error set while analysing the distribution in the validation

data.

Live Deployment Test:

Developed model is tested on live virtual environment collecting live data from the network

to classify the nature of the network.

3.5 Statistical Methods
Reconstruction Error Analysis:

• Computed Mean Squared Error for each record to understand the variation from the

original and computed.

• Cutoff threshold statistically predetermined such as the 95th percentile.

Performance Indicators:

• Precision, Recall, F1 score on anomaly detection.

• Receiver Operating Characteristic (ROC) Curve and Area Under Curve (AUC) to

measure trade-offs between true and false positives.

3.6 Data Analysis
Outlier Detection:

• Outliers detected when reconstruction error outperformed the threshold.

• Checked the feature-feature correlation to identify anomalies.

Visualization:

• Reconstruction error distribution plotted.

• ROC curve for understanding model performance.

• Precision-recall chart for highlighting anomaly detection efficiency.

3.7 Summary of Procedure
• Data Collection and Preprocessing.

• Model Design and Training with Normal Traffic data.

• Anomaly detection based on the reconstruction error.

• The statistical techniques of performance evaluation. It ensures the scientific

undertaking is strong, evaluative, and comprehensively validates the proposed

solution through a methodological approach.

4 Design Specification

4.1 Techniques and Architecture

This implementation involves the use of autoencoder neural networks, which are designed for

anomaly detection in network traffic data. The below image shows the architecture of the

model designed in the paper. Architecture is having and incoming component and an

outgoing component for incoming and outgoing traffic respectively. The architecture follows

layered approach where the encoder model is placed at the innermost location directly

interacting with the corporate network. The encoder would direct the genuine traffic to the

inside network while blocking the malicious ones. The outgoing traffic works in a similar

way just before the traffic is sent to the outside world the traffic is passed through the model

to detect malicious nature of traffic.

Fig 1: Architecture of the Model

1. Autoencoder Neural Network Architecture:

• Encoder: This model compresses the input data into a lower-dimensional latent

representation via several fully connected layers mixed with LeakyReLU and Batch

Normalization, speeding up the training and further stabilizing it.

• Latent Space: Comprises the most representative features of the input data so that the

model will be able to reconstruct normal patterns effectively.

• Decoder: This reconstructs the input data from the latent representation and

structurally mirrors the encoder.

• Output: The source input is compared with a source-the recreated output-to compute

the reconstruction error subsequently used for anomaly detection. See the image

below to see the general structure of the encoder model.

Fig 2: Structure of an encoder model.

An encoder model has 5 stages beginning from Input ending at Output. An encoder and

decoder would come in between the latent space which does majority of the classification

work.

2. Regularization Techniques:

• Dropout: This is applied both in the encoder and decoder to prevent overfitting.

• Weight Decay: Used in optimization to perform L2 regularization.

3. Structure:

It is implemented using PyTorch: a deep learning framework that allows flexible design and

training of desired neural network architectures.

4. Learning Strategy:

• Adam Optimizer: It is used for smooth convergence with efficient gradient descent at

lower learning rates.

• Learning Rate Scheduler: Dynamically adjusts the learning rate to prevent

overshooting or stagnation during training.

• Early Stopping: This stops the training in case the model performance doesn't

improve for some number of epochs.

4.2 Requirements

4.2.1 Data Requirements:

Input data consists of network traffic records with numeric and categorical features.

Categorical features are encoded using Label Encoding, whereas numeric features are

brought to a standard scale using Standard Scaler.

4.2.2 Hardware Requirements:

A system with a GPU is recommended for speeding up training because of the model's deep

architecture.

Current GPU: GTX 1650

4.2.3 Software Requirements:

• Python 3.x.

• Libraries: PyTorch, NumPy, pandas, scikit-learn, and joblib.

4.2.4 Performance Indicators:

• Reconstruction Error: The performance of the model is measured as MSE between the

input and the output.

• Anomaly Detection Threshold: It is defined as a mean reconstruction error plus three

standard deviations of the error distribution. Algorithm Description

4.3 The autoencoder works as illustrated:

Input Processing:

This section pre-processes the network traffic data: it cleans up anomalies, encodes

categorical variables, and scales numerical features.

Encoding:

The input data are fed into the encoder to reduce the dimensionality, which captures the

salient features in the compressed latent space.

Decoding: The decoder projects this latent representation back into the original input

dimensions in such a way that it attempts to reconstruct the data like the original one.

Loss Calculation: The reconstruction error, or MSE, may be determined by comparing the

reconstructed data against the original input.

Anomaly Detection: Reconstruction errors are analysed for anomalies after training. Errors

that exceed a predefined threshold signify anomalous behaviour. This design will ensure

robustness, scalability, and effectiveness in anomaly detection while considering all the

developments related to deep learning and regularization techniques of such complex

network traffic data.

Threshold Calculation: A Threshold values is calculated to decide if the reconstruction error

is higher than the threshold to decide if the traffic is malicious or not.

Threshold = mean + 3 * standard deviation

mean – Average of the reconstruction errors form the training.

Standard deviation - Standard deviation of the reconstruction errors form the training.

Threshold – Reconstruction error value above which considered an anomaly.

The image below shows the classification process based on the threshold of reconstruction

error using an encoder model. When the threshold of reconstruction error is more than an

allowed level the model is blocked as anomaly while others are considered regular.

Fig 3: Classification Based on threshold.

5 Implementation

5.1 Outputs Produced
Trained Autoencoder Model:

• Built and trained in PyTorch.

• Outputs the reconstruction errors for every input instance to classify the network

traffic as normal or anomalous.

Transformed Dataset:

• Pre-processed network traffic, including scaled numeric features and one-hot encoded

categorical ones.

• Analysed for anomalies by applying reconstruction error thresholds.

Visualisations:

• Graphs of reconstruction error distribution in normal and anomalous traffic.

• ROC-Receiver Operating Characteristic curve for the performance evaluation.

• Precision-recall curve highlighting detection efficiency.

Fig : ROC Curve on Model

5.2 Tools and Languages Used
Programming Language: Python.

Libraries and Frameworks:

PyTorch: To create and train the autoencoder.

Numpy and Pandas: for data frame manipulation and pre-processing.

Scikit-learn: for feature scaling and evaluation metrics.

Matplotlib and Seaborn: For plotting graphs and visualizations.

Environment:

Kali running on Virtual Machine for network traffic collection.

Jupyter Notebook for coding and iterative debugging.

Windows host machine for development and training purposes.

5.3 Process of Implementation
Data Preprocessing

Cleaning and transforming the raw network traffic data into a model input format.

The features are standardized using StandardScaler; the categorical columns are one-hot

encoded.

Autoencoder Model Development:

Implemented the deep autoencoder using PyTorch, with fully connected layers.

The encoder was configured to compress data into a latent space, while the decoder

reconstructed data into its original format.

Model Training:

It was then trained only on the normal traffic data using an MSE loss function.

It has subsequently been optimized using Adam's optimizer with a learning rate of 0.001.

Anomaly Detection:

This was later used in the reconstruction of test data post-training.

The reconstruction error was calculated for every single data point. After that, anomalies

were defined by a threshold.

The model developed is saved to deploy the model in a live machine. A virtual machine is

used to deploy the model to detect the machines traffic as anomaly or not. Bases on the result

the traffic details are printed.

Evaluation and Validation:

Model performance was analysed based on precision, recall, F1 score, and the ROC Curve.

Created visualizations to interpret the model performance and underline anomalies.

5.4 Final Output
Trained autoencoder weights are saved into a .pth format for future use. Encoder training is

terminated if the MSE is not improving at 3 consecutive epochs. Best of the training model

is used to deploy on the virtual machine from where the dataset was originally collected

from. Network of the virtual machine is analysed by the model to categorize the traffic

malicious or regular.

6 Evaluation

The purpose of this section is to provide a comprehensive analysis of the results and main

findings of the study as well as the implications of these finding both from academic and

practitioner perspective are presented. Only the most relevant results that support your

research question and objectives shall be presented. Provide an in-depth and rigorous analysis

of the results. Statistical tools should be used to critically evaluate and assess the

experimental research outputs and levels of significance.

Use visual aids such as graphs, charts, plots and so on to show the results.

The Performance of the model is evaluated using the ROC curve and Precision-Recall curve.

6.1 ROC Curve:

It plots the sensitivity against the false positive rate. The area under the curve is the

measurement of the performance of the model. The histogram for ROC performance is highly

skewed to the right, the sharp peak when coming closer to zero. Here X-axis shows the

Reconstruction error. The Lower values here represents that the data-point is well defined by

the model here, mean while a high value suggests that it’s an anomaly. Y-axis here is the

number of data points given reconstruction error. The distributed shape shows that the data

points have a low reconstruction error. There are also a small amount of data points having

higher errors which show there were some anomalies detected. The red dashed line here

marks the anomaly detection threshold which is approximately 0.0154. The threshold decided

here is a statistical figure calculated by the means of standard deviations. The data points

having reconstruction errors above the threshold are classified as anomalies

Implications: most data points showing low reconstruction error show that the encoder is

doing a good job representing the normal traffic. But the long tail here is an indication of

significant false positives. Creation existing between the bulk of the data and the threshold is

not very large which means the model is not very efficient at distinguishing between the

normal and anomaly data. The success rate of the anomaly detection is heavily dependent on

the threshold is the threshold is too low there can be lot of false positive classifications. If it's

too high, they can be many false negative volumes. The large number of data points near the

threshold suggest that the model needs potentially more adjustment to the threshold to get

better performance.

Fig 4 :ROC Performance Fig 5: ROC Characteristic Cure.

The Roc curve indicates for performance. Here the X axis is the file supposed to decorate, Y

axis represents the true positive rate. The single red point on the curve represents specific

operating point of low true positive rate and low false positive rate.

6.2 Precision Curve
The X axis here represents the recall, which is the proportion of actual anomaly identified

correctly by the model. The Y axis is the precision which is the ratio of correctly identified

anomalies to all the instances of the labeled as anomalies. An ideal model would have a

precision of one and the recall of one which would have a curve that stays at the top right

corner. The car in the image is almost a straight line which indicates that the model's

performance is very close to random guessing. The small red dots represents a specific point

on the curve which is a particular threshold of low precision and moderate recall.

Implications: the near diagonal structure show that anomaly detection was not successful.

There can be several reasons for having a low precision for the model which can be included

for model training, issues with the data set, fault threshold selection. The encoder model may

not have been properly trained on the data set so with insufficient training or learning rate or

even a faulty architecture could also be the reason. The data set chosen might itself be the

problem the insufficient representation of data good how hindered the model's ability to

learn. Even though the threshold is visually represented in the Roc curve which also can be

the reason for low precision. The image below shows an inverse relation between the

precison and recall while the recall was low initially the precision was very high ,when the

recall reached maximum the precision declined to a minimum rate.

 Fig 6: Precicion Curve

The encoder model has tried to be implemented with different sorts of data collected from

various sources.

6.1 Experiment / Case Study 1

Publicly available dataset “Synthetic Network Traffic Anomaly Detection Dataset” train and

test the auto encoder mortal to detect its efficiency. Features of the dataset were

Features: SourceIP, DestinationIP, SourcePort, DestinationPort, Protocol, BytesSent,

BytesReceived, PacketsSent, PacketsReceived, Duration, IsAnomaly.

The model was trained on this data set having 1,000,000 records including both malicious

and regular traffic. When this model developed was deployed on the virtual machine the

model utterly failed in classifying the traffic. Which was one of the main reasons experiment

2 was conducted connecting live data from tools like Suricata.

6.2 Experiment / Case Study 2

A new data set is collected from the virtual machine environment hosted by Kali using tools

like Suricata. Which is an open source IDS/IPS system. Network traffic from the virtual

machine is collected using this open source tool to CSV format to train the model. Features of

the data set collected includes

Features: SourceIP, DestinationIP, SourcePort, DestinationPort, Protocol, BytesSent,

BytesReceived, PacketsSent, PacketsReceived, Duration, Malicious.

Among these 11 features only 7 were used to train the encoder model. Which were

“SourcePort, DestinationPort, Protocol, BytesSent, BytesReceived, PacketsSent,

PacketsReceived, Duration”. The model was trained on this data set made individually

showed better accuracy in categorizing live captured data in the virtual machines since the

dataset it's originally collected from similar virtual machine. So it would be great to collect

the data set from the same network the machine learning model is planning to be

implemented.

The image below is a screenshot of how the network traffic is collected using suricate tool in

kali Linux environment. The program runs in terminal and collects the date from the traffic

until it is terminated by user. For this research purpose the program is allowed to run for

hours colleting packets from incoming traffic.

Fig 7: Kali Virtual Machine Collecting Packages for the dataset.

Fig 8: Live network Classification in Virtual Machine.

The screenshot above shows the encoder model running in an virtual environment classifying

the incoming packets. When ever a packet is captured with high reconstruction error which is

greater than the threshold it would be displayed as malicious in the terminal.

6.5 Discussion

Detailed discussions of the findings of the experiments and case studies follow. The
discussion critically analyses experiments, shows the limitations, and suggests ways to
improve.

Critique of Experiment / Case Study 1

For the first experiment, the "Synthetic Network Traffic Anomaly Detection Dataset" is a
rather diverse traffic dataset. Given that was good to test initial successes, the results being on
a virtual machine were suboptimal. Key issues include:

• Overgeneralization of Dataset: The synthetic dataset most probably did not
generalize well to the live traffic environment.

• Deployment Environment Mismatch: The model developed with synthetic data was

poorly performing in classifying real-world traffic because the training data didn't
include nuance specific to the domain.

Suggested Changes:

• Use more representative datasets of the intended deployment environment.

• Performed feature engineering to understand how real-world traffic in scenarios
would feed into the model.

Critique of Experiment / Case Study 2

Results for the second experiment utilized live data obtained straight from the virtual
machine environment and thus had better classification accuracy. This underlines the
importance of environment-specific data. Among the limitations:

Small Training Dataset: The dataset was environment-specific and rather small as compared
to the synthetic dataset.

Threshold Sensitivity: Detection performance is highly sensitive due to the choice of
threshold; hence, mainly manual tuning is performed.

Suggested edits:

• This increases the size of the training dataset through the collection of longer lengths
of traffic data.

• Automate threshold optimization using techniques like grid search or adaptive

thresholding.

General Observations and Context with Literature

These results are consistent with prior work that has established that anomaly detection
models require domain-specific training data. Various studies have pointed out that, although
convenient, synthetic datasets often lack nuances of live traffic, which reduces their value in
the wild. Apart from these, the literature also points to threshold setting sensitivity as a
general problem with anomaly detection models.

Proposed Changes:

• Include more features or metadata from the live traffic to train on.

• Try other model architectures, including variational autoencoders, that might allow
for better representation learning. Parallel studies using other datasets or other

methodologies compare findings. Addressing these limitations and incorporating the
improvements suggested will allow remarkable improvements in the model's
performance for practical deployment.

7 Conclusion and Future Work

This was for the study and development of a machine-learning-supported anomaly

detection system of network traffic. Thus, the key question in this study was: "To what extent

could an autoencoder model detect anomalies in network traffic based on reconstruction

errors?" The main goals were to design, implement, and evaluate the performance of this

model using synthetic and network live data, identify its strengths and limitations, or its

practical applicability.

Summary of Work Done: An autoencoder model was designed and trained to answer

the research question on the detection of network anomalies. Firstly, an autoencoder model

was tried on a synthetic dataset, which needed to be used at the very beginning because of its

high controllable nature. Secondly, cognizant of the limitation of synthetic data in nature,

another experiment was done by capturing live traffic data in a virtual machine environment.

Careful feature selection was done for those relevant to anomaly detection, and

performance was analysed by metrics including the ROC and precision-recall curves.

Key Findings

• Synthetic Dataset Results: The model seemed to perform well on the synthetic

dataset it was trained and tested on, but, when actually deployed, it performed

exceedingly poorly. This is one of the challenges of trying to generalize from the

results of synthetic data into actual traffic.

• Results on Live Dataset: The model is trained with live traffic data from the

same environment in which it is deployed, giving appreciable accuracy. Again,

this points to the fact that environment-specific datasets could have an important

say in anomaly detection.

• Threshold Sensitivity: This model relied heavily on the choice of threshold value

while trying to detect anomalies. Inappropriate thresholds either lead to too many

false positives or do not find the anomalies at all; therefore, better threshold

optimization methods have to be found.

Limitations and Implications

The present study characterizes an autoencoder as a prospective tool in network anomaly

detection, provided that its training is done with domain-specific data. Limitations faced by

the tool include:

• Dataset Quality: The synthetic dataset lacked the complexities of real-world

traffic, limiting its usefulness in practical applications.

• Dependency of Threshold: Besides, detection became less adaptive for differing

conditions of traffic, since the threshold used was picked manually.

• Generalization of Models: Even on live data, the model's performance was poor

for edge cases; this hints at further refinement in the architecture or training

process.

These findings go along well with the existing literature on the trade-off between

synthetic and real data sets, added to the challenges of fine-tuning unsupervised anomaly

detection models.

Proposals for Future Work

• Dynamic Thresholding: Future studies may be performed to use adaptive

thresholding schemes which dynamically change with traffic patterns or other

statistical properties, reducing the need for manual tuning.

• Diversified datasets: more collection and usage of real traffic data in different

environments and temporal conditions improve the generalization capability of the

model.

• Advanced Architectures: Other architectures, such as variational auto-encoders,

or combinations of both supervised and unsupervised techniques in one algorithm,

can do anomaly detection more precisely and reliably.

• Feature Enhancement: This can be further improved by incorporating other

features, such as time-series characteristics or metadata, for better detection

performance.

• Commercial Applications: From a practical perspective, embedding the model

into currently available intrusion detection systems like Suricata may lead to real-

world deployment. Subsequently, this can be followed by scalability and user-

friendliness during piloting in a controlled enterprise environment.

References

Chan, P. and Mahoney, M. (2001). Scholarship Repository @ Florida Tech Scholarship

Repository @ Florida Tech PHAD: Packet Header Anomaly Detection for Identifying Hostile

PHAD: Packet Header Anomaly Detection for Identifying Hostile Network Traffic Network

Traffic PHAD: Packet Header Anomaly Detection for Identifying Hostile Network Traffic.

Ding, M. and Tian, H. (2016). PCA-Based Network Traffic Anomaly Detection. TSINGHUA

SCIENCE AND TECHNOLOGY, 21(5).

Fotiadou, K., Velivassaki, T.-H., Voulkidis, A., Skias, D., Tsekeridou, S. and Zahariadis, T.

(2021). Network Traffic Anomaly Detection via Deep Learning. Information, 12(5), p.215.

doi:https://doi.org/10.3390/info12050215.

Huang, H., Al-Azzawi, H. and Brani, H. (n.d.). Network Traffic Anomaly Detection.

Hwang, R.-H., Peng, M.-C., Huang, C.-W., Lin, P.-C. and Nguyen, V.-L. (2020). An

Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection. IEEE

Access, 8, pp.30387–30399. doi:https://doi.org/10.1109/access.2020.2973023.

Iglesias, F. and Zseby, T. (2014). Analysis of network traffic features for anomaly detection.

Machine Learning, 101(1-3), pp.59–84. doi:https://doi.org/10.1007/s10994-014-5473-9.

Kumari, R., Singh, S., Jha, R. and Singh, N. (2016). Anomaly Detection in Network Traffic

using K- mean clustering.

Limthong, K. (2013). Real-Time Computer Network Anomaly Detection Using Machine

Learning Techniques. Journal of Advances in Computer Networks, pp.1–5.

doi:https://doi.org/10.7763/jacn.2013.v1.1.

Mahoney, M. and Chan, P. (n.d.). Learning Rules for Anomaly Detection of Hostile Network

Traffic.

Radford, B., Apolonio, L., Trias, A. and Simpson, J. (n.d.). Network Traffic Anomaly

Detection Using Recurrent Neural Networks.

Simmross-Wattenberg, F., Asensio-Perez, J.I., Casaseca-de-la-Higuera, P., Martin-

Fernandez, M., Dimitriadis, I.A. and Alberola-Lopez, C. (2011). Anomaly Detection in

Network Traffic Based on Statistical Inference and \alpha-Stable Modeling. IEEE

Transactions on Dependable and Secure Computing, 8(4), pp.494–509.

doi:https://doi.org/10.1109/tdsc.2011.14.

Singh, R., Srivastava, N. and Kumar, A. (2021). Machine Learning Techniques for Anomaly

Detection in Network Traffic. 2021 Sixth International Conference on Image Information

Processing (ICIIP), pp.261–266. doi:https://doi.org/10.1109/iciip53038.2021.9702647.

Vikram, A. and Mohana (2020). Anomaly detection in Network Traffic Using Unsupervised

Machine learning Approach . [online] Available at:

https://ieeexplore.ieee.org/document/9137987 [Accessed 6 Dec. 2024].

Xia, H., Fang, B., Roughan, M., Cho, K. and Tune, P. (2018). A BasisEvolution framework

for network traffic anomaly detection. Computer Networks, 135, pp.15–31.

doi:https://doi.org/10.1016/j.comnet.2018.01.025.

Zare Moayedi, H. and Masnadi-Shirazi, M. (n.d.). Arima Model for Network Traffic

Prediction and Anomaly Detection.

