"‘""
\ National

Collegef
[reland

Configuration Manual

MSc Research Project
Cybersecurity

Mudiaga Agbroko
Student ID: x23207485

School of Computing
National College of Ireland

Supervisor: Kamil Mahajan

National College of Ireland
MSc Project Submission Sheet
School of Computing

Student Name: Mudiaga Agbroko

‘*
\ National

College o
Ireland

Student ID: X23207485

Programme: Cybersecurity Year: 2024

Module: Research Project

Lecturer: Kamil Mahajan

Submission Due

Date: 12/12/2024

Project Title: Utilising Artificial Intelligence in Enhancing Zero-Day Attacks
Detection

Word Count: 1244 Page Count: 24

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Mudiaga Agbroko
Date: 05/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Mudiaga Agbroko
Student ID: x23207485

1 Introduction

This document outlines the hardware and software configuration employed for the
implementation of the research project, “Utilising Artificial Intelligence in Enhancing Zero-
Day Attacks”. The steps taken in the project’s implementation are also detailed as shown in

Figure 1.

PCAP
SNORT t e
m —
\ 4
X LOG
—_— ANALYSIS & EVALUATION
csv
Jupyter
WJ TESTING & EVALUATION
K
PREPROCESSING » MODEL TRAINING
IMPORT DATA

Figure 1: The architecture of the research project’s implementation.

2 System Specification
2.1 Hardware Specification

* PC: MacBook Pro 2017

* Processor: 2.3 GHz Dual-Core Intel Core i5
» Graphics: Intel Iris Plus Graphics 640

« Memory: 8 GB

» Storage: 256 GB SSD

2.2 Software Specification

* Terminal 2.3

* Homebrew 4.4.10

* Wireshark 4.4.2

* Snort3.6.0

* Microsoft Excel 16.91
» Jupyter Notebook 7.3.1

3 Dataset

The CIC-IDS2017 dataset (Sharafaldin, Lashkari, and Ghorbani, 2018) consisting of benign
and cyber-attack traffic was employed in the research project. The Monday subset of the dataset
was excluded because it contained only benign traffic, focusing on just Tuesday, Wednesday,
Thursday, and Friday datasets. For the research project, the PCAP and machine learning CSV
files were downloaded manually from the dataset website as shown in Figure 2 and Figure 3.
The PCAP files were used on snort while the machine-learning CSV files were used in training
and testing the machine-learning models.

» Dataset Download link: http://205.174.165.80/CICDataset/CIC-IDS-
2017/Dataset/CIC-1DS-2017/

Name Last modified Size Description

a Parent Directory -
@ GeneratedLabelledFlows.mdS 2024-02-01 16:27 61
ﬂ GeneratedLabelledFlows.zip 2024-02-01 16:28 271M
@ Machinel earningCSV.md5 2024-02-01 16:28 57
ﬁ Machinel earningCSV.zip 2024-02-01 16:28 224M

Apache/2 441 (Ubuntu) Server at 205.174.165.80 Port 80
Figure 2: Download links of the CIC-1DS2017 dataset CSV files.

http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/CIC-IDS-2017/
http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/CIC-IDS-2017/

Name Last modified Size Description

3 Parent Directory -
@ Friday-WorkingHours.md5 2024-02-01 16:28 59
@ Friday-WorkingHours.pcap 2024-02-01 16:36 8.2G
@ Monday-WorkingHours.md5 2024-02-01 16:36 59
@ Monday-WorkingHours.pcap 2024-02-01 16:48 10G
@ Thursday-WorkingHours.md5 2024-02-01 16:48 61
@ Thursday-WorkingHours.pcap 2024-02-01 16:57 7.7G
@ Tuesday-WorkingHours.md5 2024-02-01 16:57 60

@ Tuesday-WorkingHours.pcap 2024-02-01 17:08 10G

@ Wednesday-workingHours.md5 2024-02-01 17:08 62
@ Wednesday-workingHours.pcap 2024-02-01 17:20 12G

Apache/2 441 (Ubuntu) Server at 205.174.165.80 Port 80
Figure 3: Download links of the CIC-1DS2017 dataset PCAP files.

4 Research Workflow
4.1 Merging the CIC-1DS2017 PCAP Files

Upon downloading the Tuesday, Wednesday, Thursday, and Friday PCAP files of the CIC-
IDS2017 dataset. The next step was to merge the PCAP files and process them using Snort.
Wireshark’s mergecap with the -w flag was employed in combining the PCAP files into a
single PCAP file. To get Wireshark, the Homebrew package manager was installed via the
terminal then Wireshark was installed. Upon installing Wireshark, the PCAP files were
combined on the terminal.

kingmudis@MA-Mac ~ % /bin/bash -c "$(curl -fsSL https://raw.githubusercontent
.com/Homebrew/install/HEAD/install.sh)"

==> Checking for ‘sudo’ access (which may request your password)...
Password:

==> This script will install:

/usr/local/bin/brew

/usr/local/share/doc/homebrew

/usr/local/share/man/manl/brew.1
/usr/local/share/zsh/site-functions/_brew
/usr/local/etc/bash_completion.d/brew

/usr/local/Homebrew

==> The following new directories will be created:

/usr/local/sbin

/usr/local/opt

/usr/local/var/homebrew/linked

/usr/local/Cellar

/usr/local/Caskroom

/usr/local/Frameworks

Figure 4: Installing Homebrew package manager through the terminal.

Kimgmudisi@MA=Mac ~ % brew install wireshark

Treating wireshark as a formula. For the cask, use homebrew/cask/
wireshark or specify the "-—cask’ flag. To silence this message, use the
—=formula flag.
==> Downloading https://ghcr.io/v2/homebrew/core/wireshark/manifests/4.4.2
R G G GGG G R R B O O O O

188 . a3

Fetching dependencies for wireshark: c-ares, porel, pythan-packaoing,
mpdecimal, ca-certificates, opensslid, readline, sglite, Xz, pythons.ls,
libunistring, gettext, glib, ogmp, libidn2, libtasnl, nettle, pll-kit,
vent, libnghttp2, unbound, gnutls, libgpg-error, libgerypt, libmaxminddb,
libnghttp3, libami, libssh, lus and speexdsp

Figure 5: Installing Wireshark using the Homebrew package manager.

kingmudis@MA-Mac ~ % mergecap -w ~/Downloads/pcap/cic_ids2017.pcap ~/Downl
oads/pcap/Tuesday-WorkingHours.pcap ~/Downloads/pcap/Wednesday-workingHour
s.pcap ~/Downloads/pcap/Thursday-WorkingHours.pcap ~/Downloads/pcap/Friday
-WorkingHours.pcap

kingmudis@MA-Mac ~ % [

Figure 6: Installing Wireshark using the Homebrew package manager.

4.2 Installing and Configuring Snort IDS/IPS

The Snort open-source IDS/IPS was employed in processing the CIC-1DS2017 PCARP file. The
first step was to download the Snort software using the Homebrew package manager on the
terminal. The next step is to make Snort functional by manually updating the /dev/bpf*
permissions and making it readable by non-root users. Snort is configured using the Snort v3.0
community rules downloaded from https://www.snort.org/downloads. To configure Snort to
process the PCAP file using the community rules, the community rules are moved to the Snort
directory then the path is manually added to the configuration file.

kingmudis@MA-Mac ~ % brew install snort

==> Downloading https://formulae.brew.sh/api/formula.jws.json

HUBHUHHBRBR B R BB R R AR RE R R R BB R R ARG RHBREBHBR YRR E R A SR ERH R G B H SR G HGRHH#EH 100.0%

==> Downloading https://formulae.brew.sh/api/cask.jws.json

HUHRHRRARUR R RBR R RH BB RHHRBBRGRH R RHBRGBHERA R R ARG R ARG R R R AR H R H R #EH 100.0%

==> Downloading https://ghcr.io/v2/homebrew/core/snort/manifests/3.6.0.0

HURHHAHBHBHBH R HBHBH BB RERBHBHBH R HEHBH BB HEHBHBHRERGHBHBHREHEHEHBH R R HBHE 100.0%
> Fetching dependencies for snort: dag, hwloc, jemalloc, libdnet, libpcap, lua

jit, pcre and vectorscan

==> Downloading https://ghcr.io/v2/homebrew/core/daq/manifests/3.0.17

HUHBHARHBHARHBHERHERGBHERBRHERGBHEBHBRERH R G BHERGBHERGBHERH B R G R H B R RHH#EH 100.0%
> Fetching dag

==> Downloading https://ghcr.io/v2/homebrew/core/daq/blobs/sha256:eefe2f@55hfabe

HUHRHHHBRU BB RAR R RAB R RHARGBRARH B R BHERGB R R ARG ARG R ARG R R R GRS RS #HH 100.0%

==> Downloading https://ghcr.io/v2/homebrew/core/hwloc/manifests/2.11.2

HURHHBHBHBHBHREHBHBHBERGRBHBHBEREHBHBHRBREHERBHBEREHBHBHREREH R R G R HBHBHE 100.0%
> Fetching hwloc

==> Downloading https://ghcr.io/v2/homebrew/core/hwloc/blobs/sha256:02ca60d14701

HRHHHBRBBHERHBHERHBRGBHBR BB HEREBHERHBRG R ARG B HERGBHERGBHE RGBSR G R H SRR A S #EH 100.0%

==> Downloading https://ghcr.io/v2/homebrew/core/jemalloc/manifests/5.3.0

HHHBHERBBHERHBHBRHBHBRHBRBRHBRABHERABRGRH B R BB ARG B HER BB HER AR BB G HERHH#HEH 100.0%
- Fetching jemalloc

==> Downloading https://ghcr.io/v2/homebrew/core/jemalloc/blobs/sha256:66b5f3a4c

HURBHEHBHBHBHREHBHBHRGHERBRBH B RGHBHBHBBREHERBH BB REHBHBHRGREHBH B R RS H S #BH#E 100.0%

==> Downloading https://ghcr.io/v2/homebrew/core/libdnet/manifests/1.18.0

Figure 7: Installing Snort and its dependencies using the Homebrew package manéger.

https://www.snort.org/downloads

==> snort

For snort to be functional, you need to update the permissions for /dev/bpfx

so that they can be read by non-root users. This can be done manually using:
sudo chmod o+r /dev/bpfx

or you could create a startup item to do this for you.

kingmudis@MA-Mac ~ % sudo chmod o+r /dev/bpfx
Password:
kingmudis@MA-Mac ~ %
Figure 8: Manually updating the /dev/bpf* permissions so Snort can be functional.

kingmudis@MA-Mac ~ % sudo cp ~/Downloads/snort3-community-rules/snort3-community.
rules /usr/local/etc/snort
kingmudis@MA-Mac ~ % sudo nano /usr/local/etc/snort/snort.lua

UW PICO 5.09 File: /usr/local/etc/snort/snort.lua Modified

—— 5. configure detection

references = default_references
classifications = default_classifications

ips =

{
include = '/usr/local/etc/snort/snort3-community.rules',
—— use this to enable decoder and inspector alerts
——enable_builtin_rules = true,

—— use include for rules files; be sure to set your path
—— note that rules files can include other rules files
—— (see also related path vars at the top of snort_defaults.lua)

variables = default_variables

}

—— use these to configure additional rule actions
—— react = { }

— reject = { }

—— use this to enable payload injection utility
—- payload_injector = { }

Figure 9: Copying the community rules to the Snort directory and adding the path to
the Snort configuration file.

4.3 Processing the CIC-1DS2017 PCAP File using Snort

After installing and configuring Snort with the community rules, the PCAP file is processed
to generate alerts when an attack is detected. The first command outputs alerts and statistics
on the console while the second exports the alert logs in CSV format.

kingmudis@MA-Mac ~ % snort —c /usr/local/etc/snort/snort.lua -r ~/Downloads/
pcap/cic_ids2017.pcap —A alert_fast

o")~ Snort++ 3.6.0.0

Loading /usr/local/etc/snort/snort.lua:
Figure 10: Copying the community rules to the Snort directory and adding the path to
the Snort configuration file.

kingmudis@MA-Mac ~ % snort -c /usr/local/etc/snort/snort.lua -r ~/Downloads/
pcap/cic_ids2017.pcap -A alert_fast

0")~ Snort++ 3.6.0.0

Loading /usr/local/etc/snort/snort.lua:

Figure 11: Analysing the CIC-1DS2017 PCAP file and outputting the alerts on the
console.

® ® T kingmudis — -zsh — 98x24

07/07-20:02:09.621680 [*%] [1:254:17] "PROTOCOL-DNS SPOOF query response with TTL of 1 min. and no
authority" [**] [Classification: Potentially Bad Traffic] [Priority: 2] {UDP} 192.168.10.3:53 ->
192.168.10.19:20516

07/07-20:02:20.483246 [*%] [1:254:17] "PROTOCOL-DNS SPOOF query response with TTL of 1 min. and no
authority" [%x] [Classification: Potentially Bad Traffic] [Priority: 2] {UDP} 192.168.10.3:53 ->
192.168.10.8:53043

07/07-20:02:22.450675 [*%] [1:254:17] "PROTOCOL-DNS SPOOF query response with TTL of 1 min. and no
authority" [*x] [Classification: Potentially Bad Traffic] [Priority: 2] {UDP} 192.168.10.3:53 —>
192.168.10.8:53103

—— [@] /Users/kingmudis/Downloads/pcap/cic_ids2017.pcap

Packet Statistics

daq
pcaps: 1
received: 44660731
analyzed: 44660731
allow: 40380509
whitelist: 4280222
rx_bytes: 28007503637
expected_flows: 2781

codec
total: 44661494 (100.000%)

Figure 12: Subset of the output of the command ran in Figure 11.

kingmudis@MA-Mac ~ % snort —-q —-c /usr/local/etc/snort/snort.lua -R /usr/lo
cal/etc/snort/snort3-community.rules -r ~/Downloads/pcap/cic_ids2017.pcap
-A alert_csv —-lua "alert_csv = {fields = 'timestamp proto dir src_ap ds
t_ap rule msg class priority '}" > ~/Downloads/logs/snort_log.csv
kingmudis@MA-Mac ~ %
Figure 13: Analysing the CIC-1DS2017 PCAP file in quiet mode and exporting the
alerts logs in CSV format with specified fields.

4.4 Initial Exploration with Microsoft Excel

Microsoft Excel was to conduct an initial exploration of the generated Snort alert to get an
overview of the log entries. It was also employed in manually adding header fields to the
generated log. It was also used to explore the downloaded CIC-IDS2017 CSV files for machine
learning.

(© ® Autcsae (D (R & @ B snort_log v Q & |
Home Insert Draw Page Layout Formulas (J Comments
Fﬁ“\ . A . = O/ . fEl conditional Formatting v @ . /C) .
- D 0 @ Format as Table v [S
Clipboard Font Alignment Number Cells Editing S
fiZ cell styles v
Al . fx Timestamp v
A B Cc D E F G H |
1 |Timestamp .lProtocol Traffic Direct Source Destination Rule ID Alert Messag Traffic Classi Risk Priority
2 07/04-11:54: UDP S2C 192.168.10.2 192.168.10.f 1:254:17 "PROTOCOL: Potentially B 2
3 07/04-11:55: UDP S2C 192.168.10.Z 192.168.10.f 1:254:17 "PROTOCOL: Potentially B 2
4 07/04-11:55: UDP S2C 192.168.10.2 192.168.10.f 1:254:17 "PROTOCOL: Potentially B 2
5 07/04-11:55: UDP S2C 192.168.10.2 192.168.10.f 1:254:17 "PROTOCOL: Potentially B 2
6 07/04-11:55: UDP S2C 192.168.10.5 192.168.10.f 1:254:17 "PROTOCOL: Potentially B 2
7 07/04-11:56: ICMP Cc2s 192.168.10.7 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
8 07/04-11:56: ICMP C2s 192.168.10.7 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
9 07/04-11:56: ICMP C2s 192.168.10.7 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
10 07/04-11:57: ICMP C2s 192.168.10.f 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
11 /07/04-11:57: ICMP C2s 192.168.10.£ 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
12 |07/04-11:57: ICMP C2s 192.168.10.£ 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
13 |07/04-11:57: ICMP C2s 192.168.10.£ 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
14 |07/04-11:57: ICMP C2s 192.168.10.£ 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
15 |07/04-11:57: ICMP C2s 192.168.10.£ 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
16 |07/04-11:57: ICMP C2s 192.168.10.7 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
17 |07/04-11:57: ICMP Cc2s 192.168.10.7 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
18 |07/04-11:57: ICMP C2s 192.168.10.7 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
19 |07/04-11:57: ICMP C2s 192.168.10.2 192.168.10.% 1:402:16 "PROTOCOL: Misc activity 3
20 07/04-11:57: UDP S2C 192.168.10.2 192.168.10.7 1:254:17 "PROTOCOL: Potentially B 2

Figure 14: Using Microsoft Excel to Add header fields to the generated Snort alert log.

®0O@® Auocsave (D D & 2O Wednesday-workingHours.p... ~ Q&
Home Insert Draw Page Layout Formulas (J Comments (& Share v
A —— sat . =
I:J] . A 7 — O/O y [conditional Formatting v @ o p "
o @ Format as Table v >
Clipboard Font Alignment Number Cells Editing Se
ﬁ Cell Styles v
Al - fx Destination Port v
A B C D E F G H |
1 | Destination-l Flow Duratic Total Fwd Pa Total Backw: Total Length ¢ Total Length Fwd Packet | Fwd Packet | Fwd Packet Lengt
2 80 38308 1 1 6 6 6 6 6
3 389 479 11 5 172 326 79 0 15.63636364
4 88 1095 10 6 3150 3150 1575 0 315
5 389 15206 17 12 3452 6660 1313 0 203.0588235

Figure 15: Exploring the Wednesday subset of the CIC-1DS2017 dataset using Excel.

4.5 Analysing & Visualising the Snort Alert Logs

To get insight into the Snort Alert logs, Jupyter Notebook was employed to analyse and
visualise the generated logs. Jupyter Notebook and other Python modules were installed using
the “python3 -m pip install -U jupyter matplotlib numpy pandas scipy sci-Kit-learn seaborn”
and running it using the “Jupyter notebook” command. The “Jupyter server list” command was
used to display the Jupyter server URL and token. Upon accessing the Jupyter server using the
URL, the Snort log was moved to the research_project folder on the Downloads directory for
easier access, and a new notebook was created titled ‘workflow.ipynb’before commencing

analysis and visualisation.

#Importing relevant Python Libraries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#ANALYSIS & VISUALISATION OF THE SNORT LOG GENERATED FROM THE CIC-IDS2017 PCAP FILE

#Loading the csv log

snort_alerts = pd.read_csv('snort_log.csv')

#Statistics from Snort Analysis of CICIDS-2017 PCAP file
total_traffic_analysed = 44660731
alerts_triggered = snort_alerts.shape(0]
benign_traffic = total_traffic_analysed - alerts_triggered

snort_throughput = 50887
snort_runtime = 877.645486

Figure 16: Importing the Python libraries, loading the Snort Log into the dataframe,

and storing log statistics in variables.

#Displaying first 5 rows of the Snort Logs

snort_alerts.head(5)

Timestamp Protocol

07/04-
11:54:56.360696

07/04-
11:56:02.029403

07/04-
11:65:02.135535

07/04-
11:55:05.743099

07/04-
11:65:05.743833

uDP

UDP

uDP

ubP

ubP

Traffic
Direction

Ss2C

s2C

s2C

Ss2C

Ss2C

Source

192.168.10.3:53

192.168.10.3:53

192.168.10.3:53

192.168.10.3:53

192.168.10.3:53

Destination

192.168.10.5:52825

192.168.10.5:54941

192.168.10.5:60081

192.168.10.5:54459

192.168.10.5:65359

Rule ID

1:254:17

1:2564:17

1:254:17

1:254:17

1:254:17

Alert
Message

"PROTOCOL-

DNS SPOOF
query
response
with TTL o...

"PROTOCOL-

DNS SPOOF
query
response
with TTL o...

"PROTOCOL-

DNS SPOOF
query
response
with TTL o...

"PROTOCOL-

DNS SPOOF
query
response
with TTL o...

"PROTOCOL-

DNS SPOOF
query
response
with TTL o...

Figure 17: Displaying the top 5 rows of the Snort logs.

#0utputing the structure of the logs
print('\nStructure of the Snort Log: ')
print(f'Columns: {snort_alerts.shapell]}")
print(f'Rows: {snort_alerts.shapel@]}")

Structure of the Snort Log:
Columns: 9
Rows: 266327

#Concise summary of the Snort log's structure
snort_alerts.info()

<class 'pandas.core.frame.DataFrame'>
Rangelndex: 266327 entries, @ to 266326
Data columns (total 9 columns):

Column Non-Null Count Dtype
@ Timestamp 266327 non-null object
1 Protocol 266327 non-null object
2 Traffic Direction 266327 non-null object
3 Source 266327 non-null object
4 Destination 266327 non-null object
5 Rule ID 266327 non-null object
6 Alert Message 266327 non-null object
7 Traffic Classification 266327 non-null object
8 Risk Priority 266327 non-null 1int64

dtypes: int64(1), object(8)
memory usage: 18.3+ MB

#Vi

sno
sno

sns.
plxs
plt.

plt.
plt.
plt.

Figure 18: Exploratory Data Analysis of the Snort log.
sualisation Snort Log traffic distribution using Pie Chart

rt_traffic_labels 'MALICIOUS', 'BENIGN'

rt_traffic_values [alerts_triggered,benign_traffic]

set_palette('hls', 8)

figure(figsize = (5, 5))

pie(snort_traffic_values, labels = snort_traffic_labels, autopct = '%1.1f%%',
textprops={'fontsize': 10})

title('BENIGN vs MALICIOUS (Snort Log)')
legend(snort_traffic_labels, loc = 'best')
show()

Figure 19: Employing a Pie Chart to visualise the traffic distribution in the CIC-
IDS2017 PCAP File.

BENIGN vs MALICIOUS (Snort Log)

BN MALICIOUS
W BENIGN

BENIGN MALICIOUS

Figure 20: Traffic distribution of the CIC-1DS2017 PCAP file.

#Displaying Snort log's risk priorities distribution
risk_priority = { #Using Low, Medium, High as the Risk Priorities instead of 1,2,3
1: 'High Risk',
2: 'Medium Risk',
3: 'Low Risk'

}
snort_alerts['Risk Priority'] = snort_alerts['Risk Priority'].map(risk_priority)

#The Counts Risk Priorities of the Logs
snort_alerts['Risk Priority'].value_counts()

[23]:

Risk Priority

High Risk 175822
Medium Risk 85903
Low Risk 4602

Name: count, dtype: int64

Figure 21: Attack’s risk priorities of the Snort log.

10

#Snort log's Malicous Traffic Classification Distribution
snort_alerts['Traffic Classification'].value_counts()

[24]:

Traffic Classification

Attempted Administrator Privilege Gain 175425
Potentially Bad Traffic 84029
Misc activity 3240
Detection of a Network Scan 1359
Attempted Information Leak 1043
Information Leak 441
Executable code was detected 383
Attempted Denial of Service 314
Access to a potentially vulnerable web application 67
Web Application Attack 9

Successful Administrator Privilege Gain

A system call was detected

An attempted login using a suspicious username was detected
Misc Attack

A suspicious string was detected

Generic Protocol Command Decode

Name: count, dtype: int64

Figure 22: Displaying the Snort log’s traffic classification distribution.

FNNWRW

#Visualising the Snort log’s traffic classification distribution. B ™ 4 .
traffic_distribution = snort_alerts|['Traffic Classification'].value_counts()
snort_log_threshold = 0.010
snort_log_percent = traffic_distribution / traffic_distribution.sum()
snort_log = snort_log_percent[snort_log_percent < snort_log_threshold].index.tolist()
traffic_distribution['Others'] = traffic_distribution[snort_log I.sum()
traffic_distribution.drop(snort_log , inplace = True)
sns.set_palette('hls', 8)
plt.figure(figsize = (6.5, 6.5))
plt.pie(traffic_distribution.values, labels = traffic_distribution.index,

autopct = '%1.1f%%', textprops={'fontsize': 10})
plt.title('Attacks Distribution (Snort Log)')
plt.legend(traffic_distribution.index, loc = 'best')
plt.show()

Figure 23: Visualising the Snort log’s traffic classification distribution.

Emm Attempted Administrator Privilege Gain

Potentially Bad Traffic
Attempted Administrator Privilege Gain pam Misc activity

s Others

Others
Misc activity

Potentially Bad Traffic
Figure 24: The Snort log’s traffic classification distribution

11

4.6 Employing Machine Learning Models on the CIC-1DS2017 Dataset

After analysing the CIC-1DS2017 PCAP file using Snort open-source IDS/IPS, the next step
was to evaluate the performance of three machine models on the machine-learning CSV files
of the CIC-IDS dataset. The Monday subset of the dataset was excluded because it contained
only benign traffic, focusing on just Tuesday, Wednesday, Thursday, and Friday. The machine
learning CSV files were loaded as a dataframe on Jupyter Notebook, then the following steps
were performed:

» Exploratory Data Analysis.

» Data Cleaning and Preprocessing.

» Feature Engineering.

* Models’ Training and Testing.

» Performance Evaluation.

#Importing the ML-Labeled CIC-IDS2017 dataset
#Monday traffic was ignored due absence of attack traffic

tuesday = pd.read_csv('Tuesday-WorkingHours.pcap_ISCX.csv')

wednesday = pd.read_csv('Wednesday-workingHours.pcap_ISCX.csv')

thursday = pd.read_csv('Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv')
thursday_afternoon = pd.read_csv('Thursday-WorkingHours—-Afternoon-Infilteration.pcap_ISCX.csv')
friday = pd.read_csv('Friday-WorkingHours-Morning.pcap_ISCX.csv')

friday_noon = pd.read_csv('Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv')
friday_afternoon = pd.read_csv('Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')

#Compiling datasets

dataset_compiled =[tuesday, wednesday, thursday, thursday_afternoon, friday, friday_noon,
friday_afternoon]

cic_ids2017 = pd.concat(dataset_compiled)

#Removing individual datasets to free up used memory
del tuesday, wednesday, thursday, thursday_afternoon, friday, friday_noon, friday_afternoon,
dataset_compiled

#0utputing the structure of the logs
print('\nStructure CIC_IDS2017 Dataset: ')
print(f'Columns: {cic_ids2017.shapel1]}")
print(f'Rows: {cic_ids2017.shapel0]}')

Structure CIC_IDS2017 Dataset:
Columns: 79
Rows: 2300825

Figure 25: Loading the CIC-1DS2017 dataset into a dataframe on Jupyter Notebook.
#Ensure all columns are visible
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

cic_ids2017.head(5) #View the top 5 rows of the dataset

Total Total Fwd Fwd Fwd

Destination Flow Total Total Length Length Packet Packet Packet Ewd
. Fwd Backward Packet
Port Duration Packets Packets of Fwd of Bwd Length Length Length Length Std

Packets Packets Max Min Mean 9
0 88 640 7 4 440 358 220 0 62.857143 107.349008
1 88 900 9 4 600 2944 300 0 66.666667 132.287566
2 88 1205 7 4 2776 2830 1388 0 396.571429 677.274651
3 88 51 7 4 452 370 226 0 64.571429 110.276708
4 88 773 9 4 612 2944 306 0 68.000000 134.933317

Figure 26: Ensuring all columns, rows are visible and displaying the top 5 rows.

12

cic_ids2017.info() #A concise overview of the dataset

<class 'pandas.core.frame.DataFrame'>
Index: 2300825 entries, @ to 225744
Data columns (total 79 columns):

Column Dtype
0 Destination Port int64
1 Flow Duration int64
2 Total Fwd Packets int64
3 Total Backward Packets int64
4 Total Length of Fwd Packets int64
5 Total Length of Bwd Packets int64
6 Fwd Packet Length Max int64
7 Fwd Packet Length Min int64
8 Fwd Packet Length Mean float64d
9 Fwd Packet Length Std float64
10 Bwd Packet Length Max int64

Figure 27: Exploratory Data Analysis of the loaded CIC-1DS2017 dataset

#Removing whitespace from columns heading
column_heading = {column: column.strip() for column in cic_ids2017.columns}
cic_ids2017.rename(columns = column_heading, inplace = True)

Figure 28: Removing whitespace from column name.

#Visualising traffic distribution in the CIC-IDS2017 dataset

#Group traffic into BENIGN & MALICIOUS
cic_ids_copy = cic_ids2017.copy() #Making a copy of the dataframe
cic_ids_copy['Label'] = cic_ids_copy['Label'].replace({
'BENIGN': 'BENIGN',
'DoS Hulk': 'MALICIOUS',
'DDoS': 'MALICIOUS',
'PortScan': 'MALICIOUS',
'DoS GoldenEye': 'MALICIOUS',
'FTP-Patator': 'MALICIOUS',
'DoS slowloris': 'MALICIOUS',
'DoS Slowhttptest': 'MALICIOUS',
'SSH-Patator': 'MALICIOUS',
'Bot': 'MALICIOUS',
'Web Attack ® Brute Force': 'MALICIOUS',
'Web Attack & XSS': 'MALICIOUS',
'Infiltration': 'MALICIOUS',
'Web Attack & Sql Injection': 'MALICIOUS',
'Heartbleed': 'MALICIOUS'
})

#Visualisation the Traffic distribution using Pie-Chart

cic_ids_traffic_counts = cic_ids_copy!['Label'].value_counts()

sns.set_palette('hls', 8)

plt.figure(figsize = (6.5, 6.5))

plt.pie(cic_ids_traffic_counts.values, labels = cic_ids_traffic_counts.index,
autopct = '%1.1f%%', textprops={'fontsize': 10})

plt.title('BENIGN vs MALICIOUS (CIC_IDS2017)')

plt.legend(cic_ids_traffic_counts.index, loc = 'best')

plt.show()

Figure 29: Visualising CIC-IDS2017 dataset’s traffic distribution.

13

BENIGN vs MALICIOUS (CIC_IDS2017)

BN BENIGN
0 MALICIOUS

BENIGN

MALICIOUS

Figure 30: CIC-IDS2017 dataset’s distribution of benign & malicious traffic.

cic_ids2017['Label'].value_counts() #Displaying traffic labels and their frequency

[15]:

Label

BENIGN 1743179
DoS Hulk 231073
PortScan 158930
DDoS 128027
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web Attack ® Brute Force 1507
Web Attack & XSS 652
Infiltration 36
Web Attack @ Sql Injection 21
Heartbleed 11

Name: count, dtype: int64
Figure 31: Count of CIC-1DS2017 traffic.

14

#Visualising the CIC-IDS2017 malicious traffic distribution

cic_ids_traffic = cic_ids2@17.loc[cic_ids2@17['Label’'] != 'BENIGN']

cic_ids_attacks = cic_ids_traffic['Label'].value_counts()

attack_threshold = 0.05

attack_percentages = cic_ids_attacks / cic_ids_attacks.sum()

cic_ids_ss = attack_percentages [attack_percentages < attack_threshold].index.tolist()

cic_ids_attacks['Others'] = cic_ids_attacks([cic_ids_ss].sum()

cic_ids_attacks.drop(cic_ids_ss, inplace = True)

sns.set_palette('hls', 8)

plt.figure(figsize = (6.5, 6.5))

plt.pie(cic_ids_attacks.values, labels = cic_ids_attacks.index, autopct = '%1.1f%%’,
textprops={'fontsize': 10})

plt.title('Malicious Traffic Distribution (CIC-IDS2017)')

plt.legend(cic_ids_attacks.index, loc = 'best')

plt.show()
Malicious Traffic Distribution (CIC-IDS2017)
BN DoS Hulk
0 PortScan DoS Hulk
W DDoS
0 Others

Others
PortScan

DDoS
Figure 32: Visualising CIC-IDS2017 dataset’s malicious traffic distribution.

#Checking for duplicate entries in the dataset
duplicate_entries = cic_ids2017.duplicated().sum()
print (f'Number of Duplicate Entries: {duplicate_entries}')

Number of Duplicate Entries: 281095
cic_ids2017.drop_duplicates(inplace = True) #Removing duplicates

Figure 33: Handling duplicates.

15

#Displaying Columns with Null and Infinite values
print('Number of Null values: ')

null_values = cic_ids2017.isna().sum()
print(null_values. loc[null_values > @])

print('\n Number of Infinite Values: ')

numerical_columns = cic_ids2017.select_dtypes(include=[np.number])
infinite_values = np.isinf(numerical_columns).sum()
print(infinite_values|[infinite_values > @])

Number of Null values:
Flow Bytes/s 302
dtype: int64

Number of Infinite Values:
Flow Bytes/s 955
Flow Packets/s 1257
dtype: int64

#Handling missing Null and Infinite values by imputting the median since they are numerical
null_values = cnull_values = cic_ids2@17['Flow Bytes/s']|.median()

cic_1ids2@17['Flow Bytes/s'] = cic_ids2017(['Flow Bytes/s'].fillna{null_values)

cic_ids2@017['Flow Bytes/s'] = cic_ids2@17['Flow Bytes/s'].replace([np.inf, -np.inf],
cic_ids2017['Flow Bytes/s'].median())

cic_ids2@17['Flow Packets/s'] = cic_ids2017['Flow Packets/s'].replace([np.inf, -np.inf],

cic_ids2017['Flow Packets/s'].median())

Figure 34: Handling missing and infinite values.

#Rechecking for missing values
print('Number of Null values: ')
null_values = cic_ids2017.isna().sum()
print(null_values. locnull_values > 0])

print('\n Number of Infinite Values: ')

numerical_columns = cic_ids2017.select_dtypes(include=[np.number])
infinite_values = np.isinf(numerical_columns).sum()
print(infinite_values[infinite_values > 0])

Number of Null values:
Series([], dtype: int64)

Number of Infinite Values:
Series([], dtype: int64)
Figure 35: Rechecking for missing values.

cic_ids2017.shape

(2019730, 79)

#Checking number of unique values in each columns on the dataset
unique_columns = cic_ids2017.nunique()
print(unique_columns)

Figure 36: Checking shape and number of unique values on each column.

16

#Removing columns with just a single unique value

cic_ids2017.drop(columns=['Bwd PSH Flags', 'Bwd URG Flags', 'Fwd Avg Bytes/Bulk',
'Fwd Avg Packets/Bulk', 'Fwd Avg Bulk Rate', 'Bwd Avg Bytes/Bulk',
'Bwd Avg Packets/Bulk', 'Bwd Avg Bulk Rate'], inplace=True)

Figure 37: Removing features with just a single unique value due to irrelevance.

#Grouping similar attacks together
cic_ids2017['Label'] = cic_ids2017(['Label'].replace({
'BENIGN': 'Benign', 'DoS Hulk': 'DoS/DDoS', 'DDoS': 'DoS/DDoS','PortScan': 'MALICIOUS',
'DoS GoldenEye': 'DoS/DDoS','FTP-Patator': 'FTP/SSH Patator Attack',
'DoS slowloris': 'DoS/DDoS', 'DoS Slowhttptest': 'DoS/DDoS', 'SSH-Patator': 'FTP/SSH Patator
'Bot': 'Bot Attack','Web Attack @ Brute Force': 'Brute Force Attack',
'Web Attack ® XSS': 'Injection Attack','Infiltration': 'Infiltration Attack',
'Web Attack ® Sql Injection': 'Injection Attack', 'Heartbleed': 'Heartbleed Attack'
9]
cic_ids2017['Label'].value_counts()

Label

Benign 1593852
DoS/DDoS 321764
MALICIOUS 90819
FTP/SSH Patator Attack 9152
Bot Attack 1953
Brute Force Attack 1470
Injection Attack 673
Infiltration Attack 36
Heartbleed Attack 11

Name: count, dtype: int64
Figure 38: Grouping similar attacks.

#Standardising the features using StandardScaler to improve the efficiency of the models.
from sklearn.preprocessing import StandardScaler #Importing StandardScaler
selected_features = cic_ids2017_copy.drop('Label’, axis=1) #Excluding the target feature.
target_feature = cic_ids2017_copy!['Label’]

scaler = StandardScaler()

standardised_features = scaler.fit_transform(selected_features)

#Reducing the dimensions of the dataset using the Analysis of Pricincipal Component Technique

from sklearn.decomposition import IncrementalPCA #Importing the dimension reduction class

selected_dimension = len(selected_features.columns) // 2 #Specifying the dimension

dimension_reduction = IncrementalPCA(n_components = selected_dimension, batch_size = 1000)

ratio = len(selected_features) // batch_size

for segment in np.array_split(standardised_features, ratio):
dimension_reduction.partial_fit(segment)

#Merging target features with standardised and reduced features
standardised_reduced = dimension_reduction.transform(standardised_features)
cic_ids_merged = pd.DataFrame(

standardised_reduced,

columns=[f'PC{index+1}' for index in range(selected_dimension)]
)
cic_ids_merged['Label'] = target_feature.values

Figure 39: Standardising and reducing the dimensions of the datasets to improve
the models’ efficiency.

17

cic_ids_merged['Label'].value_counts() #Viewing imbalance in the traffic classification

Label

Benign 1593852
DoS/DDoS 321764
MALICIOUS 90819
FTP/SSH Patator Attack 9152
Bot Attack 1953
Brute Force Attack 1470
Injection Attack 673
Infiltration Attack 36
Heartbleed Attack 11

Name: count, dtype: int64
Figure 40: Traffic classification before undersampling.

#To prevent imbalance Undersampling traffic class to max 5000 rows
traffic_count = cic_ids_merged ['Label'].value_counts()
traffic_values = traffic_count.index

sampled_traffic = cic_ids_merged[cic_ids_merged|'Label'].isin(traffic_values)]
cic_ids_undersampled = []
for traffic in traffic_values:
traffic_captured = sampled_traffic[sampled_traffic['Label'] == traffic]
if len(traffic_captured) > 3000:
samples = min(len(traffic_captured), 5000)
traffic_captured = traffic_captured.sample(n=samples, random_state=0)
cic_ids_undersampled.append(traffic_captured)

Figure 41: Undersampling majoring traffic class.

#Displaying traffic classification after undersampling
cic_ids_imbalance = pd.concat(cic_ids_undersampled, ignore_index = True)
cic_ids_imbalance['Label'].value_counts()

Label

Benign 5000
DoS/DDoS 5000
MALICIOUS 5000
FTP/SSH Patator Attack 5000
Bot Attack 1953
Brute Force Attack 1470
Injection Attack 673
Infiltration Attack 36
Heartbleed Attack 11

Name: count, dtype: int64
Figure 42: Traffic classification after undersampling.

#0versampling the minority traffic class to balance dataset
from imblearn.over_sampling import SMOTE

X = cic_ids_imbalance .drop('Label', axis=1)

y = cic_ids_imbalance ['Label']

sm = SMOTE(sampling_strategy='auto', random_state=42)
X_sam, y_sam = sm.fit_resample(X, y)

Figure 43: Traffic classification after undersampling.

18

#Viewing balanced traffic classification
cic_ids_balance = pd.DataFrame(X_sam)
cic_ids_balance['Label'] = y_sam
cic_ids_balances = cic_ids_balance.sample(frac=1)
cic_ids_balance['Label'].value_counts()

Label

Benign 5000
DoS/DDoS 5000
MALICIOUS 5000
FTP/SSH Patator Attack 5000
Bot Attack 5000
Brute Force Attack 5000
Injection Attack 5000
Infiltration Attack 5000
Heartbleed Attack 5000

Name: count, dtype: int64
Figure 44: Viewing balanced traffic classification.

#Splitting datasets into 80:20 for training and testing models.
from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

import time

features = cic_ids_balance.drop('Label’', axis = 1)

targets = cic_ids_balance!['Label’]

X_train, X_test, y_train, y_test train_test_split(
features, targets, test_size = 0.20, random_state = 42
)

Figure 45: Splitting dataset into 80:20 for training and testing models.

#Employing Decision Tree Classifier

from sklearn.tree import DecisionTreeClassifier

d_tree = DecisionTreeClassifier (max_depth = 10)

d_tree.fit(X_train, y_train)

d_tree_start = time.time()

d_tree_predictions = d_tree.predict(X_test)

d_tree_stop = time.time()

d_tree_time = round(d_tree_stop - d_tree_start, 3)

d_tree_throughput = round(len(X_test) / d_tree_time, 3)

d_tree_accuracy = round(accuracy_score(y_test, d_tree_predictions), 3)
Figure 46: Employing decision tree classifier on the CIC-IDS2017 dataset.

19

#Employing K-Nearest Neighbors Classifier

from sklearn.neighbors import KNeighborsClassifier

k_nearest = KNeighborsClassifier(n_neighbors = 7)
k_nearest.fit(X_train, y_train)

k_nearest_start = time.time()

k_nearest_predictions = d_tree.predict(X_test)
k_nearest_predictions = k_nearest.predict(X_test)
k_nearest_stop = time.time()

k_nearest_time = round(k_nearest_stop - k_nearest_start, 3)
k_nearest_throughput = round(len(X_test) / k_nearest_time, 3)
k_nearest_accuracy = round(accuracy_score(y_test, k_nearest_predictions), 3)

#Employing Random Forest
from sklearn.ensemble import RandomForestClassifier

r_forest = RandomForestClassifier(n_estimators
random_state

42)

r_forest.fit(X_train, y_train)

r_forest_start = time.time()

r_forest_predictions = r_forest.predict(X_test)

r_forest_stop = time.time()

r_forest_time = round(r_forest_stop - r_forest_start, 3)
r_forest_throughput = round(len(X_test) / r_forest_time, 3)
r_forest_accuracy = round(accuracy_score(y_test, r_forest_predictions), 3)

10, max_depth = 10, max_features = None,

Figure 47: Employing K neighbors and random forest classifiers on the CIC-

IDS2017 dataset.

#Evaluating the models performance using their accuracy.
print (f'Decision Tree: {d_tree_accuracy }')

print (f'K-Nearest Neighbor: {k_nearest_accuracy }')
print (f'Random Forest: {r_forest_accuracy }')

Decision Tree: 0.904
K-Nearest Neighbor: 0.929
Random Forest: 0.919

Figure 48: Displaying the models’ accuracy.

#Visualising model's performance
palette = sns.color_palette('hls', n_colors = 8)

labels = ['Decision Trees', 'K Nearest Neighbours', 'Random Forest']

scores = |d_tree_accuracy, k_nearest_accuracy, r_forest_accuracy |
fig, ax = plt.subplots(figsize = (9, 3))
ax.barh(labels, scores, color = palette)
ax.set_xlim([0, 11)

ax.set_xlabel('Accuracy"')

ax.set_title('ML Model Performance Comparison')
for i, v in enumerate(scores):

ax.text(v + 0.01, i, str(round(v, 4)), ha = 'left', va = 'center')

plt.show()

Figure 49: Visualising the model’s performance.

20

ML Model Performance Comparison

Random Forest 0919
K Nearest Neighbours 0.929
0.0 02 04 0.6 0.8 1.0

Accuracy
Figure 50: Visualising the model’s performance.

print (f'Runtime(seconds)')

print (f'Snort: {snort_runtime }')

print (f'Decision Tree: {d_tree_time}"')

print (f'K-Nearest Neighbor: {k_nearest_time} ')
print (f'Random Forest: {r_forest_time}')
print('\n')

print (f'Throughput(events/seconds)"')

print (f'Snort: {snort_throughput } ')

print (f'Decision Tree: {d_tree_throughput}')
print (f'K-Nearest Neighbor: {k_nearest_throughput}"')
print (f'Random Forest: {r_forest_throughput}')

Runtime(seconds)

Snort: 877.645

Decision Tree: 0.006
K-Nearest Neighbor: 1.256
Random Forest: 0.015

Throughput (events/seconds)
Snort: 50887

Decision Tree: 1500000.0
K-Nearest Neighbor: 7165.605
Random Forest: 600000.0

Figure 51: Displaying Snort’s and models’ performance.

#Visualing Snort's and model's runtime

y = ['SNORT', 'DECISION TREE', 'KNN', 'RANDOM FOREST']

x = [snort_throughput, d_tree_throughput, k_nearest_throughput, r_forest_throughput]
palette = sns.color_palette('hls', 8)

colors = palettel:len(y)]

plt.barh(y, x, color=colors)

plt.xlabel("Events per second")

plt.title("SNORT VS ML (THROUGHPUT)")

Figure 52: Visualising Snort’s and models’ runtime.

21

SNORT VS ML (THROUGHPUT)

RANDOM FOREST

KNN
DECISION TREE
SNORT
0.0 02 04 06 08 1.0 12 14
Events per second 1e6
Figure 53: Snort’s and ML throughput.
References

Sharafaldin, I., Lashkari, A.H. and Ghorbani, A.A. (2018) ‘Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization’, in 4th International Conference on
Information Systems Security and Privacy (ICISSP). ICISSP 2018, Portugal.

22

